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1. Introduction

A quasiconformal (qc) mapping is a homeomorphism, u: 2 C R" - R"™ whose components are
in the Sobolev space W,L’c” and such that there exists a constant K >n2 for which |du|" < K detdu

ae. in 2. Here we denote |A[> =Y, aizj
Jacobian matrix of u = (u!, ..., u") with entries dujj = Bjui. At a point of differentiability du(x) maps
spheres into ellipsoids and the smallest possible K in the inequality above, roughly provides a bound
for the ratio of the largest and smallest axes of such ellipsoids. In this sense qc mappings distort

the geometry of the ambient space in a controlled fashion. Quoting F. Gehring [20], qc mappings

to be the Hilbert-Schmidt norm of a matrix and du the
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“constitute a closed class of mappings interpolating between homeomorphisms and diffeomorphisms for which
many results of geometric topology hold regardless of dimension.”

Quasiconformality can be measured in terms of several dilation functions. Here we will focus on
the trace dilation

[du(x)]

Ku, 2) = |Ky®) |, with Ky(x) = ———.
” li~) (detdu(x))

(11)

Other dilation functionals used in the literature are the outer, inner and linear dilation (see [40] for
more details) as well as mean dilations for mappings with finite distortion (see [10]).

There are a variety of extremal mapping problems in the theory of qc mappings, in fact qc map-
pings were introduced in just such a context in [23]. Extremal problems usually involve two domains
2, 2’ CR" (or two Riemann surfaces), for which there exists a quasiconformal mapping f: 2 — £,
and ask for a quasiconformal map u: £ — £’ which minimizes a dilation function in a given class
of competitors. Such competitors are usually other quasiconformal mappings with the same boundary
data as f on a portion (or all) of 62 or in the same homotopy class as the given map f. Existence
and uniqueness of extremals depend strongly on the dilation function used. Typically, existence fol-
lows from compactness and lower-semicontinuity arguments applied to a particular dilation function,
and uniqueness does not hold unless the class of competitors is suitably restricted (for instance to
Teichmiiller mappings!).

Quasiconformal extremal problem arose first in the work of Grotzsch in the late 1920’s and were
later studied in the two dimensional case both for open sets and for Riemann surfaces, see for in-
stance [39,2,24,38] and references therein. A celebrated result of Teichmidiller, which was subsequently
proved using two very different methods by Ahlfors [2] and by Bers [13], states that given any orien-
tation preserving homeomorphism f:S — S’ between two closed Riemann surfaces of genus g > 1
there exists among all mapping homotopic to f, a unique extremal which minimizes the L norm
of the complex dilation® K(f,S) = K fllLoo(s). Moreover, the extremal mapping is a Teichmiiller map,
real analytic except at isolated points and with constant dilation K = const. In [24], Hamilton studied
the extremal problem with a boundary data constraint, and one of his results is a maximum principle
of sorts stating that if f is extremal, then the maximum of its Beltrami coefficient in S is the same
as the maximum on 9S.

In higher dimensions, the problem becomes even more difficult and the references in the litera-
ture more sparse. The extremality problem without imposing boundary conditions is studied in the
landmark paper [21]. Existence and uniqueness for the analogue of Grétzsch problem in higher di-
mensions is established in [19] and a maximum principle for C? extremal qc mappings is proved
in [8] (see also the work of Semenov [34-36]). More recently, in [10,9,1] the study of extremal prob-
lems for mappings of finite distortion is carried out for L? norms (and more general means) of the
dilation functions with p finite, rather than with the L° norm. In the same vein, the paper [11] ex-
amines extremal problems in the mean for dilation functions based on the modulus of families of
curves.

In the literature discussed above, the study of extremal problems for qc mappings in space rests
on a careful analysis of compactness properties for families of qc mappings with a uniform bound on
dilation and on techniques from geometric function theory to establish uniqueness. The finite distor-
tion problem relies on techniques from direct methods of calculus of variations, in which the study of
the functional itself, rather than its Euler-Lagrange equations, is used. This approach is only natural
as the extremal problem is posed in the class of qc mappings, and so there should be no additional
hypothesis concerning second order derivatives. With this approach, however, there is so little regu-
larity that finding information about the structure of extremal mappings (let alone the uniqueness)

1 Roughly speaking, a planar qc mapping f is Teichmiiller if there exist local conformal transformations ¢, ¥ such that
¢o foy~!is affine and ¢ and ¥ give rise to well-defined quadratic differentials.

2 The dilation Ky = 2214211,
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has proven intractable thus far. In particular, there is a huge gap between the findings in the two
dimensional setting vs. the higher dimensional theory.

In the present work we propose an approach to the extremal problem that is motivated by two
classic papers: One by Ahlfors [2] in which an LP approximation of the L distortion is used to solve
the extremal problem in the setting of Riemann surfaces. The other is by Aronsson [6] (see also [7]),
where he assumes the extra hypothesis of C? regularity and carries out his program to determine the
structure of absolute minimizing Lipschitz extensions.

The extremal problem for qc mappings is an L°° variational problem that can be rephrased as fol-
lows: Given the boundary restriction ug: 82 — R" of a C1(£2, R") qc mapping, find the qc extensions
of up to £2 with minimal trace dilation. From this viewpoint the problem has a superficial similarity
to the problem of finding and studying minimal Lipschitz extensions u € Lip(§2) for scalar-valued func-
tions ug € Lip(I") to a neighborhood I" C £2 in such a way that Lip(u, £2) = Lip(ug, I").3 The existence
of minimal Lipschitz extensions was settled in 1934 by McShane (see also [16] for a more recent
outlook of the problem), but simple examples show that uniqueness fails. In 1967, Aronsson showed
that if the extremal condition is suitably localized to absolute minimal Lipschitz extension (AMLE), i.e.,
u € Lip(£2) is AMLE with respect to ug € Lip(3§2) if Lip(u, V) = Lip(u, dV) for all V C £2, then a C2
function u is AMLE if and only if it solves the co-Laplacian

ujuju;j =0 in£2. (1.2)

In essence, this PDE tells us that |[Vu| is constant along the flow lines of Vu. Aronsson also discovered
several links between the geometry of the flow lines and the regularity and rigidity properties for co-
harmonic functions in planar regions. In the 1960’s, solutions of (1.2) could only be meaningfully
defined as C% smooth. In the 1980’s, however, a number of authors (see for instance [15,26]) devel-
oped the theory of viscosity solutions, leading to Jensen’s uniqueness theorem for AMLE and for the
Dirichlet problem for the co-Laplacian. Recent, exciting extensions of Aronsson’s work to the vector-
valued case provide further links with qc extremal problems (see Sheffield and Smart’s preprint [37])
but, as the theory of viscosity solutions has no vector-valued counterpart, the standing C2 hypothesis
is present even in these very recent developments.

The similarities with the AMLE theory prompted us to study a local form of the classical extremality
condition, in which the qc mapping is required to have minimum dilation in every subset of the
domain with respect to competitors having the same boundary values on that subset. Our goal is to
find an operator that plays an analogous role to that of the oo-Laplacian in the characterization of
extremals and would provide a platform for the qualitative study of these mappings. The non-linear
relation between the dilation of a diffeomorphism and the dilation of its trace on a hypersurface
introduces further complications in our work.

In order to be more specific about our results we need to introduce some basic definitions: If ¢ is
an n x n matrix of C! functions, then the Ahlfors operator S(¢) is given by

LS|
sy =210 @) (13)

(see [3,304]). If u: 22 — £’ is a C1(2) orientation preserving diffeomorphism then it is quasicon-
formal and detdu > € > 0. For such a mapping we define the normalized pull back of the Euclidean
metric under u~! as the Riemannian metric g!. In coordinates, the metric is expressed by the ma-
trix?

