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Abstract

The human visual system can represent an object’s spatial structure with respect to multiple
frames of reference. It can also utilize multiple reference frames to mentally transform such
representations. Recent studies have shown that performance on some mental transformations
is not equivalent: Imagined object rotations tend to be more difficult than imagined viewer
rotations. We reviewed several related research domains to understand this discrepancy in
terms of the different reference frames associated with each imagined movement. An exami-
nation of the mental rotation literature revealed that observers’ difficulties in predicting an
object’s rotational outcome may stem from a general deficit with imagining the cohesive ro-
tation of the object’s intrinsic frame. Such judgments are thus more reliant on supplementary
information provided by other frames, such as the environmental frame. In contrast, as as-
sessed in motor imagery and other studies, imagined rotations of the viewer’s relative frame
are performed cohesively and are thus mostly immune to effects of other frames. © 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

There are multiple ways in which the human visual system can encode objects. An
object can be specified relative to the observer, to the environment, to its own in-
trinsic structure or to other objects in the environment. Each instance requires the
adoption of specific spatial frames of reference. In general, reference frames provide
a structure for specifying an object’s spatial composition and position.

Spatial reference frames can also be utilized in multiple ways to transform objects
in the imagination. For example, if an observer wanted to construe an object at a
different orientation without actually performing any actions, she could try at least
two mental operations, each of which requires the rotation of a different reference
frame with respect to a given stationary frame. She could either picture the object
turning to its new orientation (object-relative or intrinsic reference frame) or she
could imagine moving herself to the viewpoint corresponding to the new orientation
(egocentric or relative reference frame). Both of these processes have been implicated
in human beings’ ability to update objects across different viewpoints (e.g., Hummel,
1994; Simons & Wang, 1998; Tarr, 1995; Tarr & Pinker, 1989; Wraga, Creem &
Proffitt, submitted); the latter also subserves our ability to take the perspectives of
others (Piaget & Inhelder, 1967).

Despite the seeming importance of both of these processes, the majority of re-
search has focused primarily on the first type: imagined object rotations. For ex-
ample, the classic studies of Shepard and colleagues established that observers
mentally rotate the axes of one object into congruence with those of another object
in deciding whether their shapes are similar (e.g., Cooper, 1975; Shepard & Metzler,
1971). Other studies have examined observers’ ability to predict the orientational
outcome of single objects rotated about multiple axes (e.g., Pani, 1993,1997; Pani &
Dupree, 1994; Parsons, 1995). However, until recently, imagined rotations of the self
have received less empirical consideration (e.g., Amorim & Stucchi, 1997; Parsons,
1987a,b; Presson, 1982).

The goal of this paper is to provide a more comprehensive account of the role of
spatial reference frames in mental rotation. We review studies from several related
research domains — mental rotation, object recognition, perspective-taking, and
motor imagery — to examine effects of multiple reference frames on imagined
transformations of the self and of objects. This approach is specifically intended to
shed light on the recent finding of inferior object (versus viewer) rotation perfor-
mance, as evidenced by longer reaction times and higher error rates (e.g., Amorim &
Stucchi, 1997). We find that this discrepancy may be attributable to differences in the
way the reference frames corresponding to each imagined rotation are transformed
by the human cognitive system.

After a review of reference frames, the first main section of the paper focuses on
factors affecting imagined object rotations. A recurring finding of the studies we
reviewed is that imagining an object’s rotation is problematic when no information
other than the object’s initial orientation is provided (e.g., Pani, 1993; Pani & Du-
pree, 1994; Parsons, 1995). This suggests a general deficit with imagining a cohesive
rotation of the object’s intrinsic frame. For such tasks, observers are likely to depend
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on supplementary information from other frames, such as the environmental frame.
As evidenced in the object recognition literature, imagined object rotations are
further facilitated by view-specific encoding with respect to the relative frame (e.g.,
Biilthoff & Edelman, 1992; Tarr, 1995).

The second main section of the paper focuses on factors affecting imagined viewer
rotations. A review of several motor imagery studies (e.g., Parsons, 1987a,b) indi-
cates that imagined viewer rotations are less susceptible to misalignment with respect
to the environmental frame, perhaps due to the inherently cohesive structure of the
relative frame itself. We end with a review of research directly comparing imagined
object- and viewer rotations (e.g., Presson, 1982; Wraga, Creem & Proffitt, sub-
mitted), which provides further evidence of differences in the ways the respective
reference frames of each type of rotation are transformed.

