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SMOOTHNESS OF LIPSCHITZ MINIMAL INTRINSIC GRAPHS
IN HEISENBERG GROUPS H”, n >1

LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

ABSTRACT. We prove that Lipschitz intrinsic graphs in the Heisenberg groups
H"™, with n > 1, which are vanishing viscosity solutions of the minimal surface
equation are smooth.

1. INTRODUCTION

The Heisenberg group is a Lie group with Lie algebra R?"*! endowed with a
stratification Vi @ Va, where V4 has dimension 2n, and V5 = [V;, V1] has dimension
1. Since we are interested in non-characteristic graphs, it is convenient that we use
canonical coordinates of the second kind (the so called polarized coordinates [6])
and denote (s,x) the elements of the group, where = (z1, ..., Z2,). Accordingly
we will choose a basis of the Horizontal tangent space V; as follows:

Xs = 8S,Xi = 8i, for i = 1, ey M — 1,
(1.1)

Xi = 61 — {Ei_n+1(92n, for i = n, ..., 2n — 1.
This set of vectors can be completed to be a basis of the tangent space by adding
the vector
Oop, € V5.
The notion of intrinsic regular surface has been studied in [22], [I3]. Such a
surface is the graph of a function u : R>® — R, and can be represented as

M =A{(s,z): s=u(x)}.

Note that C* intrinsic graphs are always non-characteristidl. According to a version
of the implicit function theorem ([22] and [13]), any level surface {f(s,z) = ¢} C H"
of functions f : H"® — R with continuous derivatives along the directions (L.TI),
can locally (near non-characteristic points) be expressed as an intrinsic graph of
a function u : Q — R, Q C R?". Moreover the C}; smoothness of f implies that
the function w is regular with respect to the projection on its domain of the vector
fields in ([TI)) (see [I3] and [I]). Since X, has null projection of the domain of u,
the regularity of this function will be described in terms of the vector fields:

(12) Xi,u = Xz for ¢ S 2n — 2, X2n71,u = 8277,71 + U($)82n,

In particular X5, 1, is a non linear vector field, since it depends on u. Note that
the vector fields X 4, ..., Xon—1,4, satisfy Hormander’s finite rank condition in R?",

1991 Mathematics Subject Classification. 35H20, 53A10, 53C17.
Key words and phrases. regularity of solutions of PDE, minimal surfaces, sub-Riemannian
geometry, Heisenberg group
The authors are partially funded by NSF Career grant DMS-0124318 (LC) and by INDAM (GC)
and (MM).
Lie. TpM # span{Xs, X1,...,Xon—1}(p), for all p € M
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Consequently they give rise to a control distance d,,, whose metric balls B, (z,)
have volume comparable to 9, with Q = 2n + 1 the homogenous dimension of the
space (R?",d,,).

The notion of mean curvature has been recently introduced as the first variatior]
of the area functional. Several first variation formula have been independently
established in receent years, see for instance [18], [7], [8], [4], [32], [33], [27], [28],
[35], [B6]. For an introduction to the sub-Riemannian geometry of the Heisenberg
group and a more detailed list of references see [6]. The prescribed mean curvature
equation for intrinsic graphs (over Q C R?") in the Heisenberg groups of dimension
n > 1 has the following expression

2n—1

Xi 14U

(1.3) Lu = Xiw| —m2e0x= | = f, for z € Q C R*™.
; V14 |Vaul?

VU = (Xl,ua ) 7X2n—1,u)'
If u € C*(Q) is a solution of (L3) for f = 0 then its graph is a critical point of the
perimeter and consequently it is called a minimal intrinsic graph.

Properties of regular minimal surfaces have been investigated in [24], [31], [8],
7, 23], [19], [2] and [29].

Since minimal surfaces arise as critical points of the perimenter functional, the
variational formulation naturally provides several notions of non regular solutions
(see for instance [24], [31] and [7]). Indeed existence of BV minimizers of the perime-
ter is proved in [24], [31] using direct methods of the calculus of variations, More
recently, existence of Lipschitz continuous vanishing viscosity solutions has been
studied in [7]. Such solutions arise as the sub-Riemannian mean curvature equa-
tion is approximated by Riemannian problems which express the mean curvature
in an approximating Riemannian metrics (see [31] and [7] for the relation between
Riemannian and sub-Riemannian curvature). The Riemannian approximation of

@3) is

(14) L ixf it f, forz € Q C R
. u= ful ——| =/, forz .
T\ VT Vel

where

where
(1.5) X7, = Xin for i<2n—1, X3, ,=¢€02, and Vi = (X7, .., X5,.)

Definition 1.1. Letting C}, denote the standard Euclidean C* norm, we will say
that an Fuclidean Lipschitz continuous function u is a vanishing viscosity solution
of 3] in an open set §Y, if there exists a sequence u. of smooth solutions of (L)
in Q0 such that for every compact set K C (2

o ||uclloy () < C for every e;

o u. — u as € — 0 pointwise a.e. in €.

As mentioned above, existence of this type of viscosity solutions in the case

of t—graphs, i.e. graphs of the form zs, = g(s,x1,...,22,-1), has been proved

in [7, Theorem A and Theorem 4.5]. For such graph the corresponding PDE is
more degenerate than (4] as characteristic points are allowed (indeed, much of

2For variations which do not move the characteristic set
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the analysis in [7] and [§] is focused on the study of solutions near such points).
In the same paper the authors prove that such solutions are minimizers of the
perimeter and address questions of uniqueness and comparison theorems as well.
The problem of regularity of minimal surfaces is still largely open. In this paper
we address the issue of regularity away from characteristic points. Our goal is to
prove the following

Theorem 1.2. The Lipschitz continuous vanishing viscosity solutions of (3] with
zero right-hand-side f = 0 are smooth functions.

Invoking the implicit function theorem, we want to apply Theorem to the
study of the regularity away from the characteristic locus of the Lipschitz perimeter
minimizers found in [7] for the case H", n > 1. Here and in the following Vg
denotes the Euclidean gradient in R?". We also denote by (y1, ..., Y2n+1) exponential
coordinates of the first kin(ﬁ, defined by exp(y1 X5 + 21221_1 Yir1Xi + Y2n4+102n) =
exp(s X ) [T exp(2: X:)] exp(22,,0a,).

Corollary 1.3. Let O C R?" be a strictly conver, smooth open set, ¢ € C*(O)

and for each (y1,...,y2n) € O denote by (y1, ..., Y2n)* = (Y2, —Y1, Y4, — X3, ...). Con-
sider the family

{9e(W1,-sv2n) e SUDIgel +sUp[Vinge| < C - (uniformly in ),
of smooth solutions of the approzimating minimal surface PDE

dl’U( VEQE + (ylu eeey an)

VE2+|VEG: + Y1y y2n)*|

found in [T, Theorem 4.5]. If for po = (p§, s Pe" 1) € O, a > 0 and for every
e > 0 we have |0y, g<(po)| > a > 0 (or any other partial derivative is non-vanishing
at po uniformly in €) then there is a sequence € — 0 such that the Lipschitz
perimeter minimizer g = lim,, _,o ge, 5 smooth in a neighborhood of the point po.

)innO and g. = ¢ in 00

Proof. The implicit function theorem and a change of coordinates imply that the
level set of

Yon+1 — G (Y1, - Y2n)
can be written as smooth intrinsic graphs s = u.(x) in a neighborhood of pg, with
ue defined in an open set Q@ C R2?". The Lipschitz bounds on g. (proved in [7,
Propositions 4.2-4]) yield uniform Lipschitz bounds on wu., thus allowing to apply
Theorem and conclude the proof. O

We remark that in the case n = 1 of the first Heisenberg group the regularity of
vanishing viscosity minimal intrinsic graphs is quite different. In the forthcoming
paper [5] we study this problem and prove a form of intrinsic regularity, with
differentiability along the Legendrian foliation of the minimal graph.

