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While robot-assisted minimally invasive surgery (RMIS) procedures afford a variety of benefits over open surgery and manual
laparoscopic operations (including increased tool dexterity, reduced patient pain, incision size, trauma and recovery time, and lower
infection rates [1], lack of spatial awareness remains an issue. Typical laparoscopic imaging can lack sufficient depth cues and haptic
feedback, if provided, rarely reflects realistic tissue–tool interactions. This work is part of a larger ongoing research effort to
reconstruct 3D surfaces using multiple viewpoints in RMIS to increase visual perception. The manual placement and adjustment of
multicamera systems in RMIS are nonideal and prone to error [2], and other autonomous approaches focus on tool tracking and do
not consider reconstruction of the surgical scene [3–5]. The group’s previous work investigated a novel, context-aware autonomous
camera positioning method [6], which incorporated both tool location and scene coverage for multiple camera viewpoint adjust-
ments. In this paper, the authors expand upon this prior work by implementing a streamlined deep reinforcement learning approach
between optimal viewpoints calculated using the prior method [6] which encourages discovery of otherwise unobserved and
additional camera viewpoints. Combining the framework and robustness of the previous work with the efficiency and additional
viewpoints of the augmentations presented here results in improved performance and scene coverage promising towards real-time
implementation.

Keywords: Robot-assisted minimally invasive surgery; 3D reconstruction; deep reinforcement learning; machine vision.

1. Introduction

In their previous work, the authors proposed an auton-
omous camera viewpoint adjustment method for robot-
assisted minimally invasive surgery (RMIS) that both
considered tool tracking and maximizing scene coverage
[6]. The work presented there also provided insight into
the performance effects of the number of cameras used.
The work here extends that work by incorporating a

deep reinforcement learning (RL) agent to inform camera
motion in between iterations of calculated poses to reduce
computational burden. This addition seeks to garner im-
proved viewpoint generation to explore the unknown
surgical environment, and experiments demonstrate per-
formance of the novel framework over simple interpola-
tion with a real-time streaming point cloud of a surgical
scene and tool.
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1.1. Contributions

In this work, the authors present augmentations and
improvements to the previous work by

. incorporating deep RL to govern camera motion and
exploration in between viewpoints calculating using
previous approaches for constrained maximum
coverage;

. experimentally demonstrating and evaluating the
method with dynamic surgical scene 3D reconstruc-
tion performance.

The procedure prescribes camera poses and recon-
structability coverage as cameras are instructed to move
to another goal pose determined via previous work [6].

1.2. Background

To address surgeon situational awareness and percep-
tion, 3D surgical cavity reconstruction can provide spa-
tial awareness with increased field of view [7] as well as
a conduit towards vision-based force estimation [8–10].
While approaches using single monocular views for 3D
surgical reconstruction have been explored [11, 12], the
use of multiple viewpoints has been demonstrated to
improve the surgeon’s perception of the surgical task and
scene [13]. Multiple camera configurations do not re-
quire additional incisions or ports, as demonstrated by
Silvestri et al. [14], who inserted an array of camera
devices embedded in a single device into the surgical
cavity via a single trocar. Following insertion, cameras
can then be individually controlled wirelessly using ex-
ternal magnets, resulting in an extremely articulated set

of vision sensors for RMIS [15–18]. Because of the nature
of this positioning mechanism, camera poses exist along
the patient’s inner abdominal wall.

Automating the motion and arrangement of multiple
cameras to generate quality surgeon viewpoints is a
point of interest, since manual human control requires
coordination and communication with the operating
surgeon. Beyond directly assisting the surgeon’s scene
understanding, a robust reconstruction of the scene can
enable intelligent intraoperative augmentations for RMIS.
The authors’ previous work [6] presented an autono-
mous multicamera viewpoint adjustment scheme to such
an approach, which considered reconstructability and
aimed to maximize scene coverage viewed by at least two
different cameras. The problem setup can be summarized
in Fig. 1. The method is used in this work to determine
approximate end poses of a surgical process. Due to the
computational complexity of the method, a more
streamlined approach, the deep RL application presented
here, is used to interpolate between calculated camera
configurations.

1.3. Related work

1.3.1. Next best view and swarm mapping

Automated optimal viewpoint generation is paramount
for a variety of robotic operations, including environ-
mental monitoring, object recognition, object manipula-
tion, robotic navigation, and mesh simplification for
polygonal models [19] to name just a few. A similar
problem involves placing heterogeneous sensory agents
in constrained physical tasks presents to aid in achieving
optimal coverage to automatically monitor a perimeter

Fig. 1. Automating camera viewpoint adjustment to find next camera poses following abdominal wall constraints to achieve the
maximum number of 3D reconstructable points. First cameras are positioned so that they conform to abdominal wall physical
constraints and spaced evenly in an initial position. In each iteration, candidate next poses are evaluated for each camera. The
selection accounts for coverage, surgical tool-tip position and a custom reconstructability score.
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[20]. Similarly, the next best view (NBV) problem aims to
solve or prescribe ideal sensing commands (typically
view sequences) to achieve a task, with either surface-
based, global-based, or volumetric approaches [21].
These methods use context, task or feature cues to plan
the NBVs, and simultaneously reduce an ambiguity
function and consider planning [22]. Additional aug-
mentations to NBV approaches include incorporating
task specific weights into objective functions, such as
manipulator motion cost [23], reachability, view overlap
[24, 25], and even camera parameters [26, 27].