[uCo—u@y)|

[x=y1
—1 -1
4 This metric has the following property: for all V, W e TyR" we observe that (V, W)ty = du” Vdu Wik pepce

(detdu—T)2/n
(de':du)z/n (V, W)y

3 We have set Lip(u, £2) = supy ycq. xzy

u:(82,dx*) — (u(£2),g~") is a conformal map in the sense that (duV,duW>g71 =
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(2. (1.4)

du—1Tdy~1 duk_.]du,_-]
B B _ i Ji
63" 000) = Gz o), = G

The inverse

(duduT)ij dujrdu ji

&= (detdu)2/n — (detdu)2/n”

In [25] the metric g is called the distortion tensor. As in the work of Ahlfors [2] we consider LP
approximations

inf / K (x) dx
22

of the L variational problem (these approximations have been studied in depth in [10]). Let
2 C R" be a bounded open set. An orientation preserving QC mapping u:$2 — R" is p-extremal
if |Kyllrr2) < IKyliLp(p) for all orientation preserving QC mappings v:£2 — R" with u =v on 92.
It is straightforward to derive Euler-Lagrange equations for the LP variational problem: Every orienta-
tion preserving p-extremal diffeomorphism u = (u!, ..., u") € C2(§2,R") satisfies the fully non-linear
system of PDE

(Lpw) =npd;[KiP 2 (S(g)du="T), ] =npd; [KiP S (g)nidu’*] =

in §2, fori=1,...,n. Here (du)Y denotes the ij entry of du—', gii is defined by (1.4) and S(g) by (1.3).
For C2 smooth mappings with non-singular Jacobian, the operator Ly can be expressed in the non-
divergence form (Lpu)‘ A”‘ (du)u . The quasi-convexity of the LP variational functional [25] implies
that the system satisfies the Legendre—Hadamard ellipticity conditions (see Lemma 3.1). Motivated by
the work of Aronsson, we consider the formal limit as p — oo of the PDE Lyu =0 and obtain

n |du|4

(Loout) = (S(gydu="T), j0xKu =0, (1.5)

Ll

or equivalently S(g)VK, =0, where g = see Section 4 below). This PDE tells us that the

oot (
trace dilation K, is constant along the flow lines of the rows of the matrix S(g)du—"T (and their
linear combinations with C! coefficients). Since the derivation of (1.5) is formal, a priori there need
not be any link between solutions of this PDE and the extremal problem for qc mappings. However,
such links exist and are addressed by the main results of the present paper.

Theorem 1.1. Let £2 C R" be an open set. If u € C2(£2, R") is an orientation preserving diffeomorphism
solution of Loou = 0 in 2, then for any bounded sub-domain D C §2,

K(u, D) < supK,.
oD
Moreover, ifn > 3 and Ky has a strict maximum on 3D in the sense that K, (z) < sup,p K, for z € D, then
n-1

K(u, D) =supK, < +/n(n—1)" o supKu D> (1.6)
aD

where Ky 5p denotes the dilation of the trace of u on 3D (see Definition 6.1).
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Corollary 1.2. Given the hypothesis of the previous theorem,
(1) if mingey Ky (%) > +/n, then

min K, (x) = min K, (x);
xef2 X€082

(2) if Ky is constant with Ky, > «/n on 952 then Ky, is constant in £2. Moreover, if n = 2 and u is affine and is
not conformal on 352, then u is an affine map.

Theorem 1.3. [fu € C 2(2,RHn C 1(£2,RM) is an orientation preserving diffeomorphism, such that for every
Dcfandve (_'Z(D, R™) N (D, R") orientation preserving diffeomorphism with u = v on 8D we have
K(u, D) <K(v, D) then Loou =0in £2. Ifn > 3 and for every D C £2,

1

K(u, D) <n~ 7 sngpKu’%aD, (1.7)

then Loou =0in $2.

Corollary 1.4. Let u, v € C*(D,R™) N C' (D, R") be orientation preserving diffeomorphisms, such that u = v
on dD. If Lot = Loov =0in D then K(u, D) = K(v, D).

These results echo some of the n =2 theory, in particular the maximum principle for the dilation
in Theorem 1.1 recalls Hamilton’s result [24, Corollary 2]. The fact that the dilation is constant along
flow lines of a conformally invariant set of vectors recalls the analogous planar result about dilation
being constant along the image of lines under the action of the conformal mappings associated to the
quadratic differentials of Teichmiiller mappings (see [38, p. 175] for a more detailed description).

Remark 1.5. Theorem 1.1 and (6.1) tell us that if Locu =0 in 2 C R", n > 3, then for every D C 2
for which K, has a strict maximum on 9D, u is a quasi-minimizer for the extremal problem for the
trace dilation in D. In fact, if v € C2(D,R") N C'(D,R") orientation preserving diffeomorphism with
u=vonaD,

_ n— n—1 n— n—1 n— _
K(u, D) < v/ —1)""% supK,", = van —1)"7 supK,%, < /am—1)""= nmK(v, D).
aD ’ aD ’

On the other hand, Theorem 1.3 tells us that those diffeomorphisms that are minimizers for the ex-
tremal problem for the trace dilation on every subset D C §2 are also solutions of Lo,u = 0. This lack
of symmetry in our result follows from the fact that the constants in (1.6) and (1.7) are different.
While the constant in (1.6) seems to be sharp, we are confident that is possible to improve on the
constant in (1.7) and conjecture: Ifu € C2(£2, R") then the condition Lot = 0 in £2 is equivalent to mini-
mizing the dilation K(u, D) < K(v, D), on any subset D € §2, among competitors v € C2(D, R")NCY(D, R")
withv =uon dD.

Remark 1.6. In [12], Barron, Jensen and Wang study L*° extremal problems for a large class of
quasi-convex functionals. They show that the corresponding Aronsson-Euler equation is a necessary
condition for C? absolute extremals. The main difference between that result and Theorem 1.3 is that
in the present paper extremality is defined in terms of the class of competitors formed by all QC
mappings with fixed boundary values, while the extremal problem in [12] is defined in terms of the
class of competitors formed by all Lipschitz mappings with fixed boundary values, without homeo-
morphism hypothesis.
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A large class of solutions of Loou =0 is provided by observing that (in any dimension) the set of
€2 solutions of Leou = 0 is invariant by transformations ii = Fou and v =u o F with F conformal. In
particular, all the smooth explicit extremal QC mappings (that we are aware of) have constant trace
dilation and hence satisfy the PDE (1.5).

Corollary 1.7.

(1) Any Teichmiiller map of the form u := v o v o ¢~ with v, ¢ conformal and v affine is a solution of
Loou =0.

(2) The QC mappings u(x) = |x|*~'x for > 0 solve Loou = 0 away from the origin.

(3) Let 0 < o < 27 and (r, 6, z) be cylindrical coordinates for x = (x1, ..., X) Where x; =1cosf, xy =
rsiné and x; = zj, 3 < j < n. The QC mapping

9 (r,mo/u, 2), 0<f0<a, 18
u(r,6,2) = rm+rn2%.2), a<6<2m, (18)

solves Loou = 0 away from the setr = 0.

The proofs of Theorems 1.1 and 1.3 rest on the analysis of the flow lines of the rows of the distor-
tion tensor S(g) and the geometric interpretation of Lo,u = 0. We show that if u is not conformal on
the boundary then these flow lines fill (row by row) the open set.

The smoothness assumptions we make here are not natural for the problem, as they do not guar-
antee the necessary compactness properties that we need to prove existence of extremals. However,
in the spirit of Aronsson’s work on C2 AMLE, it is plausible that the study of C2 mappings can yield
a measure of intuition for the general setting.

We observe that in the proof of the first part of Theorem 1.1, the smoothness hypothesis can be
decreased to WP for p sufficiently high, using the work of DiPerna and Lions [17] (see also [5])
on solutions of ODE with rough coefficients. In fact, we can rephrase the PDE (1.5) in the following
terms: A QC mapping u:$2 — 2’ is a weak solution of Loou = 0 in §2 if the trace of the corresponding
distortion tensor g is constant along flow lines of linear combinations of the rows of S(g). In this formulation,
the components of du need only be in a suitable Sobolev space or in BV. At present we are unable
to decrease the smoothness hypothesis to the natural category of QC mappings and still obtain the
maximum principle.

Although currently we do not know how to prove existence of solutions of Loou =0 or how to
attack the extremal problems for a fixed homotopy class of qc mappings, we would like to point out
a possible strategy for a proof involving solutions of a gradient flow up(x,t) for the LP norm of the
dilation. If one were able to derive long term existence and suitably “good” estimates for such flow
then the asymptotic mapping il (x) = lim;_, o, up(x,t) would be a candidate for the LP minimization
problem within the homotopy class of the initial data. The solution to the L° problem then could be
achieved by establishing estimates on u independent of p and letting p — oc.