2. Spatial frames of reference

We begin our review with a brief discussion of spatial reference frames. As
mentioned above, imagining an object rotating to your current viewpoint or imag-
ining yourself rotating around an object to a new viewpoint require the adoption of
different reference frames. In the first section, we describe the principle frames in-
volved in such movements. In the second section, we examine how the object and
viewer frames move with respect to the environmental frame.

2.1. Rotation frames

Rotation of an object predominantly utilizes an object-relative or intrinsic refer-
ence frame, which is defined with respect to the object’s intrinsic top/bottom, front/
back, and right/left axes. Rotation of the viewer around the object predominantly
utilizes an egocentric or relative reference frame, ' which specifies the location of
external objects with respect to the major up/down, front/back, and right/left axes of
the observer’s body. The egocentric frame is often further broken down to relate
objects to specific parts of the body. For example, retinocentric encoding specifies an
object with respect to the nodal point of the eye. Headcentric encoding specifies an
object with respect to the center of the head. Bodycentric encoding specifies an object
with respect to axes of individual body parts, such as the hand.

! A motion of this type may also be parsed into rotation plus translation. However, Shepard (1984, 1994)
proposes that such motion is best described by kinematic geometry, which characterizes motions in their
simplest form. In particular, Euler’s theorem states that an object can move from one point in Euclidean
space to another via simple rigid rotation around another (pivot) point. This pivot point can be thought of
as the center of any object around which another object (i.e., the viewer) is moving.
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The environmental reference frame > specifies the cardinal directions of north,
south, east, and west. However, it can also be thought of more specifically as per-
taining to structures and planar surfaces that are usually fixed with respect to the
environment, such as the walls, floor, and ceiling of a room. Thus, the turning of a
room about an observer or object would constitute an environment rotation.

2.2. Updating with respect to the environmental frame

As pointed out by Hinton and Parsons (1988), a complete description of reference
systems requires consideration of their relationship to other frames. Besides the
different rotation frames involved, one major difference between imagined object and
viewer rotations is the way their effective reference frames change with respect to the
environmental frame. In imagined object rotations, the intrinsic frame moves with
respect to environment, whereas the observer’s relative frame remains fixed (see Fig.
1). In imagined viewer rotations, the intrinsic frame remains fixed, and the relative
frame moves with respect to the environment (see Fig. 2). The latter situation has
been referred to as the “more radical change in our total experience’” because it
interferes with our natural inclination to be oriented with respect to the environ-
mental frame (Shepard & Hurwitz, 1984, p. 172). The ensuing conflict between
physical and imagined viewpoints has lead some researchers to assert that imagined
object rotations must necessarily be easier and more natural to perform than
imagined rotations of the self (Cohen et al., 1996; Shepard & Hurwitz, 1984).

We have found this claim to be unsupported in the literature. In fact, it appears
that just the opposite is true. It will be shown that updating a spatial array is, in
general, easier to achieve after imagined rotation of the viewer rather than of the
array itself. Moreover, imagined viewer rotations are less susceptible to manipula-
tions of the environmental frame than are imagined object rotations.

3. Factors affecting imagined object rotations

Two interdependent research domains have contributed to our understanding of
the reference frames critical to imagined rotations of objects. A direct assessment of
performance comes from the mental rotation literature itself, the initial goal of which
was to establish the existence of analog transformations. Knowledge has also been
obtained indirectly from the object recognition literature, which has utilized the
mental rotation paradigm primarily to discern the nature of object representation.

2 For simplicity’s sake, the term “environmental frame” will be used throughout this paper to
encompass the more fundamental gravitational frame, which determines specific “up” and “down”
directions with respect to the environment (e.g., Pani & Dupree, 1994; Parsons, 1995; Shiffrar & Shepard,
1991; cf. Luyat, Ohlmann, & Barraud, 1997; Paillard, 1991).
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Fig. 1. Imagined 90° clockwise rotation of an object. The object’s intrinsic frame of reference changes with
respect to the environmental frame from beginning (Time 1) to end (Time 2) of the rotation event. Over the
same time course, the observer’s egocentric frame remains fixed with respect to the environment.