Unmanned aerial vehicle (UAV) swarms have been
deployed for distributed monitoring tasks, including
object tracking (single target [28, 29] and multi-target
methods [30]), coordination, environmental monitoring,
data collection, and path planning [31]. Individual UAV
agents within a swarm oftentimes implement local
algorithms, e.g. obstacle avoidance or wall-following,
while simultaneously following centralized, high-level
departure point or dispersion commands [32]. Combin-
ing centralized and decentralized objectives can result in
robust and efficient mapping, making UAV swarms suit-
able for a variety of response or monitoring tasks, in-
cluding water [33] and pollution [34] management, and
wild fire detection [35].

Coverage and view-planning methods described
above have been demonstrated in environments with
large-scale physical constraints and openly navigable
spaces. Furthermore, most obstacles or targets are either
tracked at lower specificity or assumed rigid. While the
methods afford insight into potential approaches, surgi-
cal environments are inherently different; surfaces are
deforming, dynamic, and highly reflective, and the oper-
ating physical space is highly constrained [36].

1.3.2. Surgical cavity viewpoint adjustment

Direct control of both surgical tools and vision systems
for surgery can lead to increased burden, time and risk.
The use of multiple vision sensors and intelligent au-
tonomy may potentially reduce these costs.

While multiview systems do exist for intra-abdominal
telerobotic and laparoscopic surgery, intelligence with
concurrent high degree of maneuverability remains a
challenge. Tamadazte et al. [37] developed a multiview
approach by embedding two high-definition cameras into
a single endoscope to generate a stereoscopic view of the
surgical scene. The configurations of two viewpoints
once deployed are fixed in position relative to one an-
other. Kim et al. [38] investigated a similar approach for
laparoscopic surgery with a four-camera array. Similar
devices have also been developed that exhibit slightly
higher degrees of reconfigurability, such as the trocar-
fixed devices developed by Kanhere et al. [39] and Afifi
et al. [40]. These devices, while they can enhance scene

visibility compared to a single endoscope and can pro-
vide some depth information, lack the reconfiguration
flexibility to more thoroughly view the surgical scene.

A single camera may afford greater maneuverability
and automation. Intelligent motion of single endoscopes
or vision sensors can increase safety and occupy less
space. Ma et al. introduced an autonomous flexible en-
doscope that was visually servoed for tool tracking [41].
Space occupation and motion were incorporated as
cost factors. Prendergast et al. developed an autonomous
region estimator-based endoscope navigation strategy
that was evaluated on simulated anatomical structures
[42]. Martin et al. utilized machine vision to incorporate
intelligence and autonomy into a magnetic endoscope
[43]. Da Col et al. conducted a user study that suggested
that for the Laparoscopic Skills Training and Testing
assessment, an autonomous camera positioning strategy
that tracks tool location provided performance
enhancements over manual control of the camera [44]. In
these cases, a single vision sensor was used, and in most
cases the viewpoint was determined by tracking tool
location, and 3D scene reconstruction was not the pri-
mary goal — direct utility to the surgeon’s view was the
focus.

Multiple cameras that may be individually articulated
without coupling to other configurations is a promising
alternative to gather scene information to perhaps in-
form intelligent assistance. Magnetic anchoring guidance
systems are promising enhancement that extends the
surgical field of view [45]. The method has also been
demonstrated within porcine models [15, 16, 18]. The
development of a multicamera device [14] enables more
viewpoints, and intelligently maneuvering the cameras to
assist in surgical operations with better surgical scene
reconstruction is of interest in this work. The direct
benefit of the scene reconstruction may not necessarily
be used as visual feedback to the surgeon, but instead to
afford other augmentations, e.g. force estimation.

In prior work [6], the authors explored a context-
aware method for automatic multicamera positioning to
both track the surgical tool position and optimize
reconstructability, i.e. coverage with at least two cameras
viewing. A dynamic, updating 3D surgical cavity was
used [46], and the camera viewpoint problem was for-
mulated as an optimization problem [47]. The results
provide insight into computational efficiency and cover-
age with varying camera number. Because of computa-
tional complexity, real-time application is highly
constrained.

In this work, the same methods are used to predict
high-coverage camera goal poses at a coarser temporal
scale, while a streamlined deep RL approach drives the
camera state to the desired pose while negotiating
similar constraints. At the coarse timescale, recognizing
surgical gestures [48–50] and predicting organ move-
ments [51, 52] can provide one-step-away surgical state
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estimates to inform optimal camera poses. In the
following sections, the authors summarize relevant
portions of previous work. For more detailed descrip-
tions, the authors refer the reader to the previous
publication [6].