The initial value problem we need to control is the following:

{E)tup—Lpup=O inQ, (19)
Up=u on dper Q,

where Q =82 x (0, T) and 9pqr§2 = §2 x {0} U 352 x (0, T). We prove the following

Proposition 1.8. Let ug : 2 — R" be a C%¢ diffeomorphism, for some 0 < o < 1 with detdug > € > 0 in £2.
Assume the compatibility condition

Al (duo)d;oug =0,

forallxe 02 andi=1,...,n holds.
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For every [ € (0, o) there exist positive constants C > 0 depending on p, n, £2, €, |luollcr.e gy, and T > 0
depending on p,n, £2, €, ||uollc2.¢ (&) and a diffeomorphism u € C%1(Q) solving (1.9) such that

lullcz.eqy + 0ctllcon gy < Clluollcze (g, (1.10)

detdu}% forall (x,t) € Q. (1.11)

We remark that although flows of qc mappings have been studied and used several times in the lit-
erature, see for instance [3,30,4,14,33], this is the first instance of a gradient flow used in this context.
Study of this flow may also contribute to a better understanding of the well-posedness and long-time
behavior of initial value problems related to gradient flows of quasi-convex (and non-convex) func-
tionals (see [18]).

2. Preliminaries
A map F:R" — R" is conformal if at every point
dFTdF = Aly,

for some scalar function A. Liouville’s theorem states that if n > 2 then 1-quasiconformal mappings
are conformal and that the only conformal mappings are compositions of rotations, dilations, and the
inversion x — x/|x|2. If n = 2, then orientation preserving conformal mappings are biholomorphisms
(and vice versa). A simple computation shows that the conformal factor is given by A = |dF|?>/n and
detdF = +/A". We now list some equivalent formulations of conformality.

Lemma 2.1. Let F : R" — R" be a diffeomorphism. The following are equivalent:

F is conformal,
KFr = /n identically;

)
)

c) the expression (dF)¥ —n
) S

dFdFT | _
(@) S(Getaryom) =0

(dF);j
|dF|2

(a
(b
(

vanishes identically;

(du)u

e = 0 is a restatement

Note that if n =2 and u is holomorphic with du/dz + 0, then (du)i’ —
of the Cauchy-Riemann equations.

The action of conformal mappings on S, K, and g follows immediately from the definitions.

Lemma 2.2. Let u:R" — R" be a diffeomorphism and F be an orientation preserving conformal mapping
with conformal factor A. If we set il = F o u and denote by K and g the corresponding dilation and distortion
tensor, then

(a) K:K

(b) g= 1ngdFT

() S(@) =A""dFS(g)dFT;

(d) @i~HT —niy = —nK,2@FH)~S(g)du™H.

In a similar fashion we will be interested in compositions with conformal mappings from the right,
i.e, i =uoF, for which we can show:

Lemma 2.3. Let u: R" — R" be a diffeomorphism and F be an orientation preserving conformal mapping. If
we set il = u o F and denote by K and g the corresponding dilation and distortion tensor, then
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g S(g)

di~)T —n iy = —nK;2S(g)(duHT@F) .

3. The Euler-Lagrange system

Let 2 C R" be a bounded, smooth, open set and u:£ — R" a smooth, orientation preserving
diffeomorphism with 0 < detdu < oo. For 1 < p < oo, we define, whenever the expression is finite,

1 n
Fou, 2)=— | KPdx.
Pt $2) |sz|/ !
Q
For any ¢ € C3°(£2, R"™) we set h(s) := F(u + sy, £2) and compute

d
gh(s)

1 .
=12 /“P(detdu)‘pldul”"‘zdu -dyr — p(detdu)~P~19;y (cofdu);;|du ™ dx
s=0
2

1 |du ™ nldu|®-2 .\
—— [ o =2 (cofduy;; — M5 )yid 31
|9|p/ ]<(detdu)P+1(co Wi = Tdecqup OV )V (1)
2

where cofdu denotes the cofactor matrix of du, so that (cofdu)”du = detdul. Define the operator Ly
on R"-valued functions by

(Lpu)' = —pd; ([(du)ji —n (du);j ] M)

|du|? | (detdu)P
_ o (auls _nduduT |du|™P
=PI " dul? | (detdu) ) ;
=npd;[KiP * (du~"S(2)) ;] = npd; [Ki S (@)uidu’'], (3.2)

where dul/ denotes the ij entry of the inverse of du, and I, is the n x n identity matrix, and K, is

defined in (1.1), g by (1.4) and S(g) by (1.3). Note that the equality of the first and third expressions
in (3.2) uses

(du")" - ”;—up = —nK;25(g)(du")". (33)

We write (Lpu)i = 8jA3(du) where

Alq) = —p[q“ - nqi} 4l

lq|? | (detq)P

is defined for any non-singular n x n matrix q. Notice that AL (q)q,j = 0. Set A (@) = qu[A'(q)
Recalling that

dgy, (cof q)ij = cof qeq’’ — cofgieq™® and 8y, q'" = —q“ig’*,
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we compute

np—2

p qijqke
(detq)?

A (@) =~
It lqf?

—191%(q" ™ + pg*q’') — ndio j€j|-
(3.4)

[np (akeq” + qijq™) — n(np — 2)

For C2 smooth maps with non-singular Jacobian, the operator L, can be expressed in non-divergence
form:

(Lpu)' = A% (duyu¥,. (3.5)

We remark that, in this form, the operator satisfies a Legendre-Hadamard ellipticity condition.
This result can be inferred by observing that the functional F,(u, £2) is quasi-convex (it is actually
polyconvex, this is proved in [25, Corollary 8.8.1]), and consequently, given sufficient smoothness,
satisfies Legendre-Hadamard conditions. As we need explicit expressions for the constants involved,
we provide the following estimates, whose elementary proof we omit.

Lemma3.1.Forn>3and p > 1orn > 2and p > 1 and for all non-singular matrices q and vectors &, 1 € R",
we have

g™ _ ;
ZW < AR @mgmEt < Camp?nl* (&2

|q|np—2 |q|n(p+2)—2
C1(n, p)pInl?I| , (36)

(detq)?  (detq)Pt2

where we can choose Ci(n,p) =nforn>4and p > 1and forn >3 and p > 1; C1(n, p) = Gppr ifn=3

and p > 1and C1(n,p) = Zﬁ—ﬂ forn=2 and p > 1. The constant C,(n) does not depend on p and can be

chosen to be Co(n) = 100n3.

Remark 3.2. The operator L, does not satisfy the stronger ellipticity condition Al > A%mmkl >
Al

As the dilation functional is invariant under the action of conformal mappings (i.e., Fp(u, £2) =
Fp(F(u), £2) for all conformal mappings F :R" — R" that map §2 into itself), we can expect a corre-
sponding invariance for the solutions of Lyu =0.

Proposition 3.3. Let u : 2 — R" be an orientation preserving diffeomorphism.
(i) If F:R" — R" is a conformal map and @i = F (u), then
7o\ -1 1T i
(Lpi)' = ([dF~'],] Lyu),

where

(Lyi) = —po;(di~t|1 ndadﬂT dul™
i) =P "R | & detdig )

with the sign in the denominator being +1 if F is orientation preserving and —1 otherwise.
(ii) If F: £2 — £2 a composition of dilations, translations, and the inversion x — x/|x|%, then v = u o F satis-

fies

(Lpv)' = (Lpw)'| .
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Remark 3.4. Case (i) holds for all conformal mappings, including in n = 2 all invertible holomor-
phic and anti-holomorphic functions. In contrast, case (ii) only applies to the given set of conformal
transformations, as in the plane it fails to hold except for linear invertible holomorphic and anti-
holomorphic functions.

4. The Aronsson-Euler-Lagrange system and the operator L,
In this section we assume that for each p > 1 we have a solution up of the PDE
Lyup=0 ing, (4.1)
and that up — Uy in €2 norm on subcompacts of £2. Our goal is to formally derive a system of PDE
for uge.

Observe that 9j|du|™ = np|du|”P*2u2§u’lfj and 3j|detdu| P~ = —(p + 1) detdu|*P*2(cofdu)kzulzj.
Using the fact that 9j(cofdu);; =0 for i=1,...,n, we compute

; |du|P—4 |du|?
(Lpu)' =—p

k . i
|detdu|P np detdu (”z(COde)z] + uj(cofdu)k[)

|du|?
detdu

2
—(p+ 1)( > (cof du)ge(cofdu)ij —n(np — 2)uﬂ§u‘j - n|du|26gj5,-k}u§j (4.2)
foralli=1,...,n.

Dividing the expression above by p
converges to

2 |du|"P—4

(detdu)? and letting p — oo, we obtain that Eq. (4.1) formally

Looloo =0,
where

2
|du|

Lot = —|n du |du|?
conl T detdu detdu

= (ndujj — |du|*du’") (nduye — |dul>du®®)d;dug,. (4.3)

2
) (cofdu)ij(cofdu)y, — nzugu’lf] u’lfj

((cofdu)iju’lf + (COdel)kgus-) — <
Observe that the system does not satisfy the Legendre-Hadamard conditions.

Proposition 4.1.

