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REGULARITY OF MEAN CURVATURE FLOW

OF GRAPHS ON LIE GROUPS FREE UP TO STEP 2

LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

Abstract. We consider (smooth) solutions of the mean curvature flow of graphs over
bounded domains in a Lie group free up to step two (and not necessarily nilpotent), endowed
with a one parameter family of Riemannian metrics σǫ collapsing to a subRiemannian metric
σ0 as ǫ → 0. We establish Ck,α estimates for this flow, that are uniform as ǫ → 0 and as
a consequence prove long time existence for the subRiemannian mean curvature flow of the
graph. Our proof extend to the setting of every step two Carnot group (not necessarily free)
and can be adapted following our previous work in [10] to the total variation flow.

1. Introduction

The mean curvature flow is the motion of a surface where each points is moving in the
direction of the normal with speed equal to the mean curvature In the case where the
evolution of graphs St = {(x, u(x, t))} ⊂ R

n × R is considered, then, provided enough
regularity is assumed, the function u satisfies the equation

∂tu =
√

1 + |∇u|2 div

(

∇u
√

1 + |∇u|2

)

.

Given appropriate boundary/initial conditions, global in time solutions asymptotically con-
verge to minimal graphs.

In this paper we study long time existence of graph solutions of the mean curvature flow
in a special class of degenerate Riemannian ambient spaces: The so-called sub-Riemannian
Hörmander type setting [22], [40]. In particular we will focus on a class of Lie groups
endowed with a metric structure (G, σ0) that arises as limit of collapsing left-invariant tame
Riemannian structures (G, σǫ).

Our approach to the existence of global (in time) smooth solutions is based on a Rie-
mannian approximation scheme. We study graph solutions of the mean curvature flow in
the Riemannian spaces (G, σǫ) where G is a group and σǫ is a family of Riemannian metrics
that ’collapse’ as ǫ→ 0 to a sub-Riemannian metric σ0 in G.

Key words and phrases. mean curvature flow, sub-Riemannian geometry, Carnot groups
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Initial Training Network, grant agreement n. 607643 (GC and MM) and by the NSF award DMS-1449143
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2 CAPOGNA, CITTI, AND MANFREDINI

Our results are analogue to those we proved for the total variation flow proved in [10]. The
main difference is that we remove here the assumption that the group G is a Carnot group,
i.e. we also consider non-nilpotent groups such as the group of rigid Euclidean motions RT .
In fact the results in the present paper yield, with minor modifications of the proof, the
regularity and long time existence of the total variation flow in the same extended class of
groups. The main new technical challenge that distinguishes the study of the total variation
flow from the mean curvature flow is that the equation studied here is not in divergence
form, which makes it necessary to completely change the proof of the C1,α regularity.

1.1. Lie group structure. Let G be an analytic and simply connected Lie group with
topological dimension n.

A subRiemannian manifold on G is a triplet (G; ∆; σ0) where ∆ denotes a left invariant
bracket-generating subbundle of TM , and σ0 is a positive definite smooth, bilinear form on
∆, see for instance Montgomery [32]. We fix a orthonormal horizontal basis X1, . . . , Xm of
∆. We will say that the group has step 2 if {Xi}i=1,...,m ∪ {[Xi, Xj ]}i,j=1,...,m span the whole
tangent space at every point. If in addition the vector fields

{Xi}i=1,...,m and {[Xi, Xj ]}i,j=1,...,m

are linearly independent we say that the group is free up to step 2. We can complete
X1, . . . , Xm to a basis (X1, . . . , Xn) of G, choosing a basis of the second layer of the tangent
space. We denote by (X1, . . . , Xn) (resp. (X

r
1 , . . . , X

r
n)) the left invariant (resp. right invari-

ant) translations of the frames (X1, . . . , Xn). We will say that the vector fields X1, . . . , Xm

have degree 1 and denote d(Xi) = 1 while their commutators have degree 2. Throughout
the paper we will assume for simplicity that the horizontal frame above is self-adjoint.

As prototypes for this class of spaces we highlight the following:

• The standard example for such families is the Heisenberg group H
1. This is a Lie

group whose underlying manifold is R3 and is endowed with a group law

(x1, x2, x3)(y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 − (x2y1 − x1y2)).

With respect to such law one has that the vector fields

X1 = ∂x1
− x2∂x3

and X2 = ∂x2
+ x1∂x3

are left-invariant. Together with their commutator [X1, X2] = 2∂x3
they yield a basis

of R3.
• A second example is given by the classical group of rigid motions of the plane, also
known as the roto-translation groupRT . This is a Lie group with underlying manifold
R

2×S1 and a group law (x1, x2, θ1)(y1, y2, θ2) = (x1+y1 cos θ−y2 sin θ, x2+y1 sin θ+
y2 cos θ, θ1 + θ2). The horizontal distribution is given by

∆ = span{X1, X2}, with X1 = cos θ∂x1
+ sin θ∂x2

, and X2 = ∂θ.