2. Methods

2.1. Maximum coverage formulation

2.1.1. Camera poses and motion

Suppose there are NC 2 N cameras and NC � 2. At each
iteration, a camera has NK 2 Nmotion options (including
remaining stationary). Then denote ci;nik 2 R6 as cur-
rent and candidate next camera configurations (see
Fig. 2) for camera i, respectively, where i ¼ 1 . . .NC, and
k ¼ 1 . . .NK.

If the one-hot representation of the selected next
camera pose is Ci 2 ½0; 1�NK , then

kCik1 ¼
XNK

k¼1

CiðkÞ � 1; 8 k ¼ 1; . . . ;NK; Ci 2 C; ð1Þ

where CiðkÞ indicates the kth element in Ci and C is
fCiji ¼ 1; . . . ;NCg.

2.1.2. Coverage cost function

The problem is formulated as an optimization of surgical
scene coverage. The surgical scene is assumed to be
represented as an unordered 3D point cloud. Denote this
model as a set of NP points and call it P ¼ fp1; . . . ; pNP

g
where pj 2 R3. In this formulation, a point pj is deemed

visible so long as it is viewable by at least two different
cameras; this is to satisfy the requirements of 3D stereo
reconstruction [53]. To track the visibility of each point, a
visibility flag, vj, is assigned to each point pj . Specifically,
8j ¼ 1; . . . ;NP, vj ¼ 1 if pj is visible by two or more
cameras, and vj ¼ 0 otherwise.

In addition to visibility, the proposed objective func-
tion accounts for the relative importance of viewing each
point. To that end, a custom weight positively correlated
with the viewing importance is assigned to each arbi-
trarily selected point pj 2 P via a weighting function
WðpjÞ. The definition of the viewing importance can be
crafted according to distinct surgical operation needs. In
this experiment, it is assumed that the surgeon’s region of
interest is localized around the surgical tool tip; struc-
tures proximal to the surgical tool are weighted as more
important. Therefore, the viewing importance is inversely
proportional to the capped distance between point pj and
the tool tip q. For this, let the surgical tool tip position be
denoted q 2 R3, ascertained, for example, via robot ki-
nematics. Then the weighting function is defined as

WðpjÞ ¼
1

maxðkpj � qk2; �Þ
; ð2Þ

where � is a heuristically tuned minimum distance
threshold. With the weighting function defined, the max-
imum coverage problem can be expressed as

Maximize
XNP

j¼1

WðpjÞvj: ð3Þ

2.1.3. Motion penalty

A motion penalty for camera ci and next pose nk,
Mði; kÞ 2 R, may be assigned to encourage smooth and
stable camera adjustments.

m1 ¼ PðciÞ � PðnikÞ;
m2 ¼ QðciÞ � pQðnikÞ;

Mði; kÞ ¼ km1k2 þ �1km2 � 1k1
þ �2km1 � m̂�

1k2 þ �3km2 � m̂�
2k1;

ð4Þ
where P, Q extract position and quaternion orientation
information, respectively. m̂ �

1 and m̂ �
2 are m1;m2 values

from the previous time step.
A heuristically tuned tolerance threshold TM imposes

LðCÞ ¼
XNC

i¼1

XNK

k¼1

Mði; kÞCiðkÞ � TM ð5Þ

to regulate jitter. This threshold determines the extent of
overall camera motion and should be tuned based on the
surgical operation type and the individual surgeon’s
preference.

Fig. 2. An overview of the formulated task for each camera.
Cameras are constrained physically to the inner abdominal wall,
and can move from current, ci, to next candidate camera poses,
nik. The colorbar shows the weighting value WðpjÞ.
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2.1.4. Visibility and reconstructability

Each candidate pose’s visibility and reconstructability
are also evaluated. Consider visibility function Vði; k; pjÞ:

Vði; k; pjÞ ¼
1 if pj is viewable from nik;

0 if pj is not viewable from nik:

�
ð6Þ

Specular reflections [54] and proximity to image edge
[55] also negatively affect reconstructability. This is
accounted for via reconstructability function

Rði; k; pjÞ ¼
0:0 if � < 0:1;

minðcosð�Þ; cosð�ÞÞ else if � or � > 1;

1:0 else;

8<
:

ð7Þ
where � is the projection angle from pose nik and � the
angle of reflection at point pj . Note that a local tissue
patch with � ’ 0 corresponds to a higher chance of
specular reflections. See the authors’ prior work [6] for
mathematical definitions and details.

Then the following inequality constraint:

0:5
XNC

i¼1

XNK

k¼1

Rði; k; pjÞVði; k; pjÞCiðkÞ � vj; 8pj 2 P ð8Þ

ensures that vj is set to 1 only if pj is within view of two
or more cameras and accounts for reconstructability.