3.1. Studies of mental rotation

The mental rotation of objects was initially thought to be a natural ability re-
quiring little effort. The classic studies of Shepard and colleagues established that
observers are rather good at such tasks (e.g., Cooper, 1975; Shepard & Metzler,
1971; for a more extensive collection of papers, see Shepard & Cooper, 1982). In
their studies, participants were typically presented with depictions of pairs of three-
dimensional novel objects, one of which was at a different orientation with respect to
the other. Their task was to decide if the objects were the same or different. Response
latency was found to increase linearly with the angle of displacement between the
two objects. Shepard and colleagues interpreted this finding as evidence that par-
ticipants had mentally rotated one object into congruence with the other. Moreover,
the internal process of mental rotation was found to approximate physical con-
straints associated with rotations of actual objects. These findings held up over a
wide range of rotation axes and degrees of rotation (Shepard & Metzler, 1971).

However, more recent studies have revealed limits to mental rotation ability (e.g.,
Just & Carpenter, 1985; Massironi & Luccio, 1989; Parsons, 1995). One factor that
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Fig. 2. Imagined 90° counterclockwise rotation of the observer. The viewer’s relative frame of reference
varies with respect to the environmental frame from beginning (Time 1) to end (Time 2) of the rotation
event. Over the same time course, the object’s intrinsic frame remains fixed with respect to the environ-
ment.

appears to affect performance is type of task. For example, using a novel yet com-
plementary mental rotation task to the one previously mentioned, Parsons (1995)
found dramatically impoverished results. Participants were required to predict the
outcome of a Shepard—Metzler object rotated along a specific axis, through a range
of angles. Once they had imagined rotating the object a given number of degrees, they
were presented with a picture of the object at another orientation and had to decide
whether it correctly depicted the specified rotation. Parsons found that reaction times
for this predicted-outcome task were on average five times longer than those previ-
ously found with the congruence task, and participants made many more errors.
Moreover, attempts to simplify the task, such as the addition of a physical axis of
rotation to the objects (depicted by a rod), improved performance only slightly.
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Another revealing finding of Parsons’ study was that performance was signifi-
cantly affected by the spatial relationship of the major reference axes. Reaction times
were fastest when the axes of the object, rotation, and gravitational vertical were
coincident. Performance was poorer when the object and rotation axes were not
aligned with the gravitational vertical. Similar results have been reported elsewhere
for mental rotations of a square (Pani, 1993), and for same-different judgments of
successive physical rotations of cubes (Shiffrar & Shepard, 1991). Parsons concluded
that poor performance resulted from participants’ intrinsic inability to keep track of
the object’s major axis with respect to rotation and environmental frames during its
imagined movement.

Pani and Dupree (1994) conducted a more systematic examination of reference
frame effects. They tested the effectiveness of different reference frames on observers’
ability to predict the outcome of a rotated three-dimensional square-and-rod ar-
rangement. The arrangement consisted of a square surface whose midpoint was
intersected by a rod so that the square was oriented obliquely (i.e., 45°) with respect
to the rod. The arrangement was presented so that the rod was either aligned with or
oblique to the gravitational frame of reference. Observer viewpoint was also ma-
nipulated so that line of gaze (i.e., retinocentric reference frame) was aligned with or
oblique to the rod. Participants indicated a 180° rotation of the square by orienting
another three-dimensional square in space. Similar to the Parsons study, perfor-
mance in this predicted-outcome task was again much poorer compared to the speed
of previous congruence tasks. Pani and Dupree also found consistent reference frame
effects. The alignment of the square-and-rod with the gravitational frame provided
the best conditions for accurate predictions of orientation. In contrast, manipula-
tions of the retinocentric frame neither helped nor hindered judgments (see also
Hinton & Parsons, 1988).

A general criticism of these studies might be that the test objects were too com-
plex. However, further support for reliance on environmental referents has been
obtained from studies using simpler, two-dimensional stimuli (e.g., Corballis,
Nagourney, Shetzer & Stefanatos, 1978; Rock, 1973). For example, Corballis, et al.
(1978) tested normal-mirror discriminations of rotated alphanumeric characters
under conditions where participants’ heads or bodies were either aligned with the
gravitational vertical or misoriented from it up to 60°. An analysis of response la-
tencies revealed that participants made their judgments by rotating the characters to
the gravitational vertical rather than the headcentric or bodycentric reference
frames. Moreover, this result was apparently not due to the overfamiliarity of the
stimuli: The preference for environmental alignment also held for rotations of novel
letterlike symbols.