The subRiemannian metric σ0 is defined so that X1 and X2 form a orthonormal basis.
Note that X1, X2 and [X1, X2] = X3 = − sin θ∂x1

+ cos θ∂x2
span the tangent space

at every point.



MEAN CURVATURE FLOW 3

The assumption that ∆ is bracket generating, allows to use the results from [35], and
define a control distance d0(x, y) associated to the distribution X1, . . . , Xm, which is called
the Carnot-Carathéodory metric (denote by dr,0 the corresponding right invariant distance).
We let ∇0 = (X1, . . . , Xm) denote the horizontal gradient operator. If φ ∈ C∞(G) we set
∇0φ =

∑m

i=1XiφXi and |∇0φ|
2 =

∑m

i=1(Xiφ)
2.

We define a family of left invariant Riemannian metrics σǫ, ǫ > 0 in G by requesting that

{Xǫ
1, . . . , X

ǫ
n} := {X1, . . . , Xm, ǫXm+1, . . . , ǫXn}

is an orthonormal frame. We will denote by dǫ the corresponding distance functions. Cor-
respondingly we use ∇ǫ, (resp. ∇r

ǫ) to denote the left (resp. right) invariant gradients. In
particular, if φ ∈ C∞(G) we set ∇ǫφ =

∑n

i=1X
ǫ
iφX

ǫ
i and |∇ǫφ|

2 =
∑n

i=1(X
ǫ
iφ)

2.

Our results rest in a crucial way on the use of the celebrated Rothschild and Stein approxi-
mation theorem [38]. Let X1, . . . , Xm be a bracket generating family of smooth vector fields,
free up to step 2, denote by X1, ..., Xn its completion to a basis of of the tangent bundle TG
and set for every u ∈ R

n,

(1.1) Φx(u) = exp
(

n
∑

i=1

uiXi

)

(x).

We will use the following special case of the Rothschild-Stein osculating theorem [38, The-
orem 5], to approximate a neighborhood of any point in G with a a neighborhood of the
identity in the free group Gm,2 with m generators Y1, ..., Ym and step 2.

Theorem 1.1. Let X1, . . . , Xm be a family of smooth vector fields in G that are free up to
rank 2 at every point, as defined above. Let Gm,2 be the free Lie group of step two, with m
generators Y1, ..., Ym and set Y1, ..., Yn to be the basis obtained by the original generators and
their commutators. For every x ∈ G there exists a neighborhood V of x and a neighborhood
U of the identity in Gm,2 such that:

(a) the map Φx : U → V is a diffeomorphism onto its image. We will denote by Θx its
inverse map. Here we have denoted points in U by their coordinates (u1, ..., un) in
the basis Y1, ..., Yn.

(b) we have

(1.2) dΘx(Xi) = Yi +Ri, i = 1, . . . , m

where Ri is a vector field of local degree less or equal than zero, depending smoothly
on x.

In view of [38, (14.5)], the operator Ri is represented as

Ri =
n
∑

h=1

σih(u)Xh,

where each σih has a a Taylor expansion of homogeneous functions of degree larger or equal
than d(Xh).
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1.2. The mean curvature flow. If a surface M is represented as a 0-level set of a function
f , the points where the horizontal gradient of the defining function does not vanish are
called non characteristic. At these points several equivalent definitions of the horizontal
mean curvature h0 have been proposed. To quote a few: h0 can be defined in terms of
the first variation of the area functional [16, 15, 19, 26, 37, 13], as horizontal divergence
of the horizontal unit normal or as limit of the mean curvatures hǫ of suitable Riemannian
approximating metrics σǫ [13]. If the surface is not regular, the notion of curvature can be
expressed in the viscosity sense (we refer to [3], [4], [42], [41], [29], [2], [31], [6] for viscosity
solutions of PDE in the sub-Riemannian setting).

The mean curvature flow of a graph in G×R is characterized by the fact that each point of
the evolving graph moves in the direction of the upward unit normal with speed equal to the
mean curvature. In the setting of the approximating Riemannian metrics (G, σǫ) this flow
is smooth and in terms of the functions t → uǫ(·, t) : Ω ⊂ G → R describing the evolving
graphs, the relevant equation reads:

(1.3)
∂uǫ

∂t
=Wǫhǫ =Wǫ

n
∑

i=1

Xǫ
i

(Xǫ
i uǫ

Wǫ

)

=

n
∑

i,j=1

aǫij(∇ǫuǫ)X
ǫ
iX

ǫ
juǫ for x ∈ Ω, t > 0,

where, hǫ is the mean curvature of the graph of uǫ(·, t) and

(1.4) W 2
ǫ = 1 + |∇ǫuǫ|

2 = 1 +
n
∑

i=1

(Xǫ
i uǫ)