Equation (3] is an uniformly elliptic approximation of a subelliptic equations.
The defining vector fields have Lipschitz coefficients and satisfy a weak Hérmander
condition, since together with their first order vector fields they span the space at
every point. The main difficulty of the proof is to handle the vector field

X2n—l,u = a2n—1 + u(x)ﬁgn

3these are the coordinates used in [7].
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and the dependence on . A similar difficulty arises in problems of mathematical
finance. For example in [16], [I7], it was proved that the viscosity solutions of the
following equation are C'*°

X2u 4+ Xou =0

where X1 = 0y2,X2 = Oyu + u0,u, satisfy a weak Hérmander condition analogue
to the one in the present paper. The techniques in [I6], [I7], provide the main
inspiration for the proof of Theorem

The regularity of solutions will be measured in terms of the natural norm of the
intrinsic Hélder class C1®, i.e. functions f such that V¢ f is Holder continuous,
with respect to the control distance d,. The proof will be accomplished in two
steps:

STEP 1 First prove that the Lipschitz continuous solutions are of class C<.
Since the operator L. in (4] is represented in divergence form, then by differen-
tiating the PDE and combining several horizontal and “vertical” energy estimates,
it is possible to prove a Euclidean Cacciopoli-type inequality for the intrinsic gra-
dient V§u of the solution. The Moser iteration technique will then lead to Holder
continuous estimates uniform in ¢ for the gradient. This step holds also for n = 1.

STEP 2 We prove the smoothness of the solution. In order to do so we first
note that the operator L. can also be represented in a divergence form:

2n
(1.6) Lew= )" af ;(Viu)X{, X5 ,u,
i,j=1
where
DPiPj
as;: R*™ — R a5 (p) = 0ij — —2—.
17 17 (p) J 1 + |p|2

For every fixed point zy we will approximate the assigned operator with a linear,
uniformly subelliptic operator in divergence form L. ., with C* coefficients. The
approximation is carried out through a ad-hoc freezing technique, where the func-
tion u in the coefficients of the vector field is substituted with polynomials, in a
technique reminiscent of the work of Rothschild and Stein [34]. The novel difficulty
arises from the non-smoothness of u, and has to be dealt with through a delicate
bootstrap argument. The existence of a fundamental solution I'; | for such operator
as well as its estimates, uniform in ¢, have previously been proved in the papers [3]
and [12]. Eventually I'; will be used to define a parametrix for the fundamental
solution of L. and to obtain estimates independent of e, of the derivatives of any
order of the solution.

2. NOTATIONS AND KNOWN RESULTS

2.1. Holder classes. In the sequel we will always keep fixed a function o € C*° =
C>(Q), with © C R*" and consider the vector fields X7 in (LT), with coefficients
depending on the fixed function w. Let us define a new vector field

3 — _ € €
X2n+1,ﬂ = Oap = [Xl,ﬂvXn,ﬂ]a

which act as a second order derivative, and call degree of o; the natural number
deg(c;) = 1 for o; < 2n, deg(2n + 1) = 2. Correspondingly the degree of any
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multi-index o = (61,...,0m), o €{1,...,2n+ 1}, 1 <r <m €N, will be:

deglo) = 3 deg(os).
i=1

We will also denote the cardinality of ¢ = (071, ..., 0p) the number of its elements:
#(o) = m.
We define the intrinsic derivative
(2-1) Vi,a = Xgl,a o 'Xgm,av

and V5¥ the vector field with components (V;)geg(o)=k-

Since the vector fields X7{ ;,..., X5, ;, are the Riemannian completion of an
Hoérmander type set of vectors, they give rise to a control distance d. ;. The corre-
sponding metric balls are denoted B g(z,r). As € — 0 the metric space (£2,dc.z)
converge in the Gromov-Hausdorff sense to (2, dy) (see [6]).

We next define the spaces of Holder continuous functions related to the fixed
function «.

Definition 2.1. Let zp € 2, 0 < a < 1, assume that u s a fived Lipschitz
continuous function, and that u is defined on Q. We say that u € CZ () if for every
compact set K there exists a positive constant M such that for every x,xg € K and
e>0

(2.2) [u(z) — u(xo)| < Mdea(x,xo).
Iterating this definition, if k > 1, we say that u € CE*(Q), if Veu € CE~1*(Q).

2.2. Taylor approximation. The following result is well know for vector fields
with C'* coefficients (see [30]) also holds for vector field is of the form 9; + @02,
with @ Lipschitz continuous with respect to the Euclidean distance. Let us first

denote by ey, ..., e2, the canonical coordinates of a point z around x,
2n—1
x = exp( Z eiXiE,a + e2nX2€n+1,u)(x0)
i=1
and, for a multi-index o = (01, ..., 02,) we will denote e, = (€4, .-, €0s, )-

We explicitly note that, since X5, , and X35, ., , are parallel, only one of them
can appear in the definition of canonical coordinates, otherwise the values of e;
would not be uniquely determined. Due to this fact, for every multi-index o =
(01, Om), with components in {1, - - - 2n} we will denote I(c) = (01, - - 0m ), Where
0i =0; if 0; #2n, and o; = 2n+ 1 if 0; = 2n.

Theorem 2.2. Let 20 € Q, 0 < a < 1,k € NU{0} and assume that u € CE*(Q).
Then we can define Taylor polynomial of order k the function

k
1
k _ €
onu(x) - }; dﬁg;):h #(U)!edvl(d)yﬂu(xo)
o A2n+1

and we have
(2.3) u(z) = PE u(z) + O (dea(zo,2)" ) as z — .

We will also set Pfﬂu =0 for any negative integer k.
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Note that
2n—1
Phou(@) =Y ei(@) X5 qu(0) + ean () X5, 1 qu(wo).
i=1
From the explicit expression of the Taylor polynomials of order less than 4 it is
possible to directly deduce the following result.

Remark 2.3. Ifu € C{—f’a(ﬂ), 0 < k<4, K isacompact subset of Q and o is a
multi-index, then there exists C > 0 such that

for every x,x0,€ € K, see [11, Lemma 3.6] and [16], Remarks 2.24 and 2.25].

2.3. Derivatives and Frozen derivatives. We will introduce here first order
operators with polynomial coefficients which locally approximate the vector fields
X7z These new vector fields are defined in terms of the Taylor development of the
coeflicients of X7 .. Precisely, for any fixed point xy we will call operator frozen at
the point x(

X, =Xigifi#2m—1, X5, 4, =0wm_1+ P u(z)02n

,Z0

and for every multi-index o,

VE :Xé‘ Xé‘

g,Z0 01,20 Om %0’

and V;ﬁ will be the vector field with components (V§7I0)deg(g):k.

These frozen derivatives have been defined as approximation of the intrinsic
derivatives, depending on @. In order to clarify this point, we recall the following
definition, given in [21] and [30]. If o € R and f(z,z0) = O(d2 ;(v,70)) as x — o,
we will say that the differential operator f(x,z0)V5 ., has degree deg(o) — . We
have

Xia=X; ifi#£2n—1

1,20

Xio=X; 4+ (@— P ()0, ifi=2n-1

1,0
Hence, if @ is of class C'®, then (& — P} u(x))02n is a differential operator of degree
1 —a, while X7, and X, have degree 1. This means that the intrinsic derivative
is expressed as the frozen derivative, plus a lower order term.