2.2. Goal pose optimization

The goal pose for the multicamera system is derived by
solving a budgeted maximum coverage problem:

argmaxCi;8i2NC

XNP

j¼1

WðpjÞvj ð9Þ

subject to constraints (1), (5), and (8)

where Ci 2 ½0; 1�NK ; 8i 2 NC; ð10Þ
vj 2 ½0; 1�; 8j 2 NP ð11Þ

whose solution is approximated via methods described
in previous work [6]. The method consists of three pri-
mary algorithms: B, G, and A.

B compares coverage weight score SðhÞ of two input
sets of next camera poses h1 and h2, then returns the set
with greater score. For camera pose h,

SðhÞ
XNP

j¼1

WðpjÞvj; ð12Þ

where G algorithm returns a set of selected next camera
poses derived from a greedy search of increased weight
loss ratio. These results form the seed for a hybrid ex-
haustive search, A. The results of A are compared with
B, of which the better one is selected. The reader is di-
rected to previous work [6] for more details.

2.3. Pose interpolation

Given the start and goal multicamera configurations, the
task is to navigate each camera between poses such
that coverage and reconstructability described in previ-
ous sections are maintained, as depicted in Fig. 3. Let the
set of current camera poses be K ¼ fc1; c2; . . . ; cNCg and

Fig. 3. The goal pose generation and interpolation framework investigated in this paper. Initial camera poses, as depicted on the
left, inform a goal pose using optimal camera viewpoint methods developed in previous work [6]. The time scale of this algorithm
lends itself to interpolating camera poses in between. Four different interpolation methods — ST, SD, SV, and RL — are defined and
explored in Secs. 2.3.1 and 2.3.2.
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the calculated goal poses be denoted †K ¼ f†c1 ;†c2; . . . ;
†cNCg. The goal is to prescribe a sequence of camera
motion to navigate from K to †K .

In this work, camera image frames are captured at 33
frames per second, and camera motion commands are
executed at the same rate of 33Hz. With this setup, a
deep RL approach for navigating cameras between start
and goal poses is proposed. This approach is experi-
mentally compared to direct approaches of spherical
linear interpolation (slerp) [56].

2.3.1. Spherical linear interpolation

As a baseline, three different utilizations of slerp [56]
between calculated camera configurations are explored.
Three different multicamera slerp procedures are ex-
plored, including

(i) ordinal turn taking (ST);
(ii) furthest distance (SD);
(iii) greedy visual coverage (SV).

These three procedures differ in the selection of camera
slerp motion to execute and in what order.

To begin, interpolated slerp commands are calculated
for each of the NC cameras, label the cameras
�1; �2; . . . ; �NC

. Specifically, suppose that a total of X or-
dered slerp commands are calculated for each camera.
Then camera �i has the ordered commands of

ðxi1; xi2; . . . ; xiXÞ:
Then in ST, the slerp motion commands are executed in
order as x11; x21; . . . ; xNC1; x12; x22; . . . ; xNCX

, such that
each camera takes a turn executing a motion command.

To execute procedure SD, first consider that each
camera has NK potential motion directions, and thus NK

2
degrees of freedom. For each camera �i and each degree
of freedom d, calculate a distance score for each camera
via

Dð�i; dÞ ¼ jj�ðciÞ � �ð�†ciÞjj1; ð13Þ
where � extracts the value in camera configuration ci
directly affecting degree of freedom d. Then in SD, the
next camera slerp motion is drawn from camera �s where

s ¼ argmaxi½Dð�i; dÞ� ð14Þ
across all degrees of freedom. For SV, slerp command
order is determined by evaluating the resultant score by
evaluating (3) for each camera for the next motion
command. Among the available motion commands, the
one that maximizes the expression in (3) is selected.
Figure 4 demonstrates a sequence of selected actions a½� �
from time � ¼ 1 to 562 using the four investigated
methods — ST, SD, SV, and RL. Each a½� � is chosen from a
list of potential actions fa11; a12; . . . ; aNCNK

g, where aij
represents the ith camera moving in the jth potential

motion direction. The camera motion action procedure
RL will be elaborated in Sec. 2.3.2.

2.3.2. Deep reinforcement learning

Viewing the three slerp baselines through the lens of RL,
ST, and SD are variations of goal-reaching procedures
that only value the final reward of reaching the target,
whereas SV takes a slightly greedier approach that picks
the best “scenic” route among the few shortest routes to
target. However, these approaches are inflexible in con-
sidering potentially better views within reach of the in-
terpolation path set forth. The authors are interested in
investigating a deep RL-based [57] interpolation algo-
rithm RL, which will both prioritize maximizing longer
term visibility and simultaneously navigate towards the
goal camera poses. Maximum reconstructability coverage
and computational efficiency are metrics of interest in
evaluating these approaches.
Theoretical background
To solve the multi-agent sequential decision problem of
optimal camera viewpoint adjustment using RL [58], a
few terms and variables must first be introduced. Sup-
pose Q	ðs½� �; a½� �; iÞ is an action-value function after i
training epochs that predicts the benefit of making a
move a½� � at a particular state s½� � given an action se-
lection policy 	. The quantification of benefit can be de-
fined as the expected sum of the immediate reward from
the state transition Rðs½� �; a½� �; s½� þ 1�Þ and future
rewards when taking that action and following the
optimal policy 	� thereafter. Ideally, as i ! 1, Q	ðs½� �;
a½� �; iÞ converges to a single value, Q	ðs½� �; a½� �Þ. Larger
Q	ðs½� �; a½� �Þ indicates greater incentives for the learning
agent.

