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Abstract

We present a new algorithm called PBSIM for computing
image similarity, based upon a novel method of extracting
bloblike features from images. In tests on a classification
task using a data set of over 1000 images, PBSIM shows
significantly higher accuracy than algorithms based upon
color histograms, as well as previously reported results for
another approach based upon bloblike features.

1 Introduction

As multimedia applications become more commonplace,
the need increases for tools to manipulate large collections
of visual data. One important tool that has already been the
focus of significant research is an algorithmic process for
determining the perceptual similarity of images. Such a tool
can form the basis of many different image processing sys-
tems, including those for automatic classification of video or
image data, retrieval of similar images from databases, and
many other related and important tasks. For example, many
image retrieval systems make use of a suite of similarity
algorithms [1, 8, 11].

Broadly speaking, previous work in image similarity falls
into one of several categories according to the basic ap-
proach used. Some algorithms take a geometric approach
to similarity, attempting to construct models of the contents
of the images for comparison [5]. Others, including work
in face recognition and algorithms based on eigenvalues
[11], rely on identifying parts of an image based upon their
appearance. A third area of work in image similarity, de-
veloped primarily for use with large databases of images,
revolves around comparing general properties of entire im-
ages. Typical examples of this holistic style are the various
methods using color histograms.

Holistic approaches to image similarity have tended to be
somewhat simplistic, concentrating only on one property of
the image, such as color or texture. With a few exceptions,

they ignore the spatial layout of the image entirely. Recently
several algorithms have been proposed that attempt to in-
tegrate color and texture with spatial information. Color
correlograms [7] incorporate both color and geometry. Re-
cent work in blob-based similarity [3] and flexible templates
[9] has explicitly attempted to unify all three sources of sim-
ilarity information. Each of these approaches has specific
strengths and weaknesses that are discussed further in Sec-
tion 3.1.

The algorithm presented here, called percentile blob-
based similarity or PBSIM, incorporates information about
the spatial layout of color and texture in images in an in-
tuitive and straightforward manner. Its relative simplicity
means that it is practical for application to large databases.
Furthermore, simplicity may be responsible in part for the
reliability of the technique as demonstrated in our tests. We
evaluate the performance of our algorithm using a data set
containing over 1000 images from twelve different cate-
gories, based on its ability to select similar images from
the same category. The classification accuracy on this data
set is significantly higher than previously published results
using other methods, including methods based upon color
histograms.

In the next section we describe the PBSIM algorithm,
including both feature extraction from the images and the
comparison process. Section 3 gives the results of tests
performed using the sample data set and compares these to
the performance of related techniques. Finally we conclude
with some observations about the algorithm and directions
for future work.

2 Algorithm

The PBSIM algorithm may be divided into two parts.
The first stage extracts features from each image for use in
comparison by the second stage. The features are character-
ized and the descriptions stored for later processing. In the
second stage, when two images are being compared, their
stored feature descriptions are looked up and contrasted us-



ing a variant of the L1 distance measure. The end result is a
difference score for the two images, which may be inverted
to find the similarity.

2.1 Feature Extraction

The feature extraction algorithm operates on a grayscale
rendition of the image. Three such renditions, or portraits,
come from the YUV components of the image,while a fourth
is a simple texture map. This texture map is produced by
computing the difference at each pixel between the pixel and
a weighted mean of its immediate neighbors in all directions.
Each portrait is analyzed to identify large regions of the
lowest and highest intensity, and these regions are described
according to statistics that characterize the region’s size,
shape, and other attributes. Figure 1 shows steps in the
processing of the luminosity portrait of an image of a sunset.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Steps in processing the luminos-
ity portrait of an image. (a) Grayscale por-
trait; (b) lowest intensity quartile; (c) low-
intensity blob; (d) highest intensity quartile;
(e) high-intensity blob; (f) middle quartiles
(discarded). Original image copyright Corel
Corp.; used with permission.

Preliminary tests on smaller data sets indicated that in-
cluding the middle intensities can actually hurt performance

slightly. This corroborates subjective impressions that im-
ages are easiest to identify from the intensity extremes. Of-
ten the middle intensities contain “negative space” cutouts
of other objects in the image, and are thus prone to un-
dergo dramatic changes in shape as a result of relatively
simple scene transformations. Figure 1(f) illustrates this
phenomenon. Because of it, PBSIM focuses exclusively on
the intensity extremes.