More generally the following approximation result holds:

Lemma 2.4. Ifu € CE~1%(Q), and o is a multi-index such that deg(c) < k, then
for every function ¢ € C§°(2) the derivative V¢ ;¢ can be represented as

(2.5)
Vi,ﬁ@ :vi,wo 90+

E — 1 —\h E I I € — 1 - €
(’U, - PIOU’) CP»HmU;h vu,ﬁ (u - Pacou) vp,zo 2
deg(p)—h<deg(o) deg(pi)t - tdeg(up)<k—1 1<deg(p;)
deg(pg )20

where C, .01 are suitable constants. In particular the operator Vi ;o(x) can be

identified as a differential operator of degree deg(o) and represented in terms of
frozen derivatives.
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Proof. Since the function ¢ is of class C§°(2), its Lie derivatives can be simply
computed as directional derivatives. By definition
(26) Xiago = Xf,m090+5i,2n—1(@ —Pwlo’ﬁ) 62ng0.
Hence the assertion is true if deg(o) = 1. If the assertion is true for any o such
that deg(c) = k, then we consider a multiindex o such that deg(c) = k+ 1. In this
case
o= (01,5),
where
deg(a) =k ifo; #2n+1
deg(c)=k—-1 ifk>3ando;=2n+1
We have
vi,a%"(x) = X;,av%,u@(x) =

by inductive assumption
=X a(Viaw)t Y Xaa(@PLa" Y Copon [] Viala—PLa) Viu,e),

deg(p)—h<deg(5) d69<“1>dt;£ig)(£‘§)§’“*1 1<deg(;)
(also using (2.6)))

=X; V?},zo@ + 601271—1(71 - Pagga)‘??nv;mo@

01,%0
+ (a—Pyu)" "' X5, o (a—P} u) Couis Via (U= Py @) V5, 4 o+
u zou o1,U u mou ps1i 0 sh ,u u mou p,zo(p
deg(p)—h<deg(5) deg(py)tedeg(up)<k—1 1<deg(;)
deg(pg)=>0
— 1 =\h € £ = 1 5 £
+ § (u_Pmou) § CPq#iﬁthal,ﬁ( H vu,ﬁ(u_Pmou)) vp,m0@+
deg(p)—h<deg(7) deg(p1)+--tdeg(up)<k—1 1<deg(p:)
deg(pg)=>0
E — 1 —\h E € = 1 -~ € € _
+ (U_ngu) CP7Mi757h H v,u.ﬁ(u_onu) Xcrl,mg (vp,zo @) -
deg(p)—h<deg(&) deg(py)t-t+deg(pg)<k—1 1<deg(pi)
deg(pg )20
§ : — 1 -\h+1 § € = 1 - €
+501,2n71 (u—Pmou) Op”uiﬁ,h H Vu,ﬁ (u_PJIJOu> a2nvp,mo ®-
deg(p)—h<deg(c) deg(py)+--+deg(pp)<k—1 1<deg(p:)
deg(py)>0

Note that the first term satisfies
X520 Va00? = Vo

o,z0P"

The second term is (@ — P, )02, V5 . . It can be considered one of the term
listed in the thesis, with h = 1, while 5, V5 = V¢ . for a suitable g, of degree

deg(0) = k + 2. Hence deg(p) — h = k + 1. Similarly, all the other terms are in the
form, indicated in the thesis (in both case, 01 # 2n+1lork > 3 and o7 = 2n+1). O

The vector fields X7, = satisfy an Hérmander type condition, hence they define
a control distance dg g,(%0,&). The corresponding metric balls Be ;,(x,7) have
volume comparable to 72*+1 and we will call

(2.7) Q=2n+1

the homogeneous dimension of the space (R?",d. ,,). Note that the homogeneous
dimension is the same as the Hausdorff dimension of (R?",d;), defined in the in-
troduction. A simple modification of Proposition 2.4 in [16] yields the following
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relation between d. ;, and the control distance d. 5 associated to the vector fields
€

Proposition 2.5. For every compact subset K of €1, there exists a positive constant
C = C(K) such that for every z,zo, € K

C_lda,mo (x07 5) < da,ﬁ (xo, 5) < Cda,aco (x07 5)7

d&wo (x07 .’L‘) < C(d&wo (x07 5) + d&ﬁ (57 CL‘)),
de.a(z0, z) < C(dea(z0,8) + dea(§, 7))

2.4. Linearized and frozen operator. In analogy with the definition of linear
vector fields, in terms of a fixed function @, we can also define a linearization L. 4
of the operator L., written in terms of the linearized vector fields X7 ;:

2n
(2.8) L. gu = Z aij(vsﬂﬂ)Xis,ﬁXiﬁu’
i,j=1
where a ; are defined in (LG). Since the function 4 is fixed, the operator is a linear
non divergence type operator, whose coefficients have the regularity of the function
. In case u is not smooth, it is natural to approximate it with a frozen operator,
defined in term of the vector fields X;

2,20 "

2n
(2.9) Legou= Y a5 ;(Vau(xo)) X5, X5 0,
i,j=1

where af; are defined in (L.G). This is a divergence form uniformly subelliptic
operator with C*° coeflicients, which depends on €. Hence it has a fundamental
solution I'; = (see [3]), and its dependence on ¢ which can be handled as in [12].
Since I'; | depends on many variables, the notation

Ko (@5, (- €)

shall denote the X¢ , -derivative of ' (s, §) with respect to the variable s, evaluated
at the point z.

Theorem 2.6. ([12] - Theorem 1.1) Let xy € Q. For every compact set K C Q
and for every p € N there exist two positive constants C, C), independent of €, such
that
210) [V (@l (0] < Gt o)

7o wor? h p|BE7I0(‘T7d€>$0(x7§))|,
for every x,& € K with x # £, where Be 5, (x,r) denotes the ball with center x and

radius r of the distance dc »,. If p = 0 we mean that no derivative are applied on
rs,-

Remark 2.7. With the same notation as in preceding theorem, from Lemma [2-7,
and inequality (210) it follows that
d22h(z,€)

211 foﬁxrio .7§ SC £,T0 )
(2.11) Vo a(@)I5, (- 8)] 1B zo (0, dz 2y (2, €))|

deg(o) = p
for every x, & € K with x # &.

Hence, using Proposition 2.20 and 2.21 in ([16]) we have:
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Proposition 2.8. Let k € N, 2 < k < 6. Let u € CE7*(Q) and K be a compact

subset of Q). There is a positive constant C independent of €, such that
[(V5,a(2) = V5 a(20)) T5, (6]
(2.12)
¢ (dswo (z0, )de 2 (3307§)7Q7deg(g)+1 + de 2o (20, ) de 2 (IOaf)iQideg(g)+2) ’
and
V5a(@3(€) = VG a(2)(20)I5, (6]
(2.13)
<C (da,mo(xmx)da,mo (20,&)” @79 1 o (20, 2) " de (:vo,é)_Q_deg(”)”) :
for every multi-index o, deg(o) = k, and for every x,xy € K and & such that

de o (20,§) > Mde o (20, 2), for suitable M > 0. The constant Q is the homoge-
neous dimension of the space, defined in (2.7).

Estimates of this type for the fundamental solution are the key elements used in
Proposition 3.9 in [16] to prove the following result:

Proposition 2.9. Let k € N, 2 < k < 4. Assume that u is a function of class
Cf—f_l(Q) and that there are open sets Q3 CC Qo CC N3 CC Q such that for every
x € Q4 the function u admits the following representation

u(z) = / TS (2, €Ny (€, 20)dé + / TS (2, €) Noyi (€, 20)

Q

S [ X O Nasi(eomn)ds + [ T, 0, Naa 0) .

zlﬂ Q

(2.14)

Also assume that for every xo fized € Qy, the kernels N;(-,xg) are supported in
Qs, as functions of their first variable and there exists a constant C1 such that the

kernels satisfy the following conditions:
(i) if xo is fized € Qq the Ni(-,z0) is supported in Q3 — Qo

(2.15) IN1(§,20) — N1(&,2)| < Crdg ,, (w0, );
(i1) No (-, o) and Na ki(-, o) are smooth functions and all derivatives are uni-

formly Hélder continuous in the variable xg, satisfying condition (213) with the
same constant C as Ny,

(111) for every & € Q3 and x,xo € N

(216) |N31k(€,$0)| < Oldlg m§+a(IOa€)7
and
(2.17) N3,k (&, 0) — Nax(§,2)| < Crdg (w0, 2)dE 2 (w0, €).