Fig. 4. Selected actions for each interpolation method (ST, SD,
SV, and RL) over increasing iterations. The vertical axis shows
the iteration number, and the chosen actions are color coded via
color map to the right, labeling the potential actions
fa11; a12; . . . ; aNCNK

g. See Sec. 2.3.1 for details about the list of
potential actions and the action selection procedures.
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The policy 	, on the other hand, defines most prefer-
able state-action pairs that were visited and updated
during training. In each epoch i of the training process,
the agent updates Q	ðs½� �; a½� �; iÞ for every state-action
combination through the Q learning [59] formula:

Q	ðs½� �; a½� �; iþ 1Þ ¼ ð1� 
1ÞQ	ðs½� �; a½� �; iÞ þ 
1†R;

ð15Þ

†R ¼ Rðs½� �; a½� �Þ þ 
2 max
a½�þ1�

Q	ðs½� �; a½� �; iÞ; ð16Þ

where 
1 2 ½0; 1� is the reward learning rate, and 
2 2
½0; 1� is a discount factor used to balance how much
the RL agent emphasizes immediate versus future
rewards.

This framework oftentimes leads to an intractably
large combination of states and actions. Such is the case
in this multicamera pose adjustment task. To address
this, the authors utilized a deep RL approach to estimate
Q	ðs½� �; a½� �Þ leveraging recent developments in deep
learning (DL) methods. Two main challenges arise with
the incorporation of supervised DL with RL [60].

(i) the requirement for independent and identically
distributed (iid) state transition data in supervised
DL is difficult to acquire in online RL;

(ii) the nonstationary target Q	ðs½t�; a½t�Þ in RL causes
convergence issues in supervised DL.

To resolve the former issue, the agent stores previous
experiences in a local memory element called the replay
buffer. This information is then randomly sampled to
train the deep network. As the data from the replay
buffer is sampled randomly, the sampled data approa-
ches iid. This offline data generation procedure has been
coined as experience replay [61–63]. The latter issue is
addressed utilizing a temporarily fixed target network
[60]. For this, two deep networks with parameter sets †�
and � are created. Network †� temporarily retrieves fixed
Q	ðs½� �; a½� �; †�Þ targets, thus effectively eliminating the
moving target issue. Concurrently, network � includes all
additional updates in the training. This update rule of
Deep Q-Network (DQN) learning is depicted in the fol-
lowing:

ª ¼ ½Q	ðs½� þ 1�; a½� þ 1�; �iÞ � †R�2; ð17Þ
�iþ1 ¼ �i � 
3r�Es½�þ1�ª; ð18Þ

where 
3 is the network learning rate and †� is synced
with � every predetermined number of epochs. Fur-
thermore,

� ¼ 
2 max
a½�þ1�

Q	ðs½� þ 1�; a½� þ 1�; †�Þ; ð19Þ

†R ¼ Rðs½� �; a½� �Þ þ �: ð20Þ
Finally, in order to remove positive bias towards Q	ðs½� þ
1�; a½� þ 1�; �Þ using DQN alone, double DQN [64] was

utilized to greedily select the action and the target net-
work †� to estimate Q	ðs½� þ 1�; a½� þ 1�; �Þ.
Problem formulation
In general, the state s½� � should be an aggregated feature
representation of the environment, which includes all
information needed for the agent to decide the next ac-
tion a½� �. While sufficient information is necessary for the
model to learn a good policy 	, excessive information not
only confuses the model but also delays the convergence
by making the state-action search space exponentially
larger. Therefore, the only features considered in the
state space should fall into either of the two categories:

(i) features directly controlled by actions a;
(ii) features not directly controlled by actions a AND will

affect the agent.

Since the problem objective is to optimally adjust camera
poses, features falling into the former category, (i), are
the camera poses K . Meanwhile, category (ii) may in-
clude the surgical tool configuration PðqÞ;QðqÞ and ve-
locity PðqvÞ, which affect changes in the surgical scene
and thus the observed point clouds, as well as camera
visibility; the patient’s breathing cycle time index tb
affects the camera Z position; the camera goal poses †K .
With that said, at time interval � , the state s½� � can be
denoted as a ð10NC þ 9Þ � 1 vector

s½� � ¼ ½K; †K;PðqÞ;PðqvÞ;QðqÞ; tb�T ; ð21Þ
where the rotation about the Z-axis is disregarded.
Hence, K; †K 2 R5NC , PðqÞ;PðqvÞ 2 R3, and QðqÞ 2 R2.