In processing a single image component, the feature ex-
traction algorithm first ranks the pixels and divides them
into quartiles by intensity. (Although quartiles were used in
all the results described in this paper, there is no a priori rea-
son not to choose a different percentile threshold.) Pixels in
the highest and lowest quartiles are retained for further pro-
cessing, while those in the middle two quartiles are thrown
away. Analyzing the connected components of each re-
maining quartile gives a list of candidate blobs to serve as
image features. Often a single large connected component
will dominate, although occasionally there will be several
of approximately equal size. All components within a fixed
percentage of the size of the largest are retained for further
description. The results reported in this paper set this cutoff
parameter at 80%. The retained components, referred to
as blob features or simply blobs, represent large contigu-
ous regions of high or low intensity in the portrait being
processed.

2.2 Feature Description

Each blob identified by the procedure described above is
characterized for later matching by eleven statistics describ-
ing its position, size, and shape. The statistics used, given
in Table 1, are designed to be as independent as possible of
the size of the image and of each other.

In addition to numbers describing the blobs identified
within the image, several general statistics are collected
about the entire portrait. In particular, parameters of the
blob identification procedure are recorded. The full list
of information collected about each portrait is as follows:
the mean, standard deviation, skew, and kurtosis of the in-
tensity value distribution, the intensity of the 25th and 75th
percentile level, and the range of intensities covered by each
percentile band (0-25, 25-75, and 75-100). These general
statistics can be highly informative in conjunction with the
identified blobs: When the intensity information they con-
tain is added to the blob outlines, images become much
easier to identify for human observers. Our preliminary
experiments indicated that these statistics also significantly
improve the performance of PBSIM.

To summarize, the features describing an image form
a hierarchy. Each of the four portraits of a given image
is described by the general numeric features described in
the preceding paragraph, plus two complex features repre-



Table 1. Statistics Used To Characterize Blobs

Area Percentage of total image area covered by the blob.

Position Mean x and y coordinates, expressed as fractions
of the width and height of the image, respectively.

Extent Value of 20th and 80th percentile of x and y pixel
coordinates, expressed as a fraction of the width or
height of the image.

Aspect Defined as (∆x� ∆y)=
p

∆x � ∆y, where ∆x and ∆y
are the breadths between the extent statistics described
above.

Slant Mean of (x�x̄)�(y�ȳ) for all pixels in blob, divided
by the mean of j(x� x̄) � (y � ȳ)j, where x and y are
the pixel coordinates, again expressed as a fraction of
the width or height of the image, and x̄ and ȳ are the
position statistics described above.

Density Fraction of pixels lying within the rectangle defined
by extent statistics that belong to the blob.

Compactness A comparison of the square of the blob
perimeter to its area. Defined as ((Ne=4)2 �Nb)=Nb

where Ne is the number of border pixels and Nb is the
total number of blob pixels.

senting the portrait’s high- and low-intensity blobs. The
two blob features consist of a set of one or more individual
blob descriptions, comprising the eleven numeric statistics
described in Table 1. A full description of an image thus
includes 36 simple numeric features and eight complex, set-
like features, each of which contains one or more collections
of eleven numbers describing a blob. These eleven numbers
may be thought of a sub-features that describe a given blob
feature.

2.3 Image Comparison

Once a description has been extracted from an image, it
can be compared with other image descriptions to determine
similarity. Actually, the comparison algorithm computes a
difference score, meaning that lower scores indicate greater
similarity. It does so by computing a difference score for
each feature and summing over all features to arrive at the
total difference.

The individual difference scores for the simple numeric
features are merely their absolute difference. In contrast, the
blob description features require a more complicated treat-
ment. Because the blob extraction step sometimes identifies
more than one blob of a particular type, a given blob fea-
ture may contain a set of several candidates for matching.
In this case, all possible pairwise matches are considered
with the corresponding set of blobs for the other image, and

the difference for the feature in question is taken to be the
difference of the best-matching pair of blobs of that type.
Any additional blobs not participating in the best match are
simply ignored. Thus, regardless of how many blobs were
extracted for the images being compared, exactly eight blob
comparisons (two for each portrait, one of low intensity
blobs and one of high) are included in the difference score
for any two images.

D(I1; I2) =

36X
i=1

jfi(I1)� fi(I2)j+

44X
i=37

�
min

b12fi(I1);b22fi(I2)
∆(b1; b2)

� (1)

The difference between any two blobs, ∆(b1; b2), is
merely the sum of the absolute differences on all eleven
blob description statistics, i.e., the L1 distance between the
two blob descriptions. In principle, the step computing all
pairwise matches could be computationally expensive, but
in the image set we used, multiple blobs are not common
enough to add significant extra computation. All eleven
statistics describing a blob are treated as a unit for purposes
of choosing the best match; thus it is not permitted to take
the best match for the shape from one blob and the best
match for the position from another.