(1) Let u(x) = |x|*"'x where o € R and a # 0. Then
Loou(x) =0

and

np
n+o?—-1\?2n@®-1Hn-1 x
o2

n+a?—-Da |xe+!’

Lpu(x) = —(

away from the origin.
(2) Ifu(r, 6, z) is defined by (1.8) from Corollary 1.7, then Loou = 0 in the set r # 0.
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Proof. For (1), direct computation yields Ky (x)? = % for all x+#0 and

2
ac—1/xx; 8
S5(8ij = 2/n <|X|2 )

The proof follows from these identities and from the definition of Lo, and L.
For (2), for the case 0 < 6 < &, we have detdu = 7/ and |du|? = (n — 1) + 72 /«?. The computa-
tion in the o <6 < 27 case is similar. O

Note that u(x) = |x|*~!x is conformal exactly when o = +1, the only cases for which Lyu=0.
5. Extremal mappings and the equation L,u =0
In this section we establish some analogues of Aronsson’s results in [6, Section 3].

Lemma 5.1. If u € C2(£2, R"), then

. n?|dul*
(Loolt)' = ]|K3| (S(g)du—1~T)Uaiju. (5.1)

u

Proof. Observe that

1/ duj i
aqinu:—<n i —duﬂ)Ku:Kljl(S(g)du’l’T) (5.2)

n\ |dul? ij
and 9Ky = (quKKu)u’]‘.l. The result follows quickly from (3.3) and (4.3). O

The following proposition on conformal invariance of solutions of Lou follows immediately from
combining previous lemma with Lemmas 2.2 and 2.3.

Proposition 5.2. The set of C2 solutions of Loout = 0 is invariant by transformations i = Fouandv=uo F
with F conformal.

Corollary 5.3. In the plane any Teichmiiller map of the form u := vy o v o ¢~ ! with v, ¢ conformal and v
affine is a solution of Loou = 0.

Lemma 5.4. If K, = Ko > /1, then there exists € = € (Kg) > 0 so that
2 4 1
€§|5(g)| <K 1—5 .

Proof. Let 0 < A1 <--- < Ap be the eigenvalues of g. We can write S(g) =g — ”Tgl and Kﬁ =tr(g).
Direct computation yields

trg 12 1
|S(g)]2 = tr<|:g - %I] > =tr(g?) - " tr(g)?.

Note that the upper bound for |S(g)|? is now immediate.
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We now prove the lower bound. Note that the n-tuple of positive numbers (i1, ..., Aq) satisfies
A---Ap=1and K2 =A1 +---+ A, >n with equality if and only if Ay =--- =2, =1. Set A=K2/n=
LT(a+ -+ 1p). since tr(g?) = Y1 A2, it follows that

n n n

i _ _ 1
§ ] (hi— 0% = Z] 22— 2% -21 2i+ni? =tr(g?) — Htr(g)2 =|s@)|*.
1= 1= 1=

We now claim that for § > 0, there exists € = €(5) so that whenever Kﬁ/n =Xx>1+46 then > —
M2 ze.

To prove the claim, we argue by contradiction. Assume that there exists §o > 0 such that for each
k € N we can find positive A¥ as in the hypothesis with 2 — 1> § > 0 and

PRCEPYRE

(5.3)

= o=

If XX is a bounded sequence then so are A{.‘ (as kg‘ > 0), hence for an appropriate subsequence
we may assume that A¥ — A >1+ 8o and Ak — %; as k — oo. As Ak ...k =1 for all k, it follows
that A1---A; =1 and A; > 0. From (5.3) we conclude that A; =X and 1=A1---A, = A" > (1 + 8o)",
a contradiction.

If 2X is an unbounded sequence then for each M > 0 there exists £ = £3; > 0 such that A¢ > M.
On the other hand, in view of (5.3) we have Af > M/2 and consequently 1=A1%..-1{ > (M/2)",
a contradiction. O

Remark 5.5. When n = 2, we can find an explicit lower bound. In this case, A1Ay =1 and
1@ =22 422 — 200 42202 = 200 4427 — 20ha = S(KE — 4
O =4 +22 - 501 +22)" =50 +22) 12—2(u )-

We are now ready to study the relation between C? extremal quasiconformal mappings and the
operator L.

Proposition 5.6. Let 2 C R" be an open set. If u € C%(£2, R™) is an orientation preserving diffeomorphism
solution of Loou = 0 in §2 then for any bounded sub-domain D C $2,

supKy <supK,.
D aD

Proof. Let u = supyp K, and assume that there exists po € D such that K,(pg) = ko > u > /1.
Since u € C? and detdu > € >0, S(g)(du~")" is Lipschitz in D. Consequently, for each po € D and
i=1,...,n there exists a unique trajectory y;(s) defined for s € I C R through py satisfying %yﬂ (s) =
[S(g)(du=HT1ij(yi(s)) for j=1,...,n. Using (5.1) and the fact that Locu =0, we have

d d ;
(i) = 2 O Ku(r/9) = S@)(du™") 0 Ku (v (5)) =0,

SO
Ky (Vi (5)) =Ky (po)

for all sel and all i=1,...,n. If a curve y; terminates at a point p inside D, then at p there
must exist another flow curve y; that flows out of it. In fact, not all y; can have vanishing speed
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simultaneously at a point inside D. Arguing by contradiction, if this were to happen then we would
have S(g) =0 at the end point. This would yield K, = 4/n at the end point, while K (y;(s)) =
ko > +/n, a contradiction. We choose i so that

sup|S(2)ij(¥i(s))| = Ca|S(8)] > O,
J

for Cp > niz
The argument yields a piecewise C! curve y inside D, passing through po with Ky (y(s)) = ko
with

d _I\T
LV’ O=[s@@™) ];(re)
for some index i=1,...,n and

sup|S(8)ij (¥ ()| = Ca|S(g)] (5.4)
J

for all s € I. There are two alternatives: (i) the curve y has finite length and so touches the boundary
aD in two points P, Q € D; (ii) the curve y does not touch dD and so has infinite length.

In (i), it follows that K, (P) =ko > sup,p K, > K, (P), a contradiction that kg > .

We need to exclude the second alternative. For simplicity we assume that the composition of flow
lines is actually one single flow line, the general case is proved in the same way. For eachi=1,...,n,
we have

t

. i d .
wWGD—wmw=/ay%w9ws

0

t
(forsomel=1,...,n) :/[S(g)(du‘l)T]U(y(s))duU(y(s)) ds
0

t

= / S(i(y(s))ds. (5.5)

0

Consequently, for some 0 < t; <t,

..........

and by (5.4), we conclude

sup |u'(y(6) — u'(po)| = CalS(@)| (¥ (D)t

i=1,...,n

Since |S(g)| is bounded from below by Lemma 5.4, |u(y(t)) — u(po)| has at least linear growth.
Consequently, if y has infinite length, then u(D) would have to be unbounded, whereas since D is
bounded so is u(D). O

We can now prove Corollary 1.2.
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Proof of Corollary 1.2. Using the argument from the previous proof, we have that the set of points
x € 2 with K,(x) > +/n can be covered by compositions of flow lines of the rows of S(g)(du~1)T
with K, constant along these curves. We have shown that if Ky > +/n on such a curve then it must
reach the boundary 9£2. To prove (1) we observe that for any € > 0 such that K, > /n+ € on 9£2,
if xg € {x € 2 | Ku(x) € (/n,/n + €)} then there exists a composition of flow lines passing through
xo which must reach the boundary and hence contradict the hypothesis K, > /n + ¢ on 3£2. As
for (2), we observe that by virtue of (1) every point in £2 can be connected to the boundary with a
composition of flow lines along which K, is constant, thus concluding the proof. O

Remark 5.7. Arguing as in the proof of (5.1), we can show that for each i =1,...,n, if we let
y:[0,€) — £2 be a flow line of the i-th row of S(g)du~!T, then for any j=1,...,nand 0 <t <€
we have

duij(y () — duyj(y (0)) = SUj

O\a..,
Q.|Q_

ul(y(s))d /V"ujk y(s))d
0

(S(@du™"T), ul (y(9)ds = | KudyKu(y(s))ds
J

o

This formula allows us to recover the differential of u from the dilation and the flow lines of the
distortion tensor. In particular, if K, is constant in £2 then the rows of du are constant along the flow
lines of the corresponding rows of S(g)du~1T.

The previous remark yields:

Proposition 5.8. In the hypothesis of the previous theorem, if 2 C R? and du (and hence K,) is constant
in 052, with K, > </n on 052, then du is constant in §2 and hence u is affine.