During the training phase of the DDQL algorithm, the
reward function ¡ðs½� �; a½� �; s½� þ 1�Þ consists of three
terms:

¡�ða½� �; s½� þ 1�Þ action reward;

¡rðs½� þ 1�Þ reconstruction reward;

¡gðs½� �; s½� þ 1�Þ goal achievement reward:

Suppose dM is the maximum distance in the surgical
scene (in mm), then the action reward ¡� reflects the
state transition status and camera motion penalty.
Specifically, this reward is derived as

¡�ða½� �; s½� þ 1�Þ ¼

�2:0 if illegal move;

10:0 else if goal reached;

�LðCÞ
dM

else: See ð5Þ:

8>>>><
>>>>:

ð22Þ
An action a½� � is considered illegal when the camera ei-
ther moves out of bounds or collides with another
camera. In addition, the goal reached reward is only valid
when all cameras are in their respective goal poses.

The reconstruction reward ¡r rewards high recon-
structability of the surgical scene and is calculated for

Multicamera 3D Viewpoint Adjustment for Robotic Surgery
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each point pj by

OVRðpjÞ ¼
XNC

i¼1

XNK

k¼1

Rði; k; pjÞVði; k; pjÞCiðkÞ
 !

; ð23Þ

¡rðs½� þ 1�Þ ¼ OVRðpjÞ � WðpjÞPNP

k¼1 WðpjÞ
; ð24Þ

where OVRðpjÞ 2 RNP is first shown in (8) and � is the
Euclidean vector dot product. Now consider the distance
to goal is reflected by the ¡g reward component

¡gðs½� �; s½� þ 1�Þ ¼ 1� �½� �
NC

XNC

k¼1
�OGðkÞ��þ1OGðkÞ: ð25Þ

Note that � 2 ð0; 1Þ is an attenuation scalar, and the pose
difference metric �OgðkÞ is calculated as

�OgðkÞ ¼ k� g1ðkÞk2 þ k� g2ðkÞ � 1k1; ð26Þ
where similar to (4),

� g1ðkÞ ¼
Pðck½� �Þ � Pð†ckÞ

dM
; ð27Þ

� g2ðkÞ ¼ Qðck½� �Þ � Qð†ckÞ: ð28Þ
Finally, the overall reward is the sum of the reward
components, i.e.

¡ ¼ ¡� þ ¡r þ ¡g : ð29Þ
Learning network structure

The Double DQN consists of three hidden fully connected
hidden layers with dimension (512, 128, 64), respec-
tively. Since the states are preprocessed in a way that
there are no significant correlations among features in a
local neighborhood, no convolutional layers are added.
Recurrent layers are also unnecessary since the breath-
ing cycle time index tb is already included in the state
space. This minimal network structure prevents model
overfit and is amenable to the desired timescale.

3. Experiments

For the conducted experiments, a sequence of NE ¼ 562
animated point cloud frames of a deforming abdominal
surgical scene was collected. The scene roughly spanned
½�150; 150�mm in both X- and Y-directions and
½0; 140�mm in the Z-direction. Each frame contained NP ¼
3200 sampled points. A total of NC ¼ 6 cameras inde-
pendently moved on a nonstationary hemisphere
(modeling the inner abdominal wall), which spanned
½�200; 200�mm in both X- and Y-directions. The Z-value
of the hemisphere oscillates mimicking a patient’s
breathing cycle. The camera poses are initialized along
the abdominal wall roughly 40mm away from the top of
the hemisphere with equal rotational spacing around the
abdomen. Figure 8 depicts the initial camera poses and
the experimental surgical scene.

Fig. 5. Rain-cloud and box-whisker plots depicted the distribution of runtime per iteration for each of the four tested interpolation
methods. In the top row, the distributions for each individual method are plotted separately, with iteration time on the horizontal
axes. The distributions are then shown on the same log time scale in the bottom row. The vertical axis contains the four pose
interpolation procedures — ST, SD, SV, RL — and the horizontal axis is a logscale of runtime in ms.
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3.1. Goal pose derivation

The goal camera poses are extracted by performing the
Advanced Approximation Strategy goal pose optimization
procedure iteratively on the 562th point cloud frame until
convergence, as mentioned in Sec. 2.2. Details regarding
the process are described in the previous work [6]. Table 1
shows the derived start and goal poses of each camera.

3.2. Pose interpolation

At every time step, one camera, call it ci where i 2 ½1;NC�,
can choose to take either a translational or rotational
movement step. A translational step can be in positive or
negative X-, Y-direction with grid step size of dM

100, whereas
a rotational step can be a rotation of 	

100 around the
positive or negative X- or Y-axis. The three slerp baseline
procedures — ST, SD, SV — were applied to determine a
series of camera motion interpolation actions.