Then u € C¥ and for every o such that deg(c) = k
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VE o (ug)(0) = / Vo (20)T5, (- )N (€, 0)de
Q

+ / TS (6,0)V5, o (0) (N (0 0 € 0)) dé

(2.18) g

+Z/Xfm0< )T, (6,0)V5, 0 (20) (N a0 0 € ) ) dé

i=1 Q

+ / V2 o (20)TZ, (2, ) Na s (€, w0)de.
Q

Besides, for any o/ < a, there exists a constant C only dependent on Ci and on

Cp in (ZI0) such that

[l gor <

Remark 2.10. The derivatives V5 ;(xo) in (ZI8) can be computed by Lemma[2-7)
in term of the frozen derivatives Vg, . (x0). In particular the frozen derivatives
Ve . (20)(h(- 0 &1)) can be calculated by formula in Proposition 2.23 in [16].

o,To

Remark 2.11. [t is not difficult to prove that the same result is still true, if u has
a more general representation

u(z) = / IS, (2, €Ny (€, x0)dE + / TS (i, €) No g (€, w0 ) dE

Q Q
(219) +Z/ i,T0 10 )NQ kl(§5 Io)dg + /F;O(%ON&k(é,xo)df
=1 Q 5
+Z/ ,T0 10 )N4 kz(f,iﬂo)dg,
=1 Q

where the kernels Ny (€, o) satisfy assumptions similar to N3, :
for every € € Q3 and x,x¢ €

(2.20) |Nuki(€,20)| < CrdE, (20, €),
and
(2.21) |Na ki (&5 20) — Nari(§, 2)| < Crdg ., (o, ;v)df (@0, ).

3. FrROM Lip TO C2

Let us now start the first step in the proof of the regularity result. Using in full
strength the nonlinearity of the operator L., we prove here some Cacciopoli-type
inequalities for the intrinsic gradient of u, and for the derivative 0o, u. The main
novelty of the proof is that putting together two intrinsic subelliptic Cacciopoli
inequalities we will end up with an Euclidean Cacciopoli inequality. In this way we
can obtain the Holder-regularity of the gradient via a standard Moser procedure.
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We first observe that
82nXiu’U, = —(Xiu)*agnu,
where (X¢,)" is the L? adjoint of the differential operator X¢, and

(3.1)
(X5 =X

i,

if i=1,..,2n—2,2n, and (X3, ,,)" =—-X5, ;,—Oonu.

We now prove that if u is a smooth solution of L.u = 0 in Q C R?” then its
derivatives d2n,u and X ,u are solution of a similar mean curvature type equation
with different right hand side:

Lemma 3.1. If u is a smooth solution of Lou = 0 then w = dapu + 2||ul|Lip s a
solution of the equation

5.2 S () (A 05 =0,

where a;; are defined in (L.6).

Proof. Differentiating the equation L.u = 0 with respect to 0,2, we obtain

X:,
32"(X5u(ﬁ)) =0

Using the previous remark

: X,
(i) @(ﬁ)) =0

Note that
Xiu aaniuu X5 uX5 ,u (%an_’uu
2"(M1+ IVZuIQ) T VTR Vaup | (L [VauP)pR
_ (Xju)*agnu N X5 u X5, u (Xj_’u)*agnu
V1+|Viul? (14 |Vgul?)3/?
The result follows immediately. (Il

Differentiating the equation L.u = 0 with respect to X ku We obtain

Lemma 3.2. Ifu is a smooth solution of Leu =0 then z = X u+ 2|[ul[1ip with
k <2n—1 is a solution of the equation

. ( aij(Vau) .

2 e ) -

£
Xiyuu

33) == XXk Xl () - DX (e e Xiulu).

K2

where a;; are defined in (L.6).
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Proof. Differentiating the equation L.u = 0 with respect to X} , we obtain

6 (85 ) 0
k2w PR -
’ ’ 1+ |V§ul?

€ € Xiuu € € Xfuu
X X2 (25 Y e (g (i )) =
’ TN+ [Veul? ’ TNV 1+ [ VEu?

Note that
X ( X:u ) _ X X5y u B X5 u X5 uXp X5 u
CNVIFIVP,  TE VP A Vi)
a;i(VEu
= %([XEUX]EU]U + X5 ,2)
concluding the proof. O

Remark 3.3. It is useful to compute explicitly the commutators that appear in the
previous result.
Ifk<n—1landi=k+n—1lori<n—1landk=1i1+n—1, then

(X5, ur Xiul = sign(k — i)0zm;
Ifi=2n—1and k < 2n —1, then
[Xli,quiu] = Xliuu 8277,;

Ifk=2n—1 and i # 2n — 1 then
[Xli,ua Xls,u] = _Xls,uU82n

If k=2n and i =2n — 1 then
[X;,u7Xz€,u] = Xliuu 82n-

All other commutators vanish. As a consequence, if u is a smooth solution of
Leu =0 then |[X}, ,, X7, ]| is always bounded by 1+ |[u]|7,,,-

i,u

Proposition 3.4. (First Cacciopoli type inequality for Xfau ) If u is a smooth
solution of Lou = 0 in Q C R**, and z = X}, ,u + 2||ul|Lip with k < 2n then for
every p # 2 there exists a constant C, only dependent on the bounds on the spatial
gradient and on p such that for every ¢ € C§°

[ 1wz < ( [wistarror+ [+ |V2w|2)> .

The constant C' is bounded if p is bounded away from 2. If p = 2 the inequality
holds in the form

/ Oanzl?6? < C / 20+ [VEpP?).
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Proof. Calling w = Oanu + 2||u||£ip, we have

/|sz|2 p—2 2 aij(Vau) X st WP 2902:

NSERNTE
i (VE _ n—15(V5
aJ( u) X )st wzP 2s02_c/a2 1]( uu)X wwaznuzp 2902:

(integrating by parts X5, in the first integral )

U

a;j(VEu) _ agn—1;(Viu)

—C/ W)’ ]7 XE ) 'w|weP 22 +C J ) w wdapu 2P 2>
i V1+[VeupP |2( w ) v V14 |Viu |2( ’ v

_aij(Vau)

VoEa oo

2

+C(p—2)/M(X§u)*w wa)uzzp_3902+2C fu)ww2lT 290Xj_’ug0

a9n— 1](V u)

VI Ve
The first integral vanishes by Lemma Bl In the other integrals we can use the fact
that

wW W2 uzl ™ 290

ai; (VEu) "
| <1 and (X2, ] < (1 [l Vi

VT VeRP

where ||u]|Lip is bounded uniformly in € by assumption. Then

[1viaier 2t < o [ 1vseler e +oVieh + (-2) [ Vil Tialer )

(by Holder inequality and the fact that z is bounded away from 0)

<5 / VEw22P22 + C(5) / V22222202 + O(0) / P+ VE0l?).

For § sufficiently small this implies that
(3.4) /|V5w|2z” 2p? < C/|V€z|2zp 2<p2+C/zp ©? +|Vipl?)

The constant C' above is bounded as long as p is away from 2. The special case
p = 2 follows along similar computations.
Note that, if & # 2n — 1, we have

|O2nz] = D20 X ul = | X}y Oonul < |Viw|
If Kk =2n — 1, we have
|02n2] = |02n X5, 1 ul = [ X3 1,4 02nu| + |2l < [Vowl + [D2nul®

Hence, using again the boundness of |d2,u| and the fact that z is bounded from
below, together with inequality (34 we conclude the proof. O

Proposition 3.5. (Intrinsic Cacciopoli type inequality for Xj ,u ) If u is a smooth
solution of Leu = 0 in Q C R?" and z = Xiyu+ 2||ul|Lip, with k < 2n, then for
every p # 1 there exists a constant C > 0, only dependent on the bounds on the
spatial gradient and on p such that for every ¢ € C§°

/|Viz|22p*2<ﬂ2 < C/ P¢” + V5ol + [9danel).-

The constant C is bounded if p is bounded away from the values 1 and 2.