Proof. The remark above implies that if K, is constant then the rows of du are constant along the
flow lines of the corresponding rows of S(g)du~'T. It suffices then to show that for every point
po € 2 we can find flow lines of both rows of S(g)du~!:T passing through that point and touching the
boundary 942. To establish this fact we recall that |S(g)| > 0 in £2 and that, since we are in the planar
case, both rows of S(g) cannot vanish unless they vanish simultaneously, which is impossible. Since
du is invertible the rows of S(g)du—"T cannot vanish at any point in §2. Repeating the argument in
the proof of Theorem 1.1 we see that the flow lines of the two rows of S(g)du~!T through po cannot
end in £2, nor can they continue for an infinite time, hence they must reach the boundary in a finite
time. O

Remark 5.9. If n =2 and Ky > +/n on 942 then Lou = 0 actually implies that K, is constant along
any path in £2. Hence, in the plane there will be no C2(§2, R?) N C1(£2,R?) solutions of Lot =0 in
2 unless Ky |y = const.

We conclude this section with the proof of the fact that the equation Lo,u = 0 for a C2 qc mapping
follows from the property that u locally minimizes dilation in subsets D C §2, among competitors with
the same dilation on 9D.

Proposition 5.10. Let u e_CZ(Q,]R”) be an orientation preserving diffeomorphism which does not solve
Loout = 0 in a closed ball D C 2. There exists v € C2(D,R™) orientation preserving diffeomorphism with
u=v on dD such that K(v, D) < K(u, D).
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Proof. Let u € C%(£2,R") be an orientation preserving diffeomorphism which does not solve Loou =0
in a closed ball D C £2. In view of the conformal invariance of the PDE we can assume without loss
of generality that D = B(0, 1). Let E = {x € D | K(u, D) = K, (x)}. Since V4K, =0 at any interior point
x € E, we must have E ¢ 3D and consequently K(u, D) = sup{Ky(x) | x € 82}. If 7i denotes the outer
unit normal at x to 8D, then the latter yields that VyK,(x) = an for some « > 0 at each x € E. The
identity (5.1) then implies

S(g)du~tTi £0. (5.6)

For » € R and x € C2(D,R"), vanishing on 8D, we define u; (x) = u(x) + A (x). Using (5.2) and a
Taylor expansion of Ky, in A, we have that

Ku, =Ky + g, Kudxij + 0 (3%) = Ku + 2K, ' (S(@)du™"T) jdxij + 0 (37). (5.7)

We claim that given u satisfying (5.6), we can find a mapping x € C%(D,R"), vanishing on 3D, such
that the coefficient of A in (5.7) is strictly negative in a neighborhood U of E, for small values of A.
This fact would allow us to conclude the proof of the proposition. Indeed, for x € U N D and small
values of A, we would have K, <Ky <K(u, D). On the other hand, for x € D \ U, there would exist
€ > 0 such that K, < K(u, D) — €, thus yielding that Ky, < K(u, D) — € + CA < K(u, D) for small
values of A and C =C(lull¢c1, I x llc2, D). Given such inequalities we would then conclude that v =u,
is a qc diffeomorphism with the same boundary data as u and strictly smaller dilation K(u;, D) <
K, D).
To find x, observe that if p € E then as a consequence of (5.6) there exists v € R" such that

(S(g)du="Tn,v)>0 (5.8)

in a neighborhood B(p, ). Since we can cover E with a finite set of such neighborhoods, we obtain
vectors Vi, ..., vk € R* for which (5.8) holds in B(pg,r) and such that E C U;‘:] B(p;, ). For each
I=1,...,k let ¢;:S"1 - R be a positive smooth function such that ¢ = 0 outside B(p;,r) N S 1.
We set

k
X0 =(1- |x|2)[2¢,(%)m}. (5.9)
=1

Clearly this mapping vanishes on dD and it can be easily modified near the origin to yield a smooth
mapping in D. Observe that at every point in S"~1,

k
dy = —2(26,@) .
=1

Substituting the latter in (5.7) we obtain that for every point in dD,

Ky, =Ky — 22K (S(g)du—”),.jﬁjvl,,-@ +0(»%)

k
=Ky — 22K, 'Y (S(e)du™"Ti, Vi) + 0 (32). (5.10)
=1
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In view of (5.8) and the choices of ¢; and V,, it follows that for all x in a neighborhood E N B(p;, 1) C
B(p;,r) NaD and A sufficiently small, the coefficient of A is strictly negative as

k
—2K, ' > (S(g)du~"Tii, )¢ < 0.
=1

Thus, the strict inequality K, <K holds, whereas elsewhere in 9D \ U;‘Zl B(p;,r) we have equal-
ity. O

6. Dilation of traces of diffeomorphisms

Throughout this section £2 C R" is an open set, n >3, u € C2(£2,R") is an orientation preserving
diffeomorphism, M C £2 and M’ = u(M) are closed, C! hypersurfaces endowed with metrics induced
by the Euclidean metric. For x € M, we denote by eq,...,e;—1 an orthonormal basis of TxM and by
W1, ..., Wy_1 an orthonormal basis of Ty M’. We let ii be a unit normal field to M and wq be the
unit normal field to M’ such that (duii, wg) > 0. We denote by

U=ulum
the trace of u on M. For each x € M consider the (n — 1) x (n — 1) matrix d"Ux) = (djj) with
dij = (due;, wj)2.
Definition 6.1. The tangential dilation of U = u|y at a point x € M is given by
ldMU|

Kym®) = ——"—7.
[detdMU]7=T

If veCl(£2,R") is an orientation preserving diffeomorphism with u =v on M then Kum=Ky,um
on M. The following lemma is probably well known but we give a short proof as we did not find it
in the literature.

Lemma 6.2. For every x € M, the dilation

- - 2

2 |dud|? (dufi, wo) i

KE y <niTKy ' — -
[detdu]n-T

(6.1)

Proof. We consider the two orthonormal frames of R" given by
{n.e1,....en1} and {wo,wr,..., Wy 1}

and observe that in these frames du(x), x € M, can be represented as a block matrix

_ ((duii,wg) O
du_((duﬁ,wi) dMU>'

Consequently,
du|? = ]dMU|2 + |duiif*> and detdu = (dufi, wo)detdU.

The estimate (6.1) then follows from the latter and from recalling (duii, wo) < +/nldul. O
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Lemma 6.2 and Proposition 5.10 immediately yield

Proposition 6.3. If u € C2(£2, R") is an orientation preserving diffeomorphism that does not solve Loou = 0
inaball D C £2 then

n—-1

n- 7 supKu ap < K(u, D).

Theorem 1.3 now follows from Propositions 5.10 and 6.3.
We now turn to the final step in the proof of Theorem 1.1. In order to estimate the dilation of the
extension of u|y in terms of the tangential dilation we need more information about the extension.

Lemma 6.4. Let u be a solution of Loou = 0 in a neighborhood of M. If x € M satisfies VK, (x) # 0 and
1 || VK, (%), then

n—1_.2n 2
(—HDKU (X) = KU,M(X)' (62)
no-

Proof. We observe that Lo u =0 at x is equivalent to

| -
duTduii — = |du|?i =0, (6.3)
n
at x. In particular, 7 is an eigenvector of du”du(x) with eigenvalue |du|?/n. Representing du” du in the
orthonormal frame 7, eq, ..., en—1, with e; eigenvectors of du”du(x), tangent to M corresponding to
eigenvalues Al?, i=1,...,n—1, we have the diagonal matrix
2
e o ... 0
2
duTduxy=| @ * -~ O [, 6.4
0 o ... 0 (64)
0 0 ... A2,

We remark that du”du|r,y =d"UTdU, so that |[dMU|? = Y1~/ A2. From (6.4), we immediately ob-
tain

|du|? = trdu"du = |du| sz |du| +}dMU|

and
d 2
detdu? = det(du”du) = %(detd’wu)z.
To conclude, we have
dul? — ldul? 1 d 2n
K2 = "= - . Iduli1 %:<1——)n‘ﬁ—| ul —. O
' (detdu)n-1 n (detdu) -1

Remark 6.5. It is interesting to compare these conclusions with the example u(x) = [x|*"'x on
9B(0,1). In this case, Kﬁ = "’;27"‘"2 and Kﬁ,as(o,n =n — 1. Note that the proof above does not ap-
ply as VK, =0.
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Proof of Theorem 1.1. The first part of Theorem 1.1 is proven in Proposition 5.6. For the second state-
ment, observe that if x € 3D satisfies K(u, D) = sup,p Ky =Ky (x) then either VK, (x) =0 or it must
be normal to dD. If V4K, (x) =0, then the point x must be a local maximum of K; in £2. Conse-
quently, there must exist a continuum F through x on which K, is constant and with F N D #0,
otherwise x would be an isolated strict maximum point, an impossibility by the first part of Theo-
rem 1.1. However the existence of points in D for which K, = sup,p K, contradicts the hypothesis
Ky(z) < supyp Ky for ze D and hence VK, (x) # 0. The proof now follows immediately from Propo-
sition 5.6 and from (6.2). O