Meanwhile, the proposed double DQN approach RL is
implemented under the same experimental conditions.
Prior to training, a total of 3,500,000 state transition
data steps were collected through random policy 	 for
experimental replay. The model was later trained for a
total of 15,000,000 epochs. A sequence of camera motion
actions is then determined after the training process.

4. Results

The results from the runtime and visibility score
experiments demonstrate improvements in required

interpolation time and normalized VR score

PNP
j¼1

OVRðpjÞ
NPNC

.

These improvements are summarized in Table 2. The
proposed method is promising towards real-time im-
plementation with much improved 3D surgical scene
reconstructability over slerp approaches with a modest
cost to computational efficiency.

4.1. Selected actions

Figure 4 shows a comparison of the list of actions pre-
scribed by the four interpolation procedures. In both ST
and RL, each camera roughly shares an equal number of
moves; the distribution of motion is fairly uniform across
cameras. SD focuses on decreasing the distance to each
camera goal pose. Thus, it is prone to focusing only on the
furthest camera for a period of time until another camera
overtakes it as the furthest from the goal pose. Finally, SV
exhibits behavior as the most reluctant to change action
near the end of the experiment, or once it discovers the
greedy camera move that optimizes visibility.

Table 2. Pose interpolation performance.

Pose interpolation method

Metric ST SD SV RL

VR score 0.721 0.720 0.726 0.822
Interpolation

time [ms]
3:1� 10�4 2.5�10�4 1.75 0.113

Fig. 6. The comparison of visibility scores per iteration using the four pose interpolation procedures (vertical axis). The horizontal

axis represents

PNP
j¼1

OVRðpjÞ
NC

. Note that the point cloud sequence contains NP ¼ 3200 per frame.

Table 1. Initial and goal camera poses.

Pose Cam PX [mm] PY [mm] PZ [mm] QX [rad] QY [rad]

Initial c1 0.00 40.0 281.8 �0.019 0.37
c2 32.0 16.0 282.4 0.149 0.26
c3 32.0 �23.0 281.8 0.149 0.05
c4 0.00 �48.0 280.6 �0.019 �0.08
c5 �40.0 �24.0 280.8 �0.23 0.05
c6 �40.0 16.0 281.4 �0.23 0.26

†Goal †c1 43.6 82.19 268.9 0.48 0.57

†c2 �104.1 75.24 253.7 �0.68 0.47

†c3 �191.2 �95.9 186.28 �0.96 �0.09

†c4 �153.8 �78.8 225.4 �0.83 0.13

†c5 52.4 �103.5 259.6 �0.18 �0.37

†c6 163.1 �72.0 221.0 0.93 �0.06

Multicamera 3D Viewpoint Adjustment for Robotic Surgery
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For further reference, Fig. A.1 shows the camera
trajectories resulting from the chosen actions for each
motion component of interest. One can observe a prefer-
ence of RL to maintain relatively neutral X, Y positions
(close to 0) compared to the other interpolation methods.
This in effect also provides flexibility to move positively in
the Z-axis to increase scene coverage. Meanwhile, RL also
showcases a tendency to select smaller rotations com-
pared to the slerp approaches; this contributes to a smaller
projection angle � and therefore generally results in a
better R score. These phenomena are apparent especially
for cameras 2 and 5 in Fig. A.1.

4.2. Runtime analysis

Figure 5 shows the iteration runtime statistics. The me-
dian runtime for method ST, SD, SV, RL is roughly 0.31,
0.25, 1750, and 113ms, respectively. ST and SD exhibit
the best runtime figures, as both SV and RL execute ad-
ditional processes to optimize visibility. While RL itera-
tions require more time than ST, SD, they are over an
order of magnitude more efficient than SV. RL also shows

the best runtime consistency (smallest runtime
variance). This characteristic is ideal for real-time
application. Furthermore, computational efficiency gains
are likely with the incorporation of hardware accelera-
tion methods.

4.3. Visibility analysis

The aggregate visibility

PNP
j¼1

OVRðpjÞ
NC

2 ½0:0; 1:0� for each

iteration is depicted in Fig. 6. Each point on the graph
corresponds to the overall visibility of the entire surgical
scene given the current camera configurations. Method
RL shows the highest visibility median and smallest
variance, which again demonstrates the consistency of
the proposed algorithm compared with the slerp base-
lines. Figure 7 lists related weighting and visibility
metrics. Figure 9 shows the correlated distribution of
weighting function WðpjÞ and visibility score OVRðpjÞ.
This is shown for each point j 2 ½1;NP� at frame 222. The
color reflects the frequency of points in that part of the
distribution. Note that since there are a total of NC ¼ 6

Fig. 7. The statistical comparison of four score types using different pose interpolation procedures (vertical axis). The horizontal

axis represents score values. The normalized V score (green) ¼
PNC

i¼1

PNK
k¼1

PNP
j¼1

Vði;k;pjÞCiðkÞ
NPNC

; the normalized R score (orange)PNC
i¼1

PNK
k¼1

PNP
j¼1

Rði;k;pjÞCiðkÞ
NPNC

; the normalized VR score (blue)