14 LUCA CAPOGNA, GIOVANNA CITTI, AND MARIA MANFREDINI

Proof. Multiplying the equation (3.2)) by 2P~ 1¢? and integrating we obtain

Xe ( aij(vuu) X¢€ Z)prl 2 _
iU 1+|v5u|2 J,u ¥

X: u -
= _/[X;uaxfu](#)zp1<P2—/Xfu(%[X;u7X;u]u)zp1@2'
) ) + uu ’ + uu ’ ’

We denote by I; and I» the integrals in the right hand side. Let us consider the
left hand side

c aij (Vau) e -1,.2 _
/Xl,u(i\/W'X]fuz)zp SO =

(since (X7,)" = — X7, — 0i2n—102,u)

=—(p—1) 7a”(v i) X5 2 X7 220 2?2 a”(V v X5 ,z27 lngf)ug)
VI+|Veu? V1+[Viul?

a9n— 1J (V ’U,)

Using the uniform ellipticity of a;; and the boundeness of a;; and 02,u, we obtain

/|Viz|2z”_2gp2 < 0(2/ |VEz| 2P~ p|VE 90|+/|Viz|z”_2 @2) + L]+ ||

From here, using an Holder inequality and the boundeness of z from below one has

(3.5) /|Vaz|2zp 2¢2<C/zp 202 4 Vo) + || + | o).

uw? Oanu 2P~ 2 302

Next we estimate separately the terms I; and I». We begin with the latter and
observe that integrating by parts the expression of I, we have

_ Qi (VU)o (Vau)
WiEa i

_aii(Vau) (Veu)
Virr
azn—1;(Viu)

(using the fact that both a;; and the brakets, computed in Remark[3.3] are bounded)

I2 = (p 1) k 'u.?XE ]UXzE,uZ Zp72 902

E

]u 2Pt 0 Xiup

[Xku,XE JuOopu 2P~ 1<p2

<C/|V€z|z” 2g02+C/zp Lo|ve <p|—|—C/zp 1p? <
(since z is bounded from below)
<6 [ [ViaPer 22 4. C0) [ (6 + V30l

for every § > 0.
In order to estimate I; we first consider separately the case k # 2n — 1. If
k <n —1 then by Remark 33

I = —sign(k — n)(1—5,€,2n)/32n Khano10t /Xk WU
V14 [Veul? |2

X2n lu
VIt VouP

)z

p—1 2
4

<
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(integrating by parts, using the boundness of Vu, and the fact that Do X, u =
(92”2 )

<C [1omeler 22+ [ o Mgtipl 4 C [ fomnaler i <
(using Holder inequality and the fact that z is bounded away from 0)
<5 [ 18002226+ C0) [ (IOl + ) <
(by Proposition B.4])
<6 [P 4+ 00) [ 7(00ans] + 0 + Vi)

This estimate can be proved with a similar argument in the case n < k < 2n — 2
and k = 2n. Hence if k # 2n — 1 the conclusion follows by choosing ¢ sufficiently
small.

If £k = 2n — 1, then Remark [3.3] yields
Xiu
/X‘S u@zn )zp_1<p2 =
V1+[Veul? |VE |2

(directly computing the derivative with respect to dz, )

1 Oon X5 u
= _/(Xls,uu)2a2n( )Zp 1902 - 2 pilspz

N Ea i
(since Y, (X7 ,u)® = [Viul?)

1 1 Oon | VE u| _
= - Viu28n72p12——/7z 2,
/l "0 (\/1+|V5u|2) YT V14 |Viul? 4

If we set F(s) = then one easily computes

A

1 ) % Oon|VEu|? )

V1+|VEul? V14 |Veul?

Oan F(IV5ul?) = (IV5ul?00 (
so that the previous integral becomes:
~ [P (T
(integrating by parts)
—(p= 1) [ F(V5uP)anzer 2% + 2 [ F(ViuP) o <
(using the fact that F' is bounded)

< C/|82n2|zp_2<p2 +C/zp‘1|<p52nso| <

(by Proposition B4 and an Holder inequality)

<6 [P0 +.00) [ 7 (00ansl + 6 + Vi)

thus concluding the proof. (|
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Next, we note that, from Propositions [3.4] and one can derive a Euclidean
Cacciopoli type inequality for 2 = X ,u + 2|[ul[Lip, with k& < 2n. Here and in the
following Vg denotes the Euclidean gradient in R2™.

Proposition 3.6. (Fuclidean Cacciopoli inequality) If u is a Lipschitz continuous
solution of Leu =0 in Q@ C R*", and 2z = Xi ,u + 2||ul|Lip, with k < 2n, then for
every p # 1 there exists a constant C, only dependent on the bounds on the spatial
gradient and on p such that for every ¢ € C§°

(3.6) /|sz|2zp*2<p2 < O/zf"(sa2 + | Veel?).
The constant C' is bounded if p is bounded away from the values 1 and 2.

Proof. Observe that there exists C' > 0 depending only on ||ul||r:, and Q such that
for all points in €2,

Vel < O( Y IXEuzl? +[02041?).
k<2n
Hence using Propositions [3.4] and and observing that
IVeol® + 1020 < OVl
we obtain ([B.06]). O

From Proposition [3.6], using the classical Moser procedure in the Euclidean set-
ting, we can immediately deduce the following regularity result:

Proposition 3.7. Let u be a solution of L.u = 0 in  C R?" and set z = Xpu+
2||ul|Lip, with k < 2n. For every compact set K CC  then there exist a real
number « and a constant C, only dependent on the bounds on the spatial gradient
and on the choice of the compact set such that

l|2]|ca(x) < C.

In particular we have the estimate

2n+1 2n

Y DXL XS wullza () + lullgre gy < C.

i=1 j=1
Proof. For p # 1,2 and z as in the statement of the proposition define the function
z5 if p #£ 0;
w =
Inz ifp=0.

If p # 0 then the Caccioppoli inequality (3.6 and the Euclidean Sobolev embedding
Theorem yield

(37) ([1eu)" <cp [w1osep

for some 6 > 1. Let 0 < r1 < ry be sufficiently small so that the Euclidean ball B,
is contained in Q. With an appropriate choice of test function [B.7) implies
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(3.8) (/B |z|91’)”_19 < (Tchil)%(/B z”)% if p>0

1 2
2

wo ([ T T ([ ) e

1 T2

If p =0, (3.8) implies
/|80VE1U|2 < O/|VE80|2-

Let r > 0 sufficiently small so that the Euclidean ball B, C . A standard choice
of test function and Hoélder inequality yield

/ IV pw| < CR2.
B

Recalling that Q C R?" and using Poincare’ inequality we obtain w € BMO(Q).
At this point, using (8.8)), the John-Nirenberg Lemma and following the standard

Moser iteration process (see for instance [25, Chapter 8]) we obtain the Holder

regularity of z. O

4. FrRoM CL® TO C.

In this section we will conclude the proof of the regularity result. The section
is organized in 3 steps. We fix a function @, and study solutions of the linearized
equation

2n
Legu= Y af ;(Veu)X{ X5 u,=0
ij=1
defined in (2.8]), and represented in non-divergence form. The solutions u well be

represented in terms of the fundamental solution I';, | of the approximating operator
Le¢ 5, defined in (29)):

2n

Legqu= Y a5 ;(Vau(wo))X; 4, X5 o0 us

i,j=1

where a;; are defined in (L@). Since estimates of I'; uniform in € are well known
(and have been recalled in section 2), from these representation formulas we will de-
duce a priori estimates for the solution u, in terms of the fixed solution . Choosing
4 = u we will obtain a priori estimates of the solutions of the non linear equation
L.u = 0. Finally, letting € go to 0, we will conclude the proof of the estimates of
the vanishing viscosity solutions of Lu = 0.

4.1. Representation formulas.

Lemma 4.1. The difference between the operator L.z and its frozen operator can
be expressed as follows:
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(Lo =Leaul€) = Y (ai,(Viu(ao)) - ay (VEa(€)) X7 o X qu(©)
(4.1) = > a1y (V@) (@(€) — Pl ()02, X zu(€)

= Y a1 (Vi) X, (@(6) = P22 Ju(€).