7. Quasiconformal gradient flows

For a fixed diffeomorphism ug: 2 — R", we want to study diffeomorphism solutions u(x, t) of the
initial value problem (1.9). If there is a T > 0 such that a solution u € C2(£2 x (0, T)) exists with
detdu > 0 in £2 x (0, T), then by the same computations as in (3.1),

d 1
Efp(u,.Q):—(ﬁ/Mpmzdx) <0,
2

meaning that the p-distortion is nonincreasing along the flow. Hence we obtain

Proposition 7.1. If u € C2(2 x [0, T),R") N C1(£2 x [0, T), R") is a solution of (1.9) with detdu > 0 in
2 x[0,T), thenforall 0 <t < T, [Kuy 155 ) = IKullPo () — fo ILptuC. )l 120 dt and consequently

IKyllzr @2 xity < 1Ky llr(s2)- (71)

By Lemmas 2.2 and 2.3, the functional F,(u, £2) is invariant by conformal deformation. There-
fore, if we let s — Fs:R"™ — R" be a one-parameter semi-group of conformal transformations, then
solutions to the PDE system

d
ofu = Lyu+ —Fg(u
¢ p +ds S()S=O

would also satisfy (7.1). Recall that the flow Fs is conformal if

dD+dDT 1
SdD) = % ~ -~ trace(dD)Ip =0

where D = (%Fs)h:o o FO_l = (%Fs)h:o and S denotes the Ahlfors operator. If n =2 then this
amounts to d;D = 0. If n > 3 there is more rigidity and conformality requires that

D(x)=a+ Bx+2(c-x)x — |X|2C

for any vectors a, ¢ and matrix B with S(B) =0 (see [31]).

We observe that in light of Proposition 3.3, if u(x, t) is a solution of (1.9) in £ x (0, T) and v(x,t) =
Su(ax, 8~2t) for some A, 8 > 0, then v(x,t) is still a solution with initial data vo(x) = dug(Ax) in an
appropriately scaled domain. Applying inversions in a suitable way will also yield new solutions from
u(x,t).
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7.1. Short-time existence from smooth initial diffeomorphisms

Throughout this section £2 ¢ R" is a bounded, C*>® smooth, open set.

Definition 7.2. Let 2 C R" be a smooth bounded domain and for T >0 let Q = £ x (0, T). The
parabolic boundary is defined by dp,Q = (£2 x {t = 0}) U (082 x (0, T)). The parabolic distance is
d((x,t), (y,s)) ;== max(|x — y|, /]t — s]). For « € (0, 1) we define the parabolic Hélder class C%%(Q) :=
{ueCQ,R) | llullce(q) :=ula + llullo < oo}, where

. [u(x, t) —u(y,s)|
[l = sup o
.0, (7,9€Q and (x,0(y,s) (X, 1), (¥,5))

and |ulo =supq |u|. For K € N we let cke@Q)y=w:0 > R| axil ~-~8X,.Ku e COx(Q)).

Proposition 7.3. Let ug : 2 — R" be a C2¥ diffeomorphism for some 0 < « < 1 with detdug > € > 0 in £2.
Assume that Lyug = 0 for all x € 952. There exist constants C, T > 0 depending on p, n, £2, €, luollcre gy,

and a sequence of diffeomorphisms {u"} in C2%(Q) with Q = £ x (0, T) so that

(a) detu > § forall (x,t) € Q,
(b) ||uh ”CZ.a(Q) + ||3[uh ”CO‘O‘(Q) < CHUO”CZ,U((Q),
deul’ — Al du=N9;0u* =0 inQ,

1 4

u" =up on dpqgrQ .

Proof. We prove the result by induction. We start with the base case h = 0. Since ug € C>%(£2), if

we set a?l’ik(x) = A;’f(duo(x)) then a?l’ik e C'%(2) and in view of Lemma 3.1, a?,’”‘ satisfies for all

&,neR"and xe 2

with h =0 and
[dup |2 |dup,|"(P+2)-2 (||du0||Lm(Q))”(P+2)—2
At =Comp? < C(mp? 73
2P ((detduh)p (detdup)P+2 2(mp €p+2 (7.3)
and
d np—2 C
M= ¢y, pyp ™ ) (74)

(detdup)? = Cpllduolli~(e)

with h =0 and Co = 1. We have also used the bound detq < n|q|".
Applying Lemma A.1 with Tg =1 we obtain a constant Co = Co(n, p, €, ||[dug||ce(2)) > 0 and a map
u' € C2%(Q) that solves (c) and satisfies

2(1-1/2 h h h
T/ (T / |ldu ”CO‘(Q) + u ”cZﬂ(Q) + [[oeu HCOﬂ(Q)) < Ch-tlluollcze () (7.5)
for h=1.
Next, the bound on T will be imposed to keep the determinant from vanishing. Set w = u! — ug
and observe that this map solves the equation
dwi — A;’f(duo)ajalw" = A;.’;(duo)ajalu(i) inQ, (76)
w=0 on aparQ
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fori=1,...,n. An application of the Schauder estimates (A.4) yields

_la
T~ 2 |ldwlice(q) < C(n, p. €, [duglice(@)) luollcza g)- (7.7)

Choose T1 < 1 sufficiently small depending only on n, p, «, [[duglice(e) and € = ming, detdug so that
ldwllce(q) < % Since the determinant has polynomial dependence on the coefficients, we have (a)
forh=1in Q1 = x (0, Ty).

Next we iterate this process to generate u”" from u"=1, h > 2, yielding estimates of the form (7.5)
in Qp = £ x (0, Ty) for some constants Cy, Ty > 0. The difficulty resides in controlling the constants
Cp and Ty independently of h. In the following lemma, we show how to (re)choose the constants
Cp=¢ and Ty =T uniformly in h € N and while keeping detdut! > €/2 in Q, = £2 x (0, T).

Lemma 7.4. Using the notation of Proposition 7.3, if there exist C, T > 0 with T < 1 such that
|du® — duo || ooy <€ and |ajau" | ce o) < Cliuolic2 ) (7.8)

forh=1,...,N—1and Q= 2 x [0, T], then there exist constants € = €(n, p, ||u0||c1,a(m) >0and T >
T=T(C,n, p, lluollcra(qy) > 0 that are independent of N and such that

[dul — duOHC"‘(Q) <e and ||8j81uN||Ca(Q) < €luollcaa(g)

inQ =4 x[0,%].

N N-1

Proof. We set wN =uyN —u and observe that wN satisfies

{ ewNt — A (duN=1); 9wk = [A% (duN=T) — Al (duN=2)]o;9uN "1k in Q, (79)

wN=0 on dpqr Q.

Applying the Schauder estimates (A.4) in the cylinder §2 x [0, ¥] with 0 < T < T to be chosen, we
obtain

”dWN ”CD‘(Q) <C(n,p.e, ”d”Nil ”C“(Q))I(]ia)/z [ [Az‘lf(d”Nil) - Ag'lf(d”Niz)]ajal”Nil’k”Ca(Q)'
The hypothesis (7.8) yields a bound on the Holder norm of the second derivatives
[9;0™ " ) < Cliuollc2a (),
and at the same time a strictly positive lower bound on detdu® > % forh=1,...,N—1in Q so that
law ™ cugqy < Cn P, €, [du™" | cu g )Clollcaar gy T2 [ AWM | g
< C(n, p, €, Iduolice())Clltollc2ay T2 [dwN ™ cu o) (7.10)

Choosing ¥ sufficiently small depending only on C, n, p and |uollc2«(p) and independent of the
index N, it follows that

HdWN ”C‘Y(Q) < QHdWI\F1 ”CD‘(Q)’
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where 6 € (0, 1). The latter yields

N
Hd“N —dug ”ca(Q) < ZHd”j —du’™! ”C‘X(Q) <
j=1

0

Hdu1
1-6

—duoHCa(Q).