2 and aǫij(ξ) = δij −
ξiξj

1 + |ξ|2
,

for all ξ ∈ R
n. In the sub-Riemannian limit ǫ = 0 the equation reads

(1.5)
∂u

∂t
=
√

1 + |∇0u|2
m
∑

i=1

Xi

( Xiu
√

1 + |∇0u|2

)

,

with u := limǫ→0 uǫ, for x ∈ Ω and t > 0. Mean curvature flow in the setting of Carnot group
has been studied by [6] and [12]. See also the recent [20] as well as [21] for a probabilistic
interpretation of the flow.

The aim of this paper is to establish uniform (in the parameter ǫ as ǫ → 0) estimates
and determine the asymptotic behavior of solutions to the initial value problem for the mean
curvature motion of graphs over bounded domains of a group G,

(1.6)

{

∂tuǫ = hǫWǫ in Q = Ω× (0, T )
uǫ = ϕ on ∂pQ.

Here ∂pQ = (Ω× {t = 0}) ∪ (∂Ω× (0, T )) denotes the parabolic boundary of Q.
The classical parabolic theory yields local existence and uniqueness for smooth solutions

uǫ of (1.6) of the problem, under suitable assumptions on the boundary data. Our main goal
consists in proving that estimates are stable as ǫ tends to 0, thus providing estimates also
for the solution of the limit problem.



MEAN CURVATURE FLOW 5

Our first result consists in showing that if the initial/boundary data is sufficiently smooth
then the solutions of (1.6) are Lipschitz up to the boundary uniformly in ǫ > 0.

Theorem 1.2. (Global gradient bounds) Let G be a Lie group of step two, Ω ⊂ G a bounded,
open, convex set(in the sense of definition 3.3 below) and ϕ ∈ C2(Ω̄). For 1 ≥ ǫ > 0 denote
by uǫ ∈ C2(Ω× (0, T ))∩C1(Ω̄× (0, T )) the non-negative unique solution of the initial value
problem (1.6). There exists C = C(G, ||ϕ||C2(Ω̄)) > 0 such that

(1.7) sup
Ω̄×(0,T )

|∇1uǫ| ≤ C.

In particular, since supΩ̄×(0,T ) |∇ǫuǫ| ≤ supΩ̄×(0,T ) |∇1uǫ| one has uniform Lipschitz bounds
for uǫ.

Having established Lipschitz bounds, the next step is to recognize that right derivatives
Xr

i uǫ of the solutions of (1.6) are solutions of a divergence form, degenerate parabolic PDE.
We prove that weak solutions of such PDE satisfy a Harnack inequality and consequently
obtain C1,α interior estimates for the original solution uǫ, which are uniform in ǫ > 0.

At this point one rewrites the PDE in (1.6) in non-divergence form and invokes the stable
Schauder estimates for subriemannian equations (see [10], [7]) to prove local higher regularity
and long time existence.

Theorem 1.3. In the hypothesis of Theorem 1.2 there exists a unique solution uǫ ∈ C∞(Ω×
(0,∞)) ∩ L∞((0,∞), C1(Ω̄)) of the initial value problem

(1.8)

{

∂tuǫ = Wǫhǫ in Q = Ω× (0,∞)
uǫ = ϕ on ∂pQ

and that for each k ∈ N there exists Ck = Ck(G,ϕ, k,Ω) > 0 not depending on ǫ such that

(1.9) ||uǫ||Ck(Q) ≤ Ck.

Since the estimates are uniform in ǫ and in time, and with respect to ǫ, we will deduce
the following corollary:

Corollary 1.4. Under the assumptions of the Theorem 1.2, as ǫ → 0 the solutions uǫ
converge uniformly (with all its derivatives) on compact subsets of Q to the unique, smooth
solution u0 ∈ C∞(Ω × (0,∞)) ∩ L∞((0,∞), C1(Ω̄)) of the sub-Riemannian mean curvature
flow (1.5) in Ω× (0,∞) with initial data ϕ.

Corollary 1.5. Under the assumptions of Theorem 1.2, as T → ∞ the solutions uǫ(·, t)
converge uniformly on compact subsets of Ω to the unique solution of the minimal surface
equation

hǫ = 0 in Ω

with boundary value ϕ, while u0 = limǫ→0 uǫ ∈ C∞(Ω) ∩Lip(Ω̄) is the unique solution of the
sub-Riemannian minimal surfaces equation h0 = 0 in Ω, with boundary data ϕ.
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Regularity of minimal surfaces in the special case of Heisenberg group has been investigated
in [23, 36, 16, 15, 8, 9, 18, 33, 37, 39].