Proof. Observe that

2n

(Lo = Lea)u() = Y (af,(V5a(w0) — a, (V5a(€)) ) X7 (X qu(€) -

ij=1

2n
= > 0 (Va(wo)) (X5 o X5 o = Xiay X, Jul6) =

ij=1
2n

= (a5 (Vaateo)) — a5, (Vau(€)) X5aX; gu(€) -

ij=1

2n
=3 o (Va(wo) (Xf o = X0 X+ Xi gy (X5 — X,) Jul€)

ij=1

= > (a5, (Viu(o)) — a5, (V5u(€)) ) X5 o X ul€)-

2n
= 3 05 (V5(0)) (821 (BE) P, HE)) Do X5+ X (55201 ()~ P, 0(€))n) ) u(€)

ij=1
where ¢ is the Kroeneker function. From this the thesis immediately follows O

Let us first represent the solutions of the equation L. zu = 0 it in terms of the
fundamental solution I', = of the operator L. ,, defined in (2.9).

Proposition 4.2. Let us assume that 4 is a fized function of class C*°(Q2), and
that u is a classical solution of L. gu = g € C*°(Q), Then for any ¢ € C§°(QY) the
function up can be represented as

up(a) = / TS (i, €N (€, o) + / TS (2, 6) Lo qul€) 9(€) dé+

Q Q
am D [T (8 (Vaate) b (VERE)) XEXT sl ple)e
=1

2n
+ > /Xi,mol“io(waﬁ)(@(ﬁ) = Py, (€))hsij (20) X5 5 X5 7u(€)p(€)dE.
ijs=1g¢
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The expressions of N1, b;; and hgi; are the following:
Nl(f,xo) = u(é)LE,Io@(g)_F

2n
+ 3 a5 (Vaa(o) (X7 au(€) X5 4 0(6) + X5 u(§)XE,,0(6))
ij=1

=3 a5, 1 (V5u(wo))((§) — Py u(€))denu(€) X5, 0(€)
=1

2n
+ Y 51 (V5a(20)) () — Pp,al(€)X;, 2 X7 qu(€) Xige(€)

=1

=Y @551 (V5a(wo))(@(€) — P a(€)) X1 5 X5 qu(€) X5 a(€).
i=1

(4.3)

bij . R2n — R,

(4.4)  bij(p) = —dikar;(p) + a2n—1;(V5u(x0))p10in — Pnditaan—1;(Vu(zo))

Finally hsi; are real numbers, only dependent on xo, defined as
(4.5)
hsij(@o) = —a3,_1,(V5U(0))(0i10jn — 0indj1) + a3p_1 ;(V5U(20))(6510in — Ssndi1)-

Proof. By definition of fundamental solution, we have

(4.6)
wpl) = / T2 (2, ) L () (€€
Q
2n
- / U2, [0 Lewgp+ D a5 (Va(wo)) (X, uX e + X5uguXen0) | de
Q =1
+ / T% (2, €) Lo au(€) (€)de + / T% (1, €)(Leny — Le.a)ul€) pl€)dE.
Q Q

We can use the expression of L. 5, — L,z computed in (I]). Let us consider the
second term in the right hand side, multiplied by the fundamental solution. Since

O2n = [XT 4y» X1 2,)5 it becomes:
2n
(4.7) > a5, (Vii(xo)) /Fio(% &)(@ — Py, )02, X5 juspd§
J=1 Q
2n
=> aénflj(vfﬂ(%))/lﬂio (,6)(@ = P @)[XF 450 X5y ) (X5 qu) pd€ =
J=1 Q
(integrating by part and using the fact that X{, = X{, and X , = X7 ..)

2n
— =3 dh (Vi) [ XI5, (2,)(0(6) — PLul©)X; (X5 gupde
J=1 Q
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2n

=S5 (Via(en)) [ 15, (20X 4 0(6) — P u(€) X5 (X qup e

J=1 Q

2n
—Zaénflj(vfzﬁ(xo))/Fio(l’,f)(ﬁ(é) = Pru(€) X 5a X quXiap d§
j=1

Q
+Za’2n 1_] v U ‘TO /Xn xo 10 (5) _Pmloa(g))Xl u‘)(8 ’U,(pdg
2n
+3 a5y, (VEi(0) / TS (2, €)X 50 (a(€) — PLaa(€)) X5 1 X5 qup de
Jj=1 Q
2n
D dh (Vi) [ T, (@ )(@E) ~ PLa€)XS (X uX, e
Jj=1 Q

The third term in ([I]) becomes

(4.8) Zazn (Vaa(eo)) [ 15,0, (00— P () u(©p(€)de

Q

(integrating by part)

:—Za% (V5a(zo) / < TS (0,6) (a(€) — P a(€)Dnu(€) o(€)de
(4.9)

2n
=Y a5u1;(Via(o)) / 5, (,8) (a(€) — Py, a(€))danu(€) X5 4,0 ()dE
J=1 Q

Inserting ([@.17) and (4.8)) in (4.1I]) and using the expression of b;; and h;;(zo), we
obtain

/ L5 (2,8)(Leao — Le,a)u(€) p(£)dé

Q

-y [ 1.0 (a5, (Va(e0) - a, (V3(6) ) X5o X5 aul€)o(€)de
17=1
(4.10) .

Ly [ 1000 (05 (Vo) — ¥ (V0(6)) X0 X5 qu(€)o()de

ij= IQ

b Y [ X0 0 €0 PO o () XX )

i7s=1 Q
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2n
- Zaénflj(vfzﬁ(zo))/Fio (2, ) (w(€) — Pry (€)X 5a X5 quXiaep d
j=1

Q
wi) + 3 a5, (Vaa()) / T, (2, €)(a(€) — PL (€)X o X5 quXs oo d
Jj=1 Q
=S 65, (Vei(zo)) / TS (2.€) (a(E) — P a(€))0nu(€) X, plE)de
Jj=1 Q

From this expression, equation ([.0]), and the expression of N7 in (£3]) we obtain
the asserted representation formula. ([l

The following representation formula will be used to estimate higher order deriva-
tives of the solutions.

Proposition 4.3. Let us assume that 4 is a fized function of class C*(Q), and
assume that u is a classical solution of L. zu = g € C®(R2). Then for any ¢ €
C§°(Q) the function up can be represented as

up(z) = / TS (2, €N (€, o) + / TS, (2, €)No i (€, 20)p(€)dé

@ Q
(412) +Z/Xs i) aco fE 6 N2 ks(€,$0)d§—|—/ ( af)NB,k(f,iEo)dg
s=1
2n * @
+Z/Xf$0 mo(x g)Nﬁl kl(g,xo)df,
=1 Q

where N1(&,zo) is defined in (£.3). If bi; is the function defined in ({4), we call
bija = bij(V5u), and the other kernel are expressed:

Na (€ w0) = Pl 2g(¢ Z(P’“ 2hija(€) — bija(ao) ) P (X5 X5 4u)(©)

Na ks (€, m0) = 221 (PE1 (&) = PL () oy (w0 Pl (X5, X5 ) (©)
Nak(€20) = (9(6) = P 29(©)) +
(4.13) (b (6) = bigawo) ) (X5a X5 0(€) — PAT3 (X2, X5 u)(€)) +
(b 6) = P 2bi5a(©)) P (X5 0 X5 ) (€)
(4.14)
Naes (€ w0) = ((€) = PET(E) iy (20) P (X5 X5 ) (€)+
+ (€)= PRa(€) ) iy (w0) (X7 X5 au(€) — P (X7 o X5 ) (€)).
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Proof. We represent ue as in formula ([@2)), and we study each term separately.
Let us start with the second term in ([{@.2]):

(4.15) 9(§) = Leau(§) = Py 2g(€) + (9(§) — Py, 29(6))

The kernel in the third term of (£2) will developed as follows:

(bija(f)—szﬂ(%))Xf,uX;,au(ﬁ) =
= (PE2biga(€) — bigalwo) ) P> (X20 X5 0u) )+
(b (©) = b (w0) ) (X7 X5 gu(©) = PE7 (X7, X5 ,0)(©))

(b (€) = Pl 2biga() ) PA (X5, X5 ) ().