PNP
j¼1

OVRðpjÞ
NPNC

; finally the normalized W score (pink)

PNP
j¼1

WðpjÞ
dM

, where dM is

the maximum distance in the surgical scene (in mm).
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cameras, the maximum visibility score OVRðpjÞ for any
given point is capped at 6. The higher the OVRðpjÞ, the
greater chance that point will be visible multiple cameras
and hence 3D reconstructed. The distribution of WðpjÞ,
on the other hand, reflects the relative importance of
viewing and reconstructing a point, which is highly cor-
related to proximity to the tool tip location (thus the
distribution of WðpjÞ is the same across methods). More
visibility would result in more points near the top of the
map. Considering the weighting function, ideally more
points will appear at the top right corner (both high
importance and high visibility) and only a few points in

the bottom right corner (both high importance and poor
visibility). Based on these criteria, RL method signifi-
cantly outperforms the other methods. Out of the three
slerp approaches, SV also shows a more desirable result
compared with ST and SD.

The reconstructed points from the same surgical
scene and initial and goal poses using the tested inter-
polation methods are depicted in Fig. 10. The total
number of reconstructed points during the interpolation
is shown in Table 3. The RL interpolation method
demonstrates a greater reconstructability, and is consis-
tent with the greater VR scores.

Fig. 9. The correlation heatmap between the point importance weightsWðpjÞ and corresponding visibility scoresOVRðpjÞ using the
four interpolation procedures.

Fig. 8. The dynamic surgical scene, with initial poses of the six cameras marked with green cones. The abdominal wall, shown as
the translucent green surface, translates periodically in the Z-direction to mimic patient breathing.
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5. Conclusion

Previously, the authors introduced a novel Advanced
Approximation Strategy, A, and assessed its viability
compared with an exhaustive search approach. Relative
improvements were stark, and insights as to the effects of
increased camera number were also presented [6]. While
accuracy and high reconstructability were observed, true
real-time deployment is a challenge. To that end, this
work presented a mixed approach, whereby iterations of
goal camera poses are calculated via A, and streamlined
multicamera movement methods interpolate between
assigned start and goal poses. The authors present a
deep RL approach and compare with linear spherical
interpolation. Cameras are initialized, as depicted in
Fig. 8, and a goal pose is calculated using A, as shown in
Table 1.

The different slerp approaches, ST, SD, and SV, pre-
scribe camera movements in various order. ST adheres to
a rigorous turn-taking approach, as observed in Fig. 4. SD
sought to prioritize movement of cameras furthest from
the goal pose. Finally, SV chose camera slerp motions
greedily to maximize (3). These three interpolation
methods disregard any potentially better views between
the initial and goal poses; movement candidates are
predetermined by the initial and goal poses. The authors
introduced a deep RL agent, RL, which is presented with
the same task as the above methods. However, this
method is trained to maximize longer term visibility
while also serving cameras to the goal poses. As shown in
Fig. 6, RL outperformed the linear interpolation methods
for overall visibility score. The number of reconstructed
points from the same surgical scene, camera configura-
tion, and goal pose were tracked for all four methods,
and are depicted in Fig. 10, and summarized in Table 3.
The proposed RL method demonstrated greater recon-
structability than the other approaches. The method
comes at a cost of computational efficiency (iteration
time of the method was measured at about 113ms), yet
is more efficient by over an order of magnitude over SV,
as illustrated in Fig. 5. These results are also summarized
in Table 2.

The work presented here introduces a deep RL
method for adjusting multicamera viewpoints in a

dynamic surgical scene to navigate from one set of
camera poses to another. Results are encouraging, and
suggest that when compared to linear interpolation
methods, the proposed technique achieves much greater
en route reconstructability visibility while introducing
acceptable latency. Previous work offered a promising
method for deriving optimal camera poses at a coarser
time scale. This work shows that at a finer temporal
scale, navigating multicamera systems in RMIS should
still utilize intelligent movement algorithms such as the
one presented here.
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Table 3. Reconstruction performance.

Pose interpolation method

ST SD SV RL

Aggregate points 1,385,073 1,383,188 1,393,485 1,577,422

Fig. 10. Reconstructed points are depicted in red for the same
surgical scene and start and end poses. The proposed RL in-
terpolation method exhibits greater reconstructability score
and number of reconstructed points.
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Appendix A. Interpolation Trajectories

Fig. A.1. Recorded camera trajectories. In each graph, the horizontal axis denotes the evaluation point cloud frame � 2 ½1;NE� and
the vertical axis shows normalized poses. Subgraphs in the same row illustrate the same normalized camera pose component,
whereas each column shows motion subgraphs of the same camera. The colored areas shows the normalized VR score at that
particular iteration.
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