2. Structure stability in the Riemannian limit

If x ∈ G and r > 0, we will denote by

B(x, r) = {y ∈ G | d0(x, y) < r}

the balls in the Carnot-Carathéodory control distance corresponding to the subRiemannian
metric σ0. For each ǫ > 0 we also define the distance function dǫ corresponding to the
Riemannian metric σǫ,

dǫ(x, y) = inf{

∫ 1

0

|γ′|σǫ
(s)ds with γ : [0, 1] → G

a Lipschitz curve s. t. γ(0) = x, γ(1) = y}.

Set

Bǫ(x, r) = {y ∈ G|dǫ(x, y) < r}.

Note that in the definition of dǫ, if the curve for which the infimum is achieved happens to be
horizontal then dǫ(x, y) = d0(x, y). In general we have supǫ>0 dǫ(x, y) = d0(x, y) and it is well
known that (G, dǫ) converges in the Gromov-Hausdorff sense as ǫ → 0 to the sub-Riemannian
space (G, d0). (See for instance [7, 25] and references therein).

2.1. Stability of the homogenous structure as ǫ → 0. If we denote by dx the Haar
measure in G, and by |Ω| the corresponding measure of a subset Ω ⊂ G, then Rea and two
of the authors have proved in [7, 11] that

Proposition 2.1. There exist constants C,R > 0 independent of ǫ such that for every x ∈ G

and R > r > 0,

|Bǫ(x, 2r)| ≤ C|Bǫ(x, r)|.

Having this property the spaces (G, dǫ, dx) are called homogenous with constant C > 0
independent of ǫ (see [17]).

Let τ > 0 and consider the space G̃ = G× (0, τ) with its product Lebesgue measure dxdt.

In G̃ define the pseudo-distance function

(2.1) d̃ǫ((x, t), (y, s)) = max(dǫ(x, y),
√

|t− s|).

Proposition 2.1 tells us that (G̃, d̃ǫ, dxdt) is a homogeneous space with constant independent
of ǫ ≥ 0. Likewise, the Poincaré inequality holds for all ǫ near zero, with constant independent
of ǫ.
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2.2. Stability of Schauder estimates. Let us recall uniform estimates in spaces of Hölder
continuous functions for solutions of second order sub-elliptic differential equations in non
divergence form

Lǫ,Au ≡ ∂tu−

n
∑

i,j=1

aǫij(x, t)X
ǫ
iX

ǫ
ju = 0,

in a cylinder Q = Ω× (0, T ) that are stable as ǫ→ 0. We will assume ellipticity

Λ−1|η|2 ≤ aǫij(x, t)η
iηj ≤ Λ|η|2,

with Λ > 0, and for a.e. (x, t) ∈ Q, all η ∈ R
n and ǫ ∈ [0, 1].

Let us start with the definition of classes of Hölder continuous functions in this setting

Definition 2.2. Let 0 < α < 1, Q ⊂ R
n+1 and u be defined on Q. We say that u ∈ Cα

ǫ,X(Q)
if there exists a positive constant M such that for every (x, t), (x0, t0) ∈ Q

(2.2) |u(x, t)− u(x0, t0)| ≤Md̃αǫ ((x, t), (x0, t0)).

We put

||u||Cα
ǫ,X

(Q) = sup
(x,t)6=(x0,t0)

|u(x, t)− u(x0, t0)|

d̃αǫ ((x, t), (x0, t0))
+ sup

Q

|u|.

Iterating this definition, if k ≥ 1 we say that u ∈ C
k,α
ǫ,X(Q) if for all i = 1, . . . , m Xiu ∈

C
k−1,α
ǫ,X (Q). Where we have set C0,α

ǫ,X(Q) = Cα
ǫ,X(Q).

Internal Schauder estimates for these type of operators are well known. We recall the
results of Capogna and Han [14] for uniformly subelliptic operators, of Bramanti and Bran-
dolini [5] for heat-type operators, and the results of Lunardi [30] and Gutiérrez and Lanconelli
[24], which apply to a large class of squares of vector fields plus a drift term. Schauder esti-
mates uniform in ǫ have been proved by the authors in [10] in the setting of Carnot Groups
and by two of us in [7] in the setting of general Hörmander type vector fields.