(4.16)

The first terms in ([@I5) and (AI6) define N3, the sum of the other terms defines
N3 j.
The kernel in the last term of ([@2]) can be represented as
(€)= PL, () i (w0) X7 X u(€) =

= (&) = PEu(€) ) i (w0) (X7 X5 au(€) — Pl (X7 o X5 40)(€))

(4.17)
(€)= PET10(€) ) b (wo) PAy (X5 X5 4 (€)+
+(PE(€) = P,(0) ) iy (wo) Pl (X7 X 5u) €).
The first two terms of this expression define Ny js, the third defines Ny js. O

4.2. A priori estimates of the solution of the linear operator.

Proposition 4.4. Assume that u and @ are of class C2°(2) and that L. zu =g €
C2(Q). Also assume that there exists a compact set K C Q and constant Cy such
that

[l ey + glleregn + S IVEgullieqe) < Co.
deg(0)<2

Then, for every compact set K1 CC K, for every o/ < « there exists a constant
C > 0 only dependent on Cy,a and the compact sets, such that

(4.18) Z Ve aullca’ (k,) < C-
deg(o)=2

Moreover, for every choice of compact sets Ko, K3 such that K1 CC Ko CC K3 CC
K for every function ¢ € C§°(int(K)) such that ¢ =1 in Ka, for every multi-index
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o of length 2, we have the following representation

(4.19)
V. (ug)(x0) = / Vo (20)T, (- )N (€, 20 )dé

Q

4 / TS (€,0)V% 4 (20) P, g(E) glzo 0 €1 de

/ V2 a(@0)TZ, () (9(6) = PLg(€) ) p(€)de

Ly [ 952, ) (6 (Vo)) — 0 (V5(€) X2 X5 qu(pl)de

ij=1¢

.S [ 75X @)%, () (1) = PR i 0) X2 X5 qu(€p )

1js= 1Q
where Ny is defined in Proposition [{.2

Proof. By Proposition £.2] we know that the function up admits a representation
in terms of the fundamental solution of the frozen operator, and suitable kernels.
Let us verify that these kernels satisfy the assumptions of Lemma with k£ = 2.

From the expression of Ny in ([43]), we see that Nj is a sum of derivatives of
the function ¢. Since ¢ is constantly equal to 1 on the set Ky, then N7 vanishes
on the same set. Hence the point (i) of Lemma regarding the support of Ny is
satisfied. On the other side N7 depends on x( only through the first derivatives of
u, while it depends on & through the derivatives up to second order of the function
u. Hence it is Holder continuous in zg locally uniformly in £. Hence there exists a
constant C7 only depending on Cj such that

IN1(§,20) — N1(§,2)| < C1dZ (20, 2),

for every z,zop € K7 and £ € K3 and this conclude the proof of assumption ([2.13]).
The second term in ([4.2) is the convolution of the fundamental solution with the

function g(€) = Leau(§) = PL,g(€) + (9(&) = PLg(€)). The function P},g(€)¢(¢)

will play the role of the kernel Ny in Lemma 20l Since g is of class Cr*(K), its
first order Taylor polynomial is Holder continuous in x( locally uniformly in £ and
there exists a constant Cy only depending on Cj such that

|Peo9(€)e(§) — Prg(€)@(€)] < Crd2 (w0, ),

for every z,zo € K1 and £ € K5. And this conclude the proof of assumption (ii).
The function (g — P}, g)(§) satisfies the assumptions (2I6) and ZI7) of the
kernel N3y, in the same lemma with k = 2. Indeed, from the definition (22) of

Taylor polynomial we deduce that
(g — P2,9)(€)] < Crde o (w0, €),

E,T0

if 2, 2o are fixed in K; and £ € K5. Similarly, from ([24]) we deduce that
|P::}og(§) - P::}g(g)‘ < Crde,zy (o, I)ads,mo(xmf)a
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again with a constant C;, depending on the C%’O‘ norm of g. This ensures that

210) is satisfied.

In the same way, using the regularity properties of %, we deduce that the function
(b5, (Vaa(wo)) = b5, (V5(6)) ) X5 o X5 0u(€)

satisfies the assumption of the kernel N3 j in Lemma
Finally, from the property (24) of the Taylor polynomials, we deduce that the
function

(@(§) = Pry(§))hsij (20) X5 5 X5 zu(§)@(€)
satisfies the assumptions of the kernels Ny s in Remark 2111 O

In order to obtain an a-priori estimates of the second derivatives of the solution
w in terms of its LP norms we need to improve slightly the previous result.

Lemma 4.5. Assume that w and @ are C* functions, and that u is a classical
solution of Legu = g € C°(Q). Also assume that there exist a compact K C Q,
and real numbers p > 1, a« < 1 and Cy > 0 such that

all 1o gy + gl oo o)+

(4.20) Hlwllgregey + Y Ve aullra) < Co.
deg(o)=2

o IfQ—pa >0, then, for every compact set K1 CC K there exists a constant
C > 0 only depending on Cy such that

(4.21) Y IVeaullra) <6,
deg(o)=2

Q?ga , and Q is the homogeneous dimension of the space, defined

where r =
o IfQ—pa <0, then for every compact set K1 CC K there exists a constant
C > 0 only depending on Cy such that

(4.22) Y Vs aulliee) < C.

deg(o)=2

Proof. The proof follows from the representation of the derivatives of uy provided
in Proposition [£.4]

Let us consider the first integral in ([AI9) We first note that, by the expression
@3] of N1, there exist constants Cs and Cy only dependent on Cp such that

IN1(€,20)| < C3+Ca Y [ Xia Xiaul
j
for any &, 29 € K. On the other hand Nj is a sum of derivatives of the function ¢,
constant in Ky, the support of the kernel N; is a subset of K3 — K5. This implies
that if z € Ky and £ € supp(N1), then de z(z,§) > dea(K1, K3 — K2) and the
function V5 ;(z0)T5, (z,€), is bounded uniformly in €, by condition (ZIT). Then,
for every zg € K3

| [ Vet oM m)de] < / V1€ o)|dg < C (14| XaXiaull i) < O,
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where C only depends on Cj.
The second term in (£I9) is the convolution of the fundamental solution with a
regular function,

Ve.a(20) (Pr,9() p(ao 0 €71))
whose L> norm only depends on ||g||,1.« on the support K of the function ¢.

In the third term of (£I9), using the property (Z2]) of the Taylor polynomial,
and the estimate (ZI0) of the fundamental solution, we obtain

[ 1720wz, (.0(9(6) ~ Pa(©)) [e(e)d < C/dszf (20, €)d < Oy
Q

for a suitable constant C; depending on ||g||1.«, and on the compact set K. Con-
sequently, these terms belong to Lf;,. h

Using again (2.2) and (2I0) the last two terms in representation formula (£19)
can be estimated by

(4.23) / 42 H0 (g, )| X0 X5 qu(€)|dE.
Q

Thanks to Theorem 2.6] we can then apply the standard theory of singular integrals
and deduce that if | X7 ;X5 ;u(§)] € LP(K), with Q — pa > 0 then (£.21]) follows.
In order to prove [@22)) it suffices to apply Hoélder inequality to ([@23]) and use
the fact that @ — pa < 0. This immediately leads to the desired L* bounds on the
second derivatives of the solution. (]

Proposition 4.6. Let us assume that @ is of class C*(2) and that u is a classical
solution of Le gu = g € C2°(Q). Let us also assume that there exists a compact set
K C Q and constant Cy such that assumption (4.5) is satisfied, and such that

||u||c’5*1’a(}<) + ||a||c§*1’a(1{) + ||g||c’5*2’a(}<) < Co.

