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Analysis on metric spaces

Mario Bonk ∗ Luca Capogna † Piotr Haj lasz ‡

Nageswari Shanmugalingam § Jeremy Tyson ¶

November 5, 2019

The subject of analysis, more specifically
first-order calculus, in metric measure spaces
provides a unifying framework for ideas and
questions from many different fields of math-
ematics. One of the earliest motivations and
applications of this theory arose in Mostow’s
work [Mos73], in which he extended his cele-
brated rigidity theorem for hyperbolic mani-
folds to the more general framework of man-
ifolds locally modeled on negatively-curved
symmetric spaces of rank one. In his proof,
Mostow used the theory of quasiconformal
mappings on the visual boundaries of rank-
one symmetric spaces. These visual bound-
aries are equipped with a sub-Riemannian
structure that is locally non-Euclidean and
has a fractal nature. Mostow’s study of qua-
siconformal maps on such boundaries moti-
vated Heinonen and Koskela [HK98] to ax-
iomatize several aspects of Euclidean quasi-
conformal geometry in the setting of met-
ric measure spaces, and thereby extend
Mostow’s work beyond the sub-Riemannian
setting. The groundbreaking work [HK98]
initiated the modern theory of analysis on
metric spaces.
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Analysis on metric spaces is nowadays an
active and independent field, bringing to-
gether researchers from different parts of the
mathematical spectrum. It has far-reaching
applications to areas as diverse as geomet-
ric group theory, nonlinear PDEs, and even
theoretical computer science. As a further
sign of recognition, analysis on metric spaces
has been included in the 2010 MSC clas-
sification as a category (30L: Analysis on

metric spaces). In this short survey, we
can only discuss a small fraction of areas
into which analysis on metric spaces has ex-
panded. For more comprehensive introduc-
tions to various aspects of the subject, we
invite the reader to consult the monographs
[Hei01,HK00,HKST15,BB11,MT10,AGS08,
BS07,Hei07].

Poincaré inequalities in metric spaces.

Inspired by the fundamental theorem of cal-
culus, Heinonen and Koskela proposed the
notion of upper gradient as a substitute for
the derivative of a function on a metric mea-
sure space (X, d, µ). More precisely, g ≥ 0 is
an upper gradient for a real-valued function
u on X if

|u(γ(1))− u(γ(0))| ≤

∫

γ

g ds

for each path γ : [0, 1] → X of finite length.

Upper gradients are not unique; but if a
function u has an upper gradient g ∈ Lp(µ),
then there is a unique p-weak upper gradi-

ent gu with minimal Lp-norm, for which the
preceding inequality holds for “almost every”
curve γ. The metric measure space X is said
to support a p-Poincaré inequality for some
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p ≥ 1 if constants C > 0 and λ ≥ 1 exist
so that for every ball B = B(x,R) ⊂ X , the
inequality

−

∫

B

|u− uB|dµ ≤ CR

(

−

∫

λB

gpu dµ

)1/p

holds for all function-upper gradient pairs
(u, gu). Here uB = −

∫

B u dµ and λB =
B(x, λR).
Over the past twenty years, many aspects

of first-order calculus have been systemati-
cally developed in the setting of PI spaces,
that is, metric measure spaces equipped
with a doubling measure and supporting a
Poincaré inequality. For example, for PI
spaces we now have a rich theory of Sobolev
functions which in turn lies at the foundation
of the theory of quasconformal mappings and
non-linear potential theory.
A wealth of interesting and important ex-

amples of non-Euclidean PI spaces exist,
including sub-Riemannian manifolds such
as the Heisenberg group, Gromov-Hausdorff
limits of manifolds with lower Ricci curvature
bounds, visual boundaries of certain hyper-
bolic buildings, and fractal spaces that are
homeomorphic to the Menger curve. The
scope of the theory, however, is not fully ex-
plored.