A few comments are in order about the difference mea-
sure described above. It is based on the L1 distance rather
than the L2 distance, in order to make the measure less
sensitive to a bad match on any single feature. Also, be-
cause features in one image are matched only against the
corresponding feature in the other image certain types of
similarity will not be detected. For example, a gray fig-
ure against a black background will not match well with
the same figure against a white background. Because the
lightest areas (high intensity blobs) are matched together,
the figure in one area will be compared to the background in
another. Although this is a potentially serious failing, it was
hoped that such situations would be sufficiently rare to have
only a small effect on performance. The results described
later in this paper suggest that, at least for the images used
here, this is indeed the case.

3 Evaluation

There exists no clearly defined benchmark for assessing
a proposed similarity measure on images. Indeed, human
notions of similarity may vary, and different definitions are
appropriate for different tasks. We chose to evaluate PBSIM
in an image classification task previously used to evaluate a
different blob-based image similarity measure [3]. The task
involves over 1000 images from the Corel photo collection,
divided into a dozen categories according to their subject



matter. Using leave-one-out cross validation, PBSIM was
tested on its ability to correctly predict the category of an
image by finding a nearest neighbor in the same category.
This procedure involves testing each image once, using the
entire remaining image set as possible targets. Each image
is labeled with the category of its nearest neighbor in the
remainder of the set.

Table 2. Accuracy of PBSIM by Class

A B C D E F G H I J K L
A 83 9 3 2 1 1 0 0 0 0 0 0
B 8 79 1 5 0 2 0 1 0 0 3 0
C 2 0 73 12 3 2 5 0 0 1 0 2
D 0 0 4 88 6 0 0 1 1 0 0 0
E 0 0 0 2 88 1 4 1 3 0 0 1
F 1 4 4 1 0 73 8 1 4 1 1 0
G 0 1 12 4 15 11 36 6 8 1 4 1
H 0 1 0 0 3 2 2 83 4 0 2 1
I 0 0 3 8 15 9 8 6 45 2 5 0
J 0 0 3 6 6 0 0 0 3 63 6 14
K 0 0 0 2 0 1 3 1 2 2 86 2
L 0 0 2 0 1 0 1 2 0 9 11 72

Key: Confusion matrix for the image classifica-
tion task. Numbers in each row indicate the per-
centage of images classified into target category
at the top of the column. Numbers on the diago-
nal are correct classifications. A = Sunsets, B =
Night Scenes, C = Cheetahs/Leopard/Jaguars, D =
Tigers, E = Elephants, F = Deserts, G = Fields, H =
Mountains, I = Brown Bears, J = Polar Bears, K =
Bald Eagles, L = Airshows.

Table 2 shows the class predicted by the nearest neigh-
bor algorithm using PBSIM. Correct responses, indicated
in bold face type, mean that an image’s nearest neighbor
according to PBSIM was a member of the same class. The
classifier produced the correct response in 73.7% of the cases
overall, and in several classes the accuracy was over 85%.
Only two of the twelve categories proved especially difficult,
and the mean accuracy over the other ten was 80.2%. The
generally high accuracies are encouraging, as they suggest
that PBSIM may be applicable to a wide range of images.

The two problem categories, Brown Bears and Fields,
proved markedly more difficult than the others. Although
several factors may be involved, the low scores on the Fields
category may be explained by the fact that these images are
similar to many of the animal categories except for the ab-
sence of a single extra object (the animal). This category
was also subjectively one of the most diverse in appear-
ance. Brown Bears appear to be a slightly different case.
It may be that the bears were not reliably picked out of the
background by PBSIM, and thus that background features

provided the most reliable matches. However, Belongie et.
al.[3] also report low scores on this category, and suggest
that its members may also be too disparate to form a strong
visual category.

Figure 2 shows some sample retrievals by the system.
The target images featured were randomly chosen to ensure
a representative mixture.

3.1 Comparison With Previous Results

As noted above, the fact that image similarity is poorly
framed makes it difficult to compare different algorithms.
Often, they may have been designed with different goals in
mind, and been evaluated on different tasks. Nevertheless,
some insight into relative merit may be gained by looking
at those cases where comparison is possible.

We deliberately chose to test PBSIM on the same set of
images used previously by Belongie et. al. for their work
on image retrieval. They also use a blob-based approach,
but their blob location algorithm is quite complex relative
to PBSIM, incorporating a wider range of color and texture
variation. Furthermore, they encode the location of a blob
in terms of nine subdivisions of the image plane, and use
a naive Bayes classifier to determine the class of a query
image. They also report results for a classification scheme
based on color histograms as a baseline.