We have proved the first part of the conclusion. To establish the estimate |\8j31uN||ca(Q) <
Cllugllcze (g it is now sufficient to apply Schauder estimates to (c¢) with h = N — 1 and ob-
serve that the ellipticity bounds on A and A are independent of N in light of the estimate
||dLlN —duoHCa(Q) <€ O

We now complete the proof of Proposition 7.3. Applying Lemma 7.4 to the case h = N = 2 yields
bounds

Hduh —du0||ca(Q) <e and ||aja,u” ”CD’(Q) < Cluollc2ag)

in Q =2 x [0, %], with T =T(C1|luollc2a(g) N, P,€) >0 and €= &, p, €, [uollcra(g)) > 0. As € is
a constant independent of Cq, we can eliminate the dependence on h by applying Lemma 7.4 again,
yielding

[dul — dug ”C“(Q) <e and |9;oun ||CQ(Q) < Clluollcza () (711)

for h=2in Q = £ x [0, T] with

T=T(¢,n,p, e uollcaaig) =T(n p. €, lluollca(g)) > 0.

At this point we proceed by induction on h: If (711) holds for h=1,...,N in Q = £ x [0, T] with
T =T, p.e, |uollcza(z) >0 and € =¢&(n, p, €, [ugllcra(g) > 0, then applying Lemma 7.4 at the
level of N+ 1 leads to (711) for h=N+1 in Q = £ x [0, T] with T and € as above; there is no
degeneracy of the constants. Finally, since ¥ is uniform in h, (b) follows from the Schauder estimate
(A.7). This concludes the proof of the proposition. O

The previous proposition and Arzela-Ascoli theorem yields Proposition 1.8.

Remark 7.5. The proof of the short-time existence is quite standard and uses only the Legendre-
Hadamard ellipticity rather than the specific structure of the non-linearity in the PDE. It seems
plausible to expect that techniques such as those in the paper [27] may also be used in our setting to
establish short-time existence for C1** initial data.

Note that the Schauder estimates in Appendix A yield uniqueness of a C># solution (for short
time) but nevertheless there still may exist rough solutions of the equations with the same initial
data [29].
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Appendix A. Existence and basic estimates for classical solutions of parabolic systems

We recall results of Schlag [32] and Misawa [28] concerning classical (i.e., two spatial and one time
derivative in C%) solutions of the system’

dw — Al Wk = f(x,t) inQ, (A1)
w=0 on dpgrQ

assuming that £ is a €% domain, Q = £2 x (0, T), A, f € C*(Q), the compatibility condition f =0
on 952 x {t =0} and an ellipticity assumption

MEPR < A DEIEF < AES, (A2)
for some A, A >0 and for all (x,t) € Q and & € R™",
Schlag proves that there exists a constant C = C(n, A, A, ||Allo.«, $2) > 0 such that if w € C>%(Q)
and 9w € C%2(Q) solves (A.1) then
(Wiile + Wele < C(Iwlo + [f1a)- (A3)
Misawa proved that such solutions exist and that the estimate can be slightly strengthened
Iwjillce(@) + IWellce @) + IVWIice (@) + IWlice @) < Cll fllceca)s

with a constant C > 0 depending on n, A, A, ||Al[ce(q), §2 and T.

We address the dependence of the constants in the Schauder estimates from the parameter T.
Since these estimates have a local character we expect the constant to blow up as T — oo and to be
bounded for T > 0 fixed.

Let To > T > 0 and set \Lﬁ(z = {x e R" | /Tx € £2}. Observe that if w solves (A.1) then the func-

tion w(x, t) := w(v/Tx, Tt) solves

oW — AR (VTX, THWE = f(x,0) :=Tf(¥Tx,Tt) in %Q x (0, 1),

. 1
w=0 on dpgr—=452 x (0, 1).

JT

Note that 3 W(x,t) = Tdw(v/Tx, Tt), dyw(x,t) = Tdyw(¥/Tx, Tt) and VWw(x,t) = VTVw(y/Tx, Tt).
The Hoélder norm of A(x, t) := A(~/Tx, Tt) is bounded by

. - 2
min{1, T%/?}||Allce(q) < 1Allce( L xo.1y < I1Allc=o)(1+ Ts'?).

Since the ellipticity constants of the coefficients are not affected by the rescaling, the Schauder esti-
mates for w read

”Wﬂ”C“(%Qx(O,l)) + ”Wt”C"‘(%Qx(O.])) + ||VW||C"‘(%Q><(0,1)) + ”W”C"‘(%QX(OJ))

< C“f”cﬂt(%ﬂx(o.l))’

5 Both papers address more general systems.
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with a constant C > 0 depending on n, A, A, ||Allce(q), £2. Rescaling back this estimate to the
parabolic cylinder Q = £2 x (0, T), we obtain

min{1, T%/2)

147182

<Clfllicecq)s (A4)

(Iwjillce o) + wellca o) + T2 VWllca(q) + T~ Hiwlicea(q))

with C depending on the quantities above and on Ty.
Using the standard method based on applying Fourier transform to the integral

[ Al(uo) (uie), ax

2

(see for instance [22]) we note that the Schauder estimates continue to hold when weakening the
ellipticity assumption from (A.2) to the Legendre-Hadamard ellipticity

MEP I < Al DEE D im < AlgP 0l (A5)
for some A, A > 0 and for all (x,t) € Q and &, n € R". Recasting these results for the system

i ik cak — :
{Btu — A, 0)9;3u* =0 inQ, (A6)

u(x,0) =uo(x) for all x € 9per Q
we obtain the following:

Lemma A.1. Assume that 982 is C1*, Tg > 0and for 0 < T < Tp, Q =2 x (0, T). If A € C%*(Q) and the
compatibility condition

A;’f(x, O)ajalu’(‘)(x) =0 forallxedofandi=1,...,n,
holds, then given ug € C%%(§2) there exists a solution u € C2%(Q) of (A.6) with u; € C%%(Q) and such that
lullcze(q) + 19cllce(q) < Cilluolice(q)- (A7)

The positive constant C; depends only on T, n, §2, A, A and the C>% norm of the coefficients of A. The time-
scaled version of (A.7) is

min{1, T%/2}

—-1/2 -1
—perr (il + ludlesq) + 7721 Vulcoco) + 17 lulleec@)
0

< Czlluollce(q), (A.8)

where C depends only on Ty, n, §2, A, A and the C* norm of the coefficients of A.
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Appendix B. Evolution equations for the Jacobian and the distortion tensor

Let u € C1([0, T],C3(£2,R")) be a classical solution of (1.9) and 2 be the range of ug (or
equivalently, the range of u(-,t) for all ¢t € [0, T]). Denote by v(-,t) = u~!(.,t) the inverse of the
diffeomorphism u at time t and set B(y) = detdv(y). For a fixed time t, set y = u(x,t) and
dv(y,t) =du~'(x,0). Let £ € C°(£2 x [0, T], R).

The argument in [18, Theorem 2.1] yields

T
o= [ i~
02

T
[ [ = e 0.0)) + ey 6)1] = 3, 4 ) 3y ) e

0

I
——

(=& detdv]y — axjAg(du) detdv|y(9y,§)|y) detdu dxdt. (B.1)

o

2

Next, we define

Ai-(q)=Ai~(q_1)=—p q.._nq_ij m
! ! " TIg 12 detgy

for all non-singular matrices g and observe that
0x; A (du(x, 1)) =y, AL (dv (u(x. £), £)) =dv/ (u(x, 0), £) [3y, A% (dv(y. D)]] -

Also, on £2,

o . dujj
vy, A% (dv)B = —dy, | p(cofdv) <du1’ - |dul|]2>

|du|"P
, (detdu)?

i S dug; \du ™
S fdv)jn(dul —n—L )| ———
Vi _P(co V)]h( u nldu|2> detduy?

duhjduij |du|"p
[dul? /|, (detdu)P |,

|
|

= —dy, pﬂ<5hi -n

since dy, (cofdv)j, = 0. The latter and (B.1) yield

T
0= //(—atéludetdvlu —dvhj|u[ayh,~43.(dv(y, 1)]|, detdv|y(dy;&)lu) detdu dxdt
02

T
=// —0&p — [dv[ay, AL (dv(y. 1))]|B]ay,& dy dt
06



L. Capogna, A. Raich /J. Differential Equations 253 (2012) 851-877

|du ™

Edydt.
v (detdu)P V]

T
dupidu;i
=//gatﬂ—ayiayh[ﬂ<sh,-_n |d1u|2u>
05

We have then proved the following:
Lemma B.1. Let u € C'([0, T], C3(£2,R")) be a classical solution of (1.9). If we set v(-,t) = u~1(-,t) and
(B.2)

B(y) =detdv(y), then B satisfies
3 = dy,dy, [Bin(dw)]v ],

in 2 x (0, T), with
duhjduij

Bin(du) = p(5hi e

|du|"P
(detdu)?’