Quasiconformal maps and nonlinear

potential theory in metric spaces. A
homeomorphism between metric spaces is
said to be quasiconformal if it distorts the
geometry of infinitesimal balls in controlled
fashion. Conformal maps form a special sub-
class for which infinitesimal balls are mapped
to infinitesimal balls. Since the only con-
formal maps between higher-dimensional Eu-
clidean spaces are Möbius transformations,
quasiconformal homeomorphism form a more
flexible class for geometric mapping prob-
lems. For quasiconformal maps on PI spaces,
we now have a well-developed theory that
features many of the aspects of the Euclidean
theory such as Sobolev regularity, preserva-
tion of sets of measures zero, and global dis-
tortion estimates, among other things.
A function u on a domain Ω in a metric

measure space (X, d, µ) is said to be p-quasi-

harmonic for p ≥ 1 if a constant Q ≥ 1 exists
so that the inequality

∫

sptϕ

gpu dµ ≤ Q

∫

sptϕ

g
p
u+ϕ dµ

holds whenever ϕ is a Lipschitz function with
compact support sptϕ in Ω. In case Q = 1,
we say that u is p-harmonic; this coincides
with the classical Euclidean notion of a p-
harmonic function, defined as a weak solution
to the p-Laplace equation

div(|∇u|p−2∇u) = 0.

Quasi-harmonic functions are useful in
the study of quasiconformal mappings.
For example, one can characterize qua-
siconformal homeomorphisms between n-
dimensional Euclidean domains as those
homeomorphisms that preserve the class of
n-quasi-harmonic functions. A similar state-
ment is also true for PI spaces. This general-
izes the well-known fact that planar confor-
mal mappings are precisely the orientation-
preserving homeomorphisms that preserve
harmonic functions under pull-back.
The further development of potential the-

ory in the setting of metric measure spaces
leads to a classification of spaces as either p-
parabolic or p-hyperbolic. This dichotomy
can be seen as a non-linear analog of the
recurrence/transience dichotomy in the the-
ory of Brownian motion. This classification
is helpful in the development of a quasicon-
formal uniformization theory, or for a deeper
understanding of the links between the ge-
ometry of hyperbolic spaces and the analysis
on their boundaries at infinity.

Differentiability of Lipschitz functions.

The notion of upper gradient generalizes, to
metric spaces, the norm of the gradient of a
C1-function. It is a priori unclear how to for-
mulate a notion of the gradient itself (or of
the differential of a function) in the absence
of a linear structure. Cheeger [Che99] intro-
duced a linear differential structure for real-
valued functions on metric measure spaces,
and established a version of Rademacher’s
theorem for Lipschitz functions defined on
PI spaces. This differential structure gives
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rise to a finite-dimensional measurable vec-
tor bundle, the generalized cotangent bun-

dle, over the metric space: to each real-
valued Lipschitz function u corresponds an
L∞-section du of this bundle. Moreover, the
pointwise Euclidean norm |du| is compara-
ble to the minimal upper gradient gu almost
everywhere. This structure can be used in
turn to investigate second-order PDEs in di-
vergence form, as a basis for a theory of dif-
ferential currents in metric spaces, and for
many other purposes.

Bi-Lipschitz embedding theorems. An
earlier version of Rademacher’s differen-
tiation theorem, for Lipschitz maps be-
tween Carnot groups, was proved by Pansu
[Pan89]. Semmes observed that the Pansu–
Rademacher theorem implies that non-
abelian Carnot groups do not admit bi-
Lipschitz copies in finite-dimensional Eu-
clidean spaces. Moreover, such spaces do
not bi-Lipschitz embed into Hilbert space, or
even into any Banach space with the Radon-
Nikodým property (RNP). Indeed, the alge-
braic features of sub-Riemannian geometry
have direct implications for metric questions
such as bi-Lipschitz equivalence or embed-
dability.

The bi-Lipschitz embedding problem is in-
timately related to the existence of suitable
differentiation theories for Lipschitz func-
tions and maps. Roughly speaking, this re-
lationship proceeds via incompatibility be-
tween the geometry of the cotangent bundles
of the source and target spaces. In view of
Cheeger’s differentiation theorem, one can al-
low arbitrary PI space as source spaces here
and take RNP Banach spaces as targets, for
example. On the other hand, there is no ef-
fective differentiation theory for maps into
ℓ∞, because according to the Fréchet embed-
ding theorem, every separable metric space
embeds isometrically into ℓ∞.