These result can be stated as

Proposition 2.3. Let w be a smooth solution of Lǫ,Aw = f on Q. Let K be a compact sets
such that K ⊂⊂ Q, set 2δ = d0(K, ∂pQ) and denote by Kδ the δ−tubular neighborhood of
K. Assume that there exists a constant C > 0 such that

||aǫij||Ck,α
ǫ,X

(Kδ)
≤ C,

for any ǫ ∈ (0, 1). There exists a constant C1 > 0 depending on α, C, δ but independent of
ǫ, such that

||w||
C

k+2,α
ǫ,X

(K) ≤ C1

(

||f ||
C

k,α
ǫ,X

(Kδ)
+ ||w||

C
k+1,α
ǫ,X

(Kδ)

)

.
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3. Gradient estimates

In this section we prove Theorem 1.2. The proof is carried out in two steps: First we use
the maximum principle to establish interior L∞ bounds for the full gradient of the solution
∇1u of (1.6) with respect to the Lipschitz norm of u on the parabolic boundary. Next,
we construct appropriate barriers and invoke the comparison principle established in [6] to
prove boundary gradient estimates. The combination of the two will yield the uniform global
Lipschitz bounds.

3.1. Interior gradient estimates. Recalling that the right invariant vector fields Xr
j com-

mute with the left invariant frame Xi, i = 1, . . . , n it is easy to show through a direct
computation the following result.

Lemma 3.1. Let uǫ ∈ C3(Q) be a solution to (1.3) and denote v0 = ∂tuǫ, vi = Xr
i uǫ for

i = i, . . . , n. Then for every h = 0, . . . , n one has that vh is a solution of

(3.1) ∂tvh = Xǫ
i (aijXjvh) = aǫij(∇ǫuǫ)X

ǫ
iX

ǫ
jvh + ∂ξka

ǫ
ij(∇ǫu)X

ǫ
iX

ǫ
juǫX

ǫ
kvh,

where

aǫij(ξ) = δij −
ξiξj

1 + |ξ|2
.

Note that in order to prove L∞ bounds on the horizontal gradient of solutions of (1.6)
one cannot invoke Lemma 3.1 with differentiationalong the horizontal left invariant frame,
because such vector fields do not commute.

Let us explicitly note that the right derivatives X1,r
k are a basis of the tangent space, as

well as X1
k , so that it is possible to represent each family of vector fields as linear combination

of the other. In particular, in the Carnot setting, it has been proved by [38] that there exist
homogenous polynomials ckj such that

(3.2) X1
k =

∑

j

ckjX
1,r
j .

In the general Lie groups setting this assertion is true only locally and the functions ckj are
polynomials in the local exponential variables independent of ǫ.

In view of this observation and from the weak maximum principle one may easily deduce
that:

Proposition 3.2. Let uǫ ∈ C3(Q) be a solution to (1.6) with Ω bounded. There exists
C = C(G, ||ϕ||C2(Ω)) > 0 such that for every compact subset K ⊂⊂ Ω one has

sup
K×[0,T )

|∇1uǫ| ≤ sup
∂pQ

(|∇1uǫ|+ |∂tuǫ|),

where ∇1 is the full σ1−Riemannian gradient.
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3.2. Barrier functions and boundary gradient estimate. In [6, Section 4.2] it is shown
that in a step two Carnot group coordinate planes (i.e. images under the exponential of level
sets of the form xk = 0) solve the minimal surface equation h0 = 0. In the same paper it
is also shown that this may fail for step three or higher. In order to adapt the construction
of the barrier to the present non-nilpotent setting we will need a refinement of this result,
based on the following definition of convex set:

Definition 3.3. For every point x0 ∈ ∂Ω consider the canonical coordinates Φx0
(u) defined

in (1.1) and centered at x0 (so that x0 is represented by the origin in these coordinates).
Assume that Ω has a tangent plane Π at the point u = 0 and assume that Φ−1

x0
(Ω) is lying

on one side of the plane. If this happens for every x0 ∈ ∂Ω we say that Ω is convex.

In a step two Carnot group this definition is equivalent to the one in [10], and every set
that is Euclidean convex when expressed in exponential coordinates satisfies the condition.
Using Darboux coordinates one can see that the same holds for the root-translation group
RT .

Lemma 3.4. Let G be a step two Carnot group. If f : G → R is linear (in exponential
coordinates) then for every ǫ ≥ 0, the matrix with entries Xǫ

iX
ǫ
jf is anti-symmetric, in

particular every level set of f satisfies hǫ = 0.

The previous lemma and the Rothschild and Stein local osculation result will lead to the
construction of a barrier in the present setting, and to establish a priori Lipschitz estimates
at the boundary for solutions. We begin by recalling an immediate consequence of the proof
of [6, Theorem 3.3].

Lemma 3.5. For each ǫ ≥ 0, if vǫ is a bounded subsolution and wǫ is a bounded supersolution
of (1.6) then vǫ(x, t) ≤ wǫ(x, t) for all (x, t) ∈ Q.

Let uǫ ∈ C2(Q) be a solution of (1.6), and express the evolution PDE in non-divergence
form

(3.3) ∂tuǫ = hǫWǫ = aǫij(∇ǫu)X
ǫ
iX

ǫ
juǫ.