as well as Neumann type conditions
dy[dvi"[dy, AL (dv)]B] = dvdy,[Bin(du)|yB] =0

forall (y,t) €382 x (0, T).
Let n € R" and q be a non-singular matrix, and consider the quantity

) ng|?
. ; () 1\ g™ mE ) lgl™
B‘ i h — 8 .l h . = 2 1 - U .
ll‘l(q)rl n p( hill 1 n |q|2 (detq)P p|n| lql? (detq)p
n

In the model case when n =2, q is diagonal with eigenvalues 0 < A1 < A2, and for unit 7, one has

bt p(1 RT3 (24337
: lf;*% A1A2 '

The matrix does not have a sign, it vanishes when A; = A,. Unlike the case studied in [18], the

parabolic maximum principle does not apply.
Lemma B.2. If u is as in Lemma B.1 then the corresponding conformal metric evolves according to

9 8ap = npb?/m {8k3j[5(g)laduj_ll K"~ ]dugy + akaj[S(g),ﬁduj—ll K" ~2]du g

2 y
— Eb_] [0x; 9, (Sin(g) detdu ™" K™ ~2)du*" du "

— Oy (Sin(g) detdu™ K™= 2)du"duMd, oy u'du’t
(B.3)

+ (detdu)_]du"lduisakasulaj(S(g)midu;nll K" ~2)]dugn, dugn, }

in Q =2 x (0, T) with g = go 0n dper Q, and where b = (detdu) ™' =detdu~!ou



876 L. Capogna, A. Raich / J. Differential Equations 253 (2012) 851-877

References

[1] T. Adamowicz, The Grotzsch problem in higher dimensions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9)
Mat. Appl. 18 (2) (2007) 163-177.
[2] L.V. Ahlfors, On quasiconformal mappings, J. Anal. Math. 3 (1954) 1-58; J. Anal. Math. 3 (1954) 207-208 (Correction).
[3] L.V. Ahlfors, Conditions for quasiconformal deformations in several variables, in: Contributions to Analysis (A Collection of
Papers Dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 19-25.
[4] LV. Ahlfors, Quasiconformal deformations and mappings in R, J. Anal. Math. 30 (1976) 74-97.
[5] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2) (2004) 227-260.
[6] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967) 551-561.
[7] G. Aronsson, On the partial differential equation ufuxx + 2uylyuyy + uf,uyy =0, Ark. Mat. 7 (1968) 395-425.
[8] O.A. Asadchil, On the maximum principle for n-dimensional quasiconformal mappings, Mat. Zametki 50 (6) (1991) 14-23,
156.
[9] K. Astala, T. Iwaniec, G. Martin, Deformations of annuli with smallest mean distortion, Arch. Ration. Mech. Anal. 195 (3)
(2010) 899-921.
[10] K. Astala, T. Iwaniec, G.J. Martin, J. Onninen, Extremal mappings of finite distortion, Proc. Lond. Math. Soc. (3) 91 (3) (2005)
655-702.
[11] Z. Balogh, K. Faessler, 1. Platis, Modulus of curve families and extremality of spiral-stretch maps, J. Anal. Math. 113 (1)
(2011) 265-291, http://dx.doi.org/10.1007/s11854-011-0007-x.
[12] E.N. Barron, RR. Jensen, C.Y. Wang, Lower semicontinuity of L° functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (4)
(2001) 495-517.
[13] L. Bers, Quasiconformal mappings and Teichmiiller’s theorem, in: Analytic Functions, Princeton Univ. Press, Princeton, NJ,
1960, pp. 89-119.
[14] M. Bonk, J. Heinonen, E. Saksman, Logarithmic potentials, quasiconformal flows, and Q -curvature, Duke Math. J. 142 (2)
(2008) 197-239.
[15] M.G. Crandall, H. Ishii, PL. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull.
Amer. Math. Soc. (N.S.) 27 (1) (1992) 1-67.
[16] B. Dacorogna, W. Gangbo, Extension theorems for vector valued maps, J. Math. Pures Appl. (9) 85 (3) (2006) 313-344.
[17] RJ. DiPerna, P-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (3) (1989)
511-547.
[18] L.C. Evans, O. Savin, W. Gangbo, Diffeomorphisms and nonlinear heat flows, SIAM ]. Math. Anal. 37 (3) (2005) 737-751
(electronic).
[19] R. Fehlmann, Extremal problems for quasiconformal mappings in space, J. Anal. Math. 48 (1987) 179-215.
[20] EW. Gehring, Quasiconformal mappings in Euclidean spaces, in: Handbook of Complex Analysis: Geometric Function The-
ory, vol. 2, Elsevier, Amsterdam, 2005, pp. 1-29.
[21] EW. Gehring, J. Vdisdld, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965) 1-70.
[22] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., vol. 105,
Princeton Univ. Press, Princeton, NJ, 1983.
[23] H. Grétzsch, Uber die Verzerrung bei schlichten nichtkonformen Abbildungen und iiber eine damit zusammenhingende
Erweiterung des Picardschen Satzes, Ber. Leipzig 80 (1928) 503-507.
[24] R.S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Math. Soc. 138 (1969)
399-406.
[25] T. Iwaniec, G. Martin, Geometric Function Theory and Non-Linear Analysis, Oxford Math. Monogr., The Clarendon
Press/Oxford University Press, New York, 2001.
[26] R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch.
Ration. Mech. Anal. 101 (1) (1988) 1-27.
[27] H. Koch, T. Lamm, Geometric flows with rough initial data, preprint, 2009.
[28] M. Misawa, Existence of a classical solution for linear parabolic systems of nondivergence form, Comment. Math. Univ.
Carolin. 45 (3) (2004) 475-482.
[29] S. Miiller, M.O. Rieger, V. Sverik, Parabolic systems with nowhere smooth solutions, Arch. Ration. Mech. Anal. 177 (1)
(2005) 1-20.
[30] H.M. Reimann, Ordinary differential equations and quasiconformal mappings, Invent. Math. 33 (3) (1976) 247-270.
[31] ]. Sarvas, Ahlfors’ trivial deformations and Liouville’s theorem in R”, in: Proceedings of the Colloquium on Complex Analy-
sis, Univ. Joensuu, Joensuu, 1978, in: Lecture Notes in Math., vol. 747, Springer-Verlag, Berlin, 1979, pp. 343-348.
[32] W. Schlag, Schauder and LP estimates for parabolic systems via Campanato spaces, Comm. Partial Differential Equa-
tions 21 (7-8) (1996) 1141-1175.
[33] V.I. Semenov, One-parameter groups of quasiconformal homeomorphisms in a Euclidean space, Sibirsk. Mat. Zh. 17 (1)
(1976) 177-193, 240.
[34] V.I. Semenov, Necessary conditions in extremal problems for spatial quasiconformal mappings, Sibirsk. Mat. Zh. 21 (5)
(1980).
[35] V.I. Semenov, On sufficient conditions for extremal quasiconformal mappings in space, Sibirsk. Mat. Zh. 22 (3) (1981).
[36] V.I. Seménov, S.I. Sheenko, Some extremal problems in the theory of quasiconformal mappings, Sibirsk. Mat. Zh. 31 (1)
(1990).
[37] S. Sheffield, C.K. Smart, Vector-valued optimal Lipschitz extensions, preprint, 2010.
[38] K. Strebel, Extremal quasiconformal mappings, Results Math. 10 (1-2) (1986) 168-210.


http://dx.doi.org/10.1007/s11854-011-0007-x

L. Capogna, A. Raich /J. Differential Equations 253 (2012) 851-877 877

[39] O. Teichmiiller, Extremale quasikonforme Abbildungen und quadratische Differentiale, Abh. Preuss. Akad. Wiss. Math.-Nat.
KL 1939 (22) (1940) 197.

[40] ]. Viisdld, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin,
1971.



	An Aronsson Type Approach to Extremal Quasiconformal Mappings
	Recommended Citation

	An Aronsson type approach to extremal quasiconformal mappings
	1 Introduction
	2 Preliminaries
	3 The Euler-Lagrange system
	4 The Aronsson-Euler-Lagrange system and the operator L∞
	5 Extremal mappings and the equation L∞u=0
	6 Dilation of traces of diffeomorphisms
	7 Quasiconformal gradient ﬂows
	7.1 Short-time existence from smooth initial diffeomorphisms

	Acknowledgments
	Appendix A Existence and basic estimates for classical solutions of parabolic systems
	Appendix B Evolution equations for the Jacobian and the distortion tensor
	References