The target space L1 presents an interest-
ing intermediate case. It is not an RNP Ba-
nach space, yet deep bi-Lipschitz nonembed-
ding theorems are available for this target.
In particular, Cheeger and Kleiner [CK10]
showed that the Heisenberg group does not

bi-Lipschitz embed into L1. In concert with
results of Lee and Naor, this fact exhibits the
Heisenberg group as a geometrically natural
example relevant for algorithmic questions in
computer science. There has been signifi-
cant additional quantitative work along these
lines, culminating in Naor and Young’s sharp
lower bound for the integrality gap of the
Goemans–Linial semidefinite program for the
Sparsest Cut Problem [NY18]. For further
information, see Naor’s ICM lecture [Nao10].

Geometric measure theory on metric

spaces. In yet another direction, Kirch-
heim’s proof of the almost everywhere met-
ric differentiability of Lipschitz mappings
into metric spaces led to far-reaching gen-
eralizations of the area and co-area formu-
las. Subsequently, Ambrosio and Kirch-
heim [AK00] developed an extension of the
Federer-Fleming theory of currents in com-
plete metric spaces, thus opening a new chap-
ter in geometric measure theory leading to a
study of (quantitative) rectifiability in metric
spaces. This notion has been further devel-
oped in sub-Riemannian settings, especially
in the Heisenberg group, but many ques-
tions remain open. These theories have been
relevant, for example, in the work of Naor
and Young [NY18] mentioned above, where
quantitative rectifiability of surfaces in the
Heisenberg group is prominently featured.

Dynamics and analysis on metric

spaces. An interesting source of examples of
spaces that can be studied with the methods
of quasiconformal geometry and analysis on
metric spaces are fractals that arise from self-
similar or dynamical constructions such as
limit sets of Kleinian groups, Julia sets of ra-
tional maps, or attractors of iterated function
systems. Often the geometry of these spaces
is too “rough” to expect finer analytic prop-
erties such the Poincaré inequality to hold.
However, if these spaces admit a good first-
order calculus, then striking consequences of-
ten emerge. For example, Cannon’s well-
known conjecture in geometric group theory
predicts that a Gromov hyperbolic group G

admits a geometric action on hyperbolic 3-
space if its boundary at infinity ∂∞G is a
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topological 2-sphere. While the conjecture
is still open, one can show that the desired
conclusion is true if ∂∞G (equipped with a
visual metric) has good analytic properties,
say, if it is quasisymmetrically equivalent to a
PI space. For more information see the ICM
lectures [Bon06] and [Kle06].

The problem of deciding when a metric
space is quasisymmetrically equivalent to a
space with “better” analytic properties can
be seen as a generalization of classical uni-
formization theorems in complex analysis,
at least for low-dimensional fractals such as
Sierpiński carpets or fractal 2-spheres. In or-
der to study such problems, one often em-
ploys concepts from classical complex anal-
ysis in a metric space setting. For exam-
ple, the modulus of a path family, originally
introduced by Ahlfors and Beurling in the
complex plane, now plays a prominent role
in much recent work on mapping theory in
general, abstract metric spaces.

Conclusion. This brief note barely hints at
the breadth and the depth of the problems of
current concern in the theory of analysis on
metric spaces. The 2019 AMS MRC Analysis

on Metric Spaces will address a number of
questions that have been the subject of much
recent investigation, but are far from being
completely understood.
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[Bon06] M. Bonk, Quasiconformal geometry of

fractals, Proc. Internat. Congr. Math.
(Madrid 2006), Vol. II, Europ. Math.
Soc., 2006, pp. 1349–1373.

[BS07] S. Buyalo and V. Schroeder, Elements of

asymptotic geometry, EMS Monographs
in Mathematics, European Mathematical
Society (EMS), Zürich, 2007.
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