Set vǫ = uǫ − ϕ so that vǫ solves the homogenous ’boundary’ value problem

(3.4)

{

∂tvǫ = aǫij(∇ǫvǫ +∇ǫϕ)X
ǫ
iX

ǫ
jvǫ + bǫ in Q = Ω× (0, T )

vǫ = 0 on ∂pQ,

with bǫ(x) = aǫij(∇ǫvǫ(x)+∇ǫϕ(x))X
ǫ
iX

ǫ
jϕ(x).We define our (weakly) parabolic operator for

which the function vǫ is a solution

(3.5) Q(v) = aǫij(∇ǫvǫ +∇ǫϕ)X
ǫ
iX

ǫ
jvǫ + bǫ − ∂tv.

In the following we construct for each point p0 = (x0, t0) ∈ ∂Ω× (0, T ) a barrier function
for Q, vǫ: i.e.,
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Lemma 3.6. Let G be a Lie group free up to step two and Ω ⊂ G convex in the sense of
Definition 3.3. For each point p0 = (x0, t0) ∈ ∂Ω × (0, T ) and for every ǫ > 0 there exist a
parabolic neighborhood Vǫ of p0 and a positive function wǫ ∈ C2(Q) such that

(3.6) Q(wǫ) ≤ 0 in Vǫ ∩Q with wǫ ≥ vǫ in ∂pVǫ ∩Q.

Proof. For every x0 ∈ ∂Ω we can select exponential coordinates locally around the point x0.
The point x0 has coordinates 0 in the variables u.

In these coordinates there exists an hyperplane P tangent to the open set Ω defined by
an equation of the form Π(u) =

∑n

i=1 aiui = 0 with Π > 0 in Ω, Π(0) = 0, and normalized
as
∑

d(i)=1,2 a
2
i = 1. Following the standard argument (see for instance [28, Chapter 10]) we

select the barrier at (x0, t0) ∈ ∂Ω× (0, T ) independent of time with

(3.7) w̃ǫ = ψ(Π)

with ψ solution of

(3.8) ψ′′ + ν(ψ′)2 = 0,

in particular

(3.9) ψ(s) =
1

ν
log(1 + ks),

with k and ν chosen appropriately so that conditions (3.6) will hold. We choose a neighbor-
hood V = O× (0, T ) such that P ∩O∩∂Ω = {x0}. By an appropriate choice of k sufficiently
large we can easily obtain w̃ǫ(0) = 0 and w̃ǫ ◦Θx0

≥ vǫ in ∂pV ∩Q.
We denote by QY the operator which has the same expression of Q, but with respect to

the left invariant osculating frame {Y ǫ
i }i=1,...,n in the nilpotent osculating free group Gm,2,

i.e. QY (v) = aǫij(∇Y,ǫvǫ +∇Y,ǫϕ)Y
ǫ
i Y

ǫ
j vǫ + bǫ − ∂tv.

To estimate QY (w̃ǫ) ≤ 0 we begin by observing that w̃ǫ satisfies

(3.10) QY (w̃ǫ) = ψ′aǫij(∇Y,ǫw̃ +∇Y,ǫϕ)Y
ǫ
i Y

ǫ
j Π+

ψ′′

(ψ′)2
F + bǫ,

with F = aǫij(∇Y,ǫw̃ǫ +∇Y,ǫ(ϕ ◦ Φx0
)Y ǫ

i w̃ǫY
ǫ
j w̃ǫ.

We first note that

(3.11) aǫij

(

∇Y,ew̃ǫ +∇Y,ǫ(ϕ ◦ Φx0
)
)

(Y ǫ
i Y

ǫ
j )Π = 0

as aǫij is symmetric and Xǫ
iX

ǫ
jΠ is anti-symmetric in view of Lemma 3.4. We can now

estimate the remaining terms of (3.10)

(3.12)
ψ′′

(ψ′)2
F + bǫ

in a parabolic neighborhood of u = 0. We first note that Lemma 3.4 implies

ǫ2

2
≤ max(

∑

d(i)=1

a2i , ǫ
2
∑

d(k)=1

a2k) ≤ |∇Y,ǫΠ| =
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=
∑

d(i)=1

(

ai +
∑

d(k)=2,d(j)=1

ckijakxj

)2

+ ǫ2
∑

d(k)=2

a2k ≤ C(G)(1 + ǫ2),

for some constant C(G) > 0. Consequently, for ψ′ >> 1 sufficiently large one finds

(3.13) F ≥
|∇Y,ǫw̃ǫ|

2

1 + |∇Y,ǫw̃ǫ +∇Y,ǫϕ|2
≥ C(G)

|∇Y,ǫw̃ǫ|
2

1 + |ψ′|2 + |∇Y,ǫϕ|2
≥ C(G)ǫ2 > 0,

with C(G) > 0 a constant depending only on G (not always the same along the chain
of inequalities). In view of the definition of bǫ and (3.8) with an appropriate choice of
ν = ν(G, ǫ, φ) > 0 and k = k(G, φ) >> 1 in (3.9), we conclude

(3.14)
Φ′′

(Φ′)2
F + bǫ ≤

(

ψ′′

(ψ′)2
+ ν − 1

)

F ≤ −C(G)ǫ2.