Then, for any 2 < k < 4, for every compact set K1 CC K there exists a constant
C > 0 depending only on the choice of the compact sets, Cy, k and a such that

[l oo gy < C-

Proof. A direct computation shows that the kernel in representation formula in
Proposition satisfy assumptions of Proposition O

4.3. A priori estimates of the solution of the nonlinear operator. We start
with the follow iteration result:

Lemma 4.7. Assume that z is a smooth function satisfying

(4.24) ZG/Z]VUXEXEZ+fQ—Oan

then the function vy, = Xh a2 satisfies the equation

Zaw (Vs uX‘EXE aVh + fn =10,

on the same set ), where fh depends on V22, 02,V z, X5, afos VE2ii.
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Proof. Differentiating the equation [.24) with respect to X ; we obtain

0= X7 (D i (VAU X5 X502) + X ofo =
j

= O aij X5 (XU X5 X502 + Z aij (V@) X5 o X5 XSaz+

ijk
+> a4 (VEu) X5 X5 4 X5z + Z aij (V50) X5 X 50 (X5 02) + Xn.afo-

Then
Zaw (Vs uX‘EXE aVh + frn =10,

where
2n

fn = Zapk ij Xjp 4 X gal XfﬂX;az—l—
ij

Z ai; (Vi) (X; b — X§ﬁbh)82anﬁz+
—i—ZaU (Veu (Xhu —X: bh)aganr
+ Z aij (Viu) (X;;_ﬂbj — X abn ) 0o Xp2

+ZGU (Vs u)(Xh abj — Xj, bh)a2nb 02z + X}, 4.fo-

ij
Here the function f}, clearly depends on V522, 05, V5 2, X5, afos Va2,

Lemma 4.8. Assume that z is a smooth function satisfying

(4.25) ZCLlJVuXEXEZ—FfO—OmQ

then the function v = 62nz satisfies

Zau Veu) X5 XS0+ f =0,

where f depends on V22, (’“)gnvﬂz , Oanfo-
Proof. Differentiating the equation [@.25]) with respect to da,, we obtain

o_azn(zaw (Ve X5 X5 z+f0) _

= Z Opy WijOon X quX 7 X502 + Z i (V5u)[O2n, X5z X5p2+

ijk ij

+ Zaw (VE0) X500, XS]z + > aij (VED) X5 X55(0202) + D2n fo.
ij
The latter can be rewritten as

Zau Veu) X5 XS0+ f =0,
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where the function

f= Zﬁpkaijﬁankqus XE z+ ZGU v U)612n 1a2nua2nX;uz+

ijk ij
+ Z aijéjgn_l(V%’ﬁ)X%(agnﬂagnZ Z CLU V u XE )(8 v+ 82nf0

depends on Vv, V22, 02, VS 2, V4. g
In order to study of the nonlinear equation we apply the previous lemma with
U =1u,

Lemma 4.9. Let 0 be a multi-index with all components smaller than 2n. Then
the function v, = Vg ,u salisfies

Za” (Ve uXEXE wVo + fo =0,

where f, depends on Vi(kﬂ)u, 02n VEFu with k = deg(o).

Proof. By Lemmal[47] the assertion is true for the derivatives of order one. Assume
that it is true for deg(o) = k. Then, let us consider a multi-index o of degree k + 1.
By definition ¢ = (01,0), with deg(d) = k. Then by inductive assumption the
function z = V%  u satisfies

> ai(Viu) X5, X5,z + fo =0,

where fy depends on VEF*1y, 05, VEFy. Applying Lemma BT we deduce that the

e .
function v, = X7 ,2 is a solution of

Z Qij (Vzu)XzsﬁstuvU + fdl = Oa

where fg1 depends on V222, 05, V52 and X,, . fo. Since fo depends on Vek+ly,
02, VEFu, then X,, ., fo depends on X LVektly and

aan u = 501271 18277,'“8277,V U+ aQnX Vak

a’lu o1,Uu

Theorem 4.10. Let u be a smooth classical solution of the nonlinear equation
L.u = 0. Let us fix a compact set K CC Q and assume that there exist constants
a<l1l,p>1and Cy> 0 such that

(4.26) lellerege + D>, V5 ullLe) < Co.
deg(o)=2

Then, for every B < 1, for every compact set K1 CC K there exists a constant 5ﬁ
such that

||u||cﬁvB(K1) + ||a2nu||cﬁﬂ(K1) < Cs.
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Proof. We first prove that for every r > 1 for every compact set Ko such that
K, CC Ky CC K there exists a constant C)., only depending on Cy and on the
choice of the compact sets, such that for every multi-index o of degree 2, we have

(4.27) VGt (xa) < Chr-

Indeed, for every compact set K3 such that Ko CC K3 CC K we can apply the
first assertion of Lemma 5] with v = @ and we obtain

(428) ||v<67,uu||LT1(K3) < CTI’
where ry = nfga > 2. If n —rja > 0 we can apply again Lemma on a new
compact set compact set K4 such that Ko CC K4 CC K3 and we have

(4'29) ||Vi,ﬂu||LT2(K4) <y,

with

nry 2n
ro = = >ri.
n—ria n—4«a

For every fixed number r, after a finite number of iterations of this same argument,
we can prove the estimate ([Z27]).
Consequently by (4.22)) we have ||V5 ;ul[zse < C then for every compact set K

such that K1 CC K3 and for every 3 < 1 there exists a constant C~’5 such that
V5 ulls sy < O
As a consequence of Proposition [£4] we deduce that for every 8 < 1 for every

compact set K¢ such that K1 CC K¢ CC K5 there exists a constant C'g such that

||u||c2’ﬁ(K6) < CB'

By Proposition we deduce that for every 8 < 1 and for every compact set K7
such that K; CC K7 CC Kg there exists a constant C'g such that

Applying again the same proposition with k& = 4, we deduce that
||“||cgv5(1<1) < Cp,
which implies in particular that there exists a constant CN'B such that

||u||cg’5(}<1) + ||82nu||c§’5(}<1) < Cps.
O

Theorem 4.11. Let u be a smooth classical solution of Lcu = 0. Let us also
assume that assumption ({.26) is satisfied. Then, for any compact set K1 CC K,
for every k € N and o < 1, there exists a constant C > 0 depending only on Cy, k, «
and K1 such that

||u||c§,a(K1) <C.

Proof. For every k € N, for every o with deg(o) = k, and components in {1,...,2n}
we prove by induction that

v;uu € OS)Q(Q)v 82nvi',uu € 0737(1(9)7
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and that for every compact set K; such that K; CC K there exists a constant
C > 0 depending only on Cpy, k, a such that

||V§,uu||c;'j’ﬂ(1<1) + ||82nvi,uu||cﬁ’ﬂ(}<1) <C
The thesis is true for deg(c) = 0 by Theorem
We assume by induction that it is true for deg(o) = k. Call z = V¢, u, then by

Lemmal9the function z satisfies L. ,z = f, in Q with f, = fg(Vi(kH)u, 02, VekU) €
C?(Q), by inductive assumption. By Lemma H.8, the function v = s,z satisfies
L. ,v = f, in Q, where the function f = f(V22,0,,VE2) € CLY(Q).

It follows by Proposition L6 that v = 0,z € C2%(Q), and if K is a compact set
such that K1 CC Ky CC K there exists a constant C' depending only on Cy, k, o
such that

10llcze sy < Callfllere ey = Co-

This argument, applied to any multi-index o with deg(o) = k, implies that 0, VFu €
C3. Consequently BgnVi’”‘lu € 022 and

1020 V& ull g2.e i,y < Cr,

for an other constant C7, only dependent on Cy, k, .

Moreover by Lemma .7 the function v, = X§  z satisfies Lvp, = fp,, with f, =
fn(VE22,05,VE2) € CL2(Q). Again Proposition implies that Xj V¢ u €
C32(Q), and that

||Vi(k+1)u||cg’a(1(l) < O,

for a constant C; dependent on Cjy, k, «. This concludes the proof. O

Proof of Theorem

Proof. Let (ue)e be a smooth approximating sequence of u such that
L.u.=0 in Q.

Let K7 be an arbitrary compact set in {2. Then there exist compact sets K and K,
such that
K, CC Ky CCK.

By assumption there exists a positive constant Cj such that
IV Eue|| Lo (k) < Co,
for every €. By proposition B.7] there exists a constant Cy such that
||V8uEU€||c;g(K2) +|[O2n e | Loo (105) + ||V8uzua||L2(K2) < Ch.
Then by Theorem [Tl for every k there is Cj such that
ezt ) < C

In particular,

lluellor (k) < Ch-
Since all the constants are independent of ¢, letting € go to 0 we obtain estimates
of u in C% for every k. Consequently u € C$p. ]
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