In our tests, PBSIM does significantly better than the
54.7% across-the-board accuracy for the blob-based tech-
nique reported by Belongie et. al., as well as their histogram
baseline (52.3%). Care should be taken in comparing their
numbers directly with ours, as they report results based on
a test set of only 1/3 of the total image set, whereas we used
the entire set for our experiments. (Since we developed and
tuned our algorithm using an entirely different set of images,
it was unnecessary to divide the test set to create a separate
subset for training.) We also performed a test of color
histograms, using the same nearest-neighbor, leave-one-out
cross validation setup as we used to test PBSIM, and found
an average classification accuracy of 65.3%. (Our imple-
mentation of color histograms also differed in that Belongie
et. al. used more color channels, and compared each image
to the mean histogram for each category during classifica-
tion.) Although still significantly lower than PBSIM, this
result shows that a direct comparison between the two stud-
ies may underestimate the performance of the Belongie, et.
al. approach.

Nevertheless, the discrepancy between the two blob-
based approaches invites speculation as to the strengths and
weaknesses of each. We suspect that the simplicity of PB-
SIM makes it more reliable if the differences between the
categories is great enough, whereas the system of Belongie
et. al. may be more sensitive to finer variations that leave it
vulnerable to overfitting in some cases.



(a) (b)

(c) (d)

Figure 2. Top two images retrieved for four
randomly chosen images from the test set.
Query image is at top, closest match is sec-
ond. The colors match well except in (c). Im-
ages copyright Corel Corp.; used with per-
mission.

Other approaches to image similarity that use geometric
information present in the images are color correlograms
[6] and flexible templates [9]. While not based upon blobs,
color correlograms incorporate geometric information about
the locations of different hues in the images it is comparing.
Huang et. al. report that they outperform color histograms
for indexing and comparison. Flexible templates currently
rely on a human supervisor to provide templates of desired
image categories, which are then used to retrieve images
from an image database. The success of this approach is
heavily dependent on the quality of the templates provided,
but the method can achieve excellent results for some types
of images.

One other recent image similarity algorithm that reports
better results than color histograms is based primarily on the
texture present in images [4]. This approach extracts tex-
tural features at multiple resolutions and orientations. De
Bonet and Viola show that, for the retrieval tasks they test,
their texture-of-textures (ToT) method outperforms several
implementations based upon color histograms. This sug-
gests that it may be performing at a level comparable to that
of PBSIM, although they perform their tests on a different
set of images. More importantly, since the ToT method
uses no information about the spatial distribution of textures
in the image, while PBSIM includes comparatively limited
textural information, a combination of the two techniques
may prove fruitful.

Several commercial image retrieval systems have been
built that incorporate multiple similarity measures. For ex-
ample, QBIC [1] and Candid [8] allows the user to choose
the similarity measure used in a given application, allowing
for greater flexibility than a single fixed measure. Photobook
[11] also provides an array of tools for retrieving a desired
image. In principle, PBSIM could be employed as one of
the techniques in such a system. Other image retrieval sys-
tems using techniques different from blob matching include
Virage [2] and Chabot [10].

4 Conclusion

We have presented PBSIM, an algorithm for measuring
the perceptual similarity between two images. PBSIM delib-
erately adopts a simplistic approach to this problem. Details
of images are glossed over in favor of broader character-
istics, allowing the algorithm to readily perform high-level
generalization. We have seen no signs that PBSIM’s per-
formance degrades as the image set size increases – to the
contrary, preliminary tests with smaller data sets were pro-
ducing less impressive results. To some extent, the situation
may be analogous to that in the field of text retrieval, where
historically, systems with the greatest precision and recall
have also frequently been the simplest.

Naturally, because of its general approach, PBSIM is not



suited for all types of similarity problems. In a face recogni-
tion task, for example, a specially designed algorithm would
certainly be better. It will probably also falter on scenes that
are cluttered with many small objects, since it is based upon
the identification of large regions of importance. But for
rapid searches through large sets of natural scenes like the
ones tested, PBSIM is a good choice. For some applications,
it might also be used as a first pass filter in conjunction with
a second more computationally intensive algorithm.

PBSIM produces impressive results on the image classi-
fication task we used as a test, classifying images with an
accuracy exceeding 85% in several categories tested. These
results show the power of incorporating geometric infor-
mation into the description of an image. Techniques like
the standard color histogram approach [12] and the texture-
of-textures algorithm [4] fail to take advantage of this rich
source of information. The combination of color, texture,
and geometry reveals far more about an image than any one
of these properties alone.

Although relatively simplistic, PBSIM may be easily im-
proved in a number of ways to make more fine-grained
distinctions, while continuing to take advantage of the basic
power of the blob description. We expect that continued
work on techniques of this kind will produce even greater
gains in performance. Furthermore, we expect that more
complete image retrieval systems will benefit from adding
PBSIM to their collection of tools for determining image
similarity.
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