It follows that

QY (w̃ǫ) ≤ −C(G)ǫ2.

To conclude, we set wǫ = w̃ǫ ◦Θx0
. In view of the relation (1.2) between the vector fields X

and Y , it is now immediate to see that there exists a neighborhood Vǫ of p0, depending on
ǫ, such that

Q(wǫ) ≤ 0 in Vǫ ∩Q.

�

Proposition 3.7. Let G be a Lie group free up to step two, Ω ⊂ G convex in the sense
of Definition 3.3 and ϕ ∈ C2(Ω̄). For ǫ > 0 denote by uǫ ∈ C2(Ω × (0, T )) ∩ C1(Ω̄ ×
(0, T )) the non-negative unique solution of the initial value problem (1.6). There exists
C = C(G, ||ϕ||C2(Ω̄)) > 0 such that

(3.15) sup
∂Ω×(0,T )

|∇ǫuǫ| ≤ sup
∂Ω×(0,T )

|∇1uǫ| ≤ C.

Proof. In view of Lemma 3.5, a comparison with the barrier constructed above yields that

(3.16) 0 ≤
vǫ(x, t)

distσ1
(x, x0)

≤
wǫ(x, t)

distσ1
(x, x0)

≤ C(k, ν),

in Vǫ ∩Q, with distσ1
(x, x0) being the distance between x and x0 in the Riemannian metric

σ1, concluding the proof of the boundary gradient estimates at the point p0. �

4. Regularity properties in the Ck,α spaces

In this section we will prove uniform estimates for solution of (1.3) in the Ck,α
ǫ,X Hölder

spaces. This is accomplished in two steps and follows a strategy originally introduced by
Trudinger (see notes in [28, Chapter 7]. First we establish C1,α regularity,
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4.1. Regularity properties in the C1,α spaces.

Remark 4.1. Let u be a smooth solution of (1.3). Note that the function vk = Xr
ku is then

a solution of the equation

(4.1) − ∂tvk +

n
∑

i,j=1

Xǫ
i

(

aǫij(∇ǫu)X
ǫ
jvk

)

+

n
∑

i,j,h=1

ai,j,hXǫ
iX

ǫ
juǫX

ǫ
hvk = 0,

where

ai,j,h =
∂aǫij

∂ph
−
∂aǫih
∂pj

Indeed taking the derivative of equation (1.3) and taking into account that the right and
left derivatives commute, one obtains

−∂tX
r
kuǫ +

n
∑

i,j,h=1

∂aǫij

∂ph
(∇ǫu)X

ǫ
iX

ǫ
juǫX

ǫ
hX

r
kuǫ +

n
∑

i,j=1

aǫij(∇ǫu)X
ǫ
iX

ǫ
jX

r
kuǫ = 0

Consequently

−∂tvk +
n
∑

i,j=1

Xǫ
i

(

aǫij(∇ǫu)X
ǫ
jvk

)

+
n
∑

i,j,h=1

∂aǫij

∂ph
Xǫ

iX
ǫ
juǫX

ǫ
hvk −

n
∑

i,j,h=1

∂aǫij

∂ph
Xǫ

jX
r
kuǫX

ǫ
iX

ǫ
huǫ = 0

and the latter is equivalent to (4.1).

Remark 4.2. Starting (4.1) one can immediately see that the function z = |∇r
ǫuǫ|

2 is solution
of

−∂tz +
n
∑

i,j=1

Xǫ
i

(

aǫij(∇ǫu)X
ǫ
jz
)

+
n
∑

i,j,h=1

aijhXǫ
iX

ǫ
juǫX

ǫ
hz − 2

n
∑

i,j,h,k=1

aǫijX
ǫ
i vkX

ǫ
jvk = 0

Lemma 4.3. for every k = 1, . . . , n and for every δ > 0 the functions

w±
k = ±vk + δz

satisfy the inequality

−∂tw
±
k +

n
∑

i,j=1

Xǫ
i

(

aǫij(∇ǫu)X
ǫ
jw

±
k

)

≥ −C0|∇ǫw
±
k |

2 − C1,

for suitable constants C0 and C1.

Proof. For simplicity we temporarily drop the ± superscript. Adding the equations satisfied
by vk and z we see that for every k = 1, . . . , n and for every δ > 0 the functions w±

k = ±vk+δz
satisfy

(4.2) − ∂twk +
n
∑

i,j=1

Xǫ
i

(

aǫij(∇ǫu)X
ǫ
jwk

)

= −
n
∑

i,j,h=1

aijhXǫ
iX

ǫ
juǫX

ǫ
hwk +2δ

n
∑

i,j,s=1

aǫijX
ǫ
i vsX

ǫ
jvs
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≥ 2δλ
n
∑

s=1

|∇ǫX
1,r
s uǫ|

2 − sup
i,j,h

|aijh||Xǫ
iX

ǫ
juǫ||∇ǫwk|,

where λ > 0 is the smallest eigenvalue of aǫij and is independent of ǫ > 0. Using the notation
introduced in (3.2) we deduce that

|Xǫ
iX

ǫ
juǫ| = |

n
∑

j,s=1

Xǫ
i (csjX

1,r
s uǫ)| ≤ C2 + C3

n
∑

s=1

|∇ǫX
1,r
s uǫ|.

Consequently, using Schwarz’s inequality,

−∂twk +
∑

ij

Xi

(

aǫij(∇ǫu)X
ǫ
jwk

)

≥

≥ 2δλ

n
∑

s=1

|∇ǫX
1,r
s uǫ|

2 −

n
∑

s=1

δλ|∇ǫX
1
suǫ|

2 − C0|∇ǫwk|
2 − C1,

completing the proof. �

Next we set (x0, t0) ∈ Q = Ω× (0, T ) and for r > 0, let Qǫ(r) = {(x, t) ∈ Q|dǫ(x, x0) < r

and |t− t0| ≤ r2}. Define

W±
k = supQǫ(4r)w

±
k

and observe that

∂t(W
±
k − w±

k )−

n
∑

i,j=1

Xǫ
i

(

aǫij(∇ǫu)X
ǫ
j (W

±
k − w±

k )
)

≥ −C0|∇ǫ(W
±
k − w±

k )|
2 − C1.

In order to invoke the weak Harnack inequality and derive the Cα estimates, we need to
eliminate the quadratic term on the right hand side. Following [28, Chapter 12, Sec. 3] we
define

w̄k =
λ

2C0

(

1− exp(
2C0

λ
(w±

k −W±
k ))
)

and observe that this new functions satisfies

−∂tw̄k +
∑

ij

Xǫ
i

(

aǫij(∇ǫu)X
ǫ
j w̄k

)

+ g ≤ 0,

where g = C1(
2C0

λ
w̄k + 1), for the constants λ, C0, C1 from Lemma 4.3. In view of the weak

Harnack inequality [7, Proposition 7.6], one has that for some constant C4 > 0 independent
of ǫ and for Q−

ǫ (r) = {(x, t) ∈ Q| dǫ(x, x0) < r and t0 − 3r2 < t < t0 < 2t2},
∫

Q−

ǫ (r)

w̄k dxdt ≤ C4( inf
Qǫ(r)

w̄k + sup
Qǫ(r)

|g|r2).

Following the argument in [28, Chapter 12, Sec. 3] we obtain
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Proposition 4.4. Let uǫ be a solution of the mean curvature flow PDE (1.3) in Q = Ω ×
(0, T ) ⊂ G×R. Let K be a compact sets such that K ⊂⊂ Q, set 2δ = d0(K, ∂pQ) and denote
by Kδ the δ−tubular neighborhood of K in d0. There exists constants C > 0 and α ∈ (0, 1)
depending on δ and on the Lipschitz norm of u in Kδ, but independent of ǫ, such that

||uǫ||C1,α
ǫ,X

(K) ≤ C.

4.2. Regularity properties in the Ck,α spaces. Once obtained the interior C1,α estimate
of the solution uniform in ǫ, we write the mean curvature flow equation in non divergence
form:

∂tu−

n
∑

i,j=1

aǫij(x, t)X
ǫ
iX

ǫ
ju = 0,

Applying Schauder estimates (see [10] for the Carnot groups setting and [7] for the general
Lie group case). we immediately deduce the proof of Theorem 1.3.

Proof. Since the solution is of class C1,α, and the norm is bounded uniformly in ǫ then uǫ it
is a solution of a divergence form equation

∂tuǫ −
n
∑

i,j=1

aǫij(x, t)X
ǫ
iX

ǫ
juǫ = 0,

with aǫij of class Cα such that for every K be a compact sets such that K ⊂⊂ Q and
2δ = d0(K, ∂pQ) there exists a positive constant C0 such that

||aǫij||Cα
ǫ,X

(Kδ) ≤ C0,

for every ǫ ∈ (0, 1). Consequently, by Proposition 2.3 there exists a constant C2 such that

||uǫ||C2(Q) ≤ C2.

The conclusion immediately follows by induction. �
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