Recent findings of McMullen and Jolicoeur (1990) indicate that type of task may
determine whether environmental frames are elicited in imagined object rotations. In
their study, participants performed two tasks, each of which included head upright
and tilted viewing conditions. In the naming task, subjects named line drawings of
objects presented at different orientations. They also made normal-mirror discrimi-
nations of the same stimuli. Judgments in the naming task were found to be more
closely aligned with the egocentric frame, whereas normal-mirror judgments
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replicated the environmental frame alignment of previous studies. Thus, with stim-
ulus properties held constant, elicitation of the environmental frame was dependent
on type of task. McMullen and Jolicoeur concluded that the different spatial refer-
ents involved in each task dictated which frame was utilized. Normal-mirror dis-
criminations require interobject comparisons in external space; hence, reliance on the
environmental frame. Object naming, on the other hand, is not contingent on en-
vironmental referents.

This notion is supported by a study by Rock and Heimer (1975). They initially
found that participants relied mostly on the environmental frame for a recognition
task of ambiguously oriented object fragments. However, when prior information of
a stimulus’s orientation with respect to participants’ retinocentric frame was given,
recognition judgments were more in line with the retinocentric frame. An implication
of these findings is that the human visual system exhibits a degree of flexibility as to
which reference frame is selected.

The mental rotation studies suggest several important issues. First, there are limits
to our ability to mentally transform objects. Performance appears to depend on the
type of task carried out. Congruence tasks are performed with ease, whereas tasks in
which observers must predict the prescribed orientation of an object are more dif-
ficult. Moreover, the difficulties of predicted-outcome tasks can be compounded by
the object’s orientation with respect to other reference frames. Alignment with the
gravitational frame appears to be a critical factor for facilitating performance. On
the other hand, the relative reference frame appears to play a more substantive role
in recognition tasks. This will be discussed further in Section 3.2.

3.2. Studies of object recognition

A current debate in the domain of object recognition centers on whether objects
are encoded independently of observer viewpoint (e.g., Biederman & Gerhardstein,
1993, 1995; Biilthoff & Edelman, 1992; Tarr, 1995; Tarr & Biilthoff, 1995; Tarr &
Pinker, 1989; see also Lawson, 1999). The mental rotation paradigm has played a
primary role in this discussion. Given that object recognition involves matching
images to stored representations, inferences about how such representations are
encoded can be gathered by asking observers to name objects presented at multiple
orientations. If response latencies exhibit the classic mental rotation function (in-
creasing RT with degree of stimulus misorientation), viewpoint-dependent encoding
is inferred (c.f. Willems & Wagemans, submitted); the absence of such a function
reflects viewpoint-independent encoding. In terms of spatial referents, these ap-
proaches implicate relative and intrinsic frames, respectively.

Biederman and colleagues fall into the viewpoint-independent camp (e.g.,
Biederman & Cooper, 1991, 1992; Biederman & Gerhardstein, 1993). They have
argued that an object is encoded as a collection of three-dimensional subcompo-
nents, called geons, that are structurally related to one another. The resulting geon
structural description (GSD) allows invariance over a range of viewpoints. The
appeal of this account is that it provides a mechanism for the recognition of two
similar objects containing completely different contours. However, one major
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weakness of GSD theory is its limited application. According to Biederman and
Gerhardstein (1993), three stringent criteria must be met in order for viewpoint in-
variance to be achieved: (1) a given object must be decomposable into single geons;
(2) each object’s GSD must be unique; and (3) an object’s GSD must not appear to
change over different viewpoints (e.g., via accretion and/or deletion of specific geons
resulting from movement).

There is some empirical evidence in support of GSD theory. For example,
Biederman and Gerhardstein (1993) presented participants with line drawings of
common three-dimensional objects such as lamps and airplanes, which appeared at
rotations of up to 135° with respect to the vertical axis. Participants’ task was to
name the objects as quickly as possible. In line with GSD theory, response latencies
were found to be unaffected by stimulus orientation. Subsequent experiments
meeting the GSD criteria tested unfamiliar volumetric stimuli, and also yielded RT
functions that were more or less flat. Unfortunately, there are other ways to account
for these results. If the studies are evaluated as straightforward tests of mental ro-
tation (rather than object recognition), several methodological shortcomings emerge.
One is that the range of rotation angles Biederman and Gerhardstein used was se-
verely restrictive: Three out of five experiments used ranges of 90° or less (c.f.
McMullen & Jolicoeur, 1990, who used a range of 300°). A second problem is that
the objects were highly symmetrical and much simpler than most mental-rotation
stimuli previously tested. For example, in one study (Experiment 4) participants
identified simple geometric shapes such as cubes and cylinders (single volumes of
geon classes) that were rotated along the y-axis in 45° increments from 0° to 90°.
When evaluated from a mental-rotation perspective, it is no surprise that effects of
orientation were not found: Rotations of such simple stimuli through such a
restricted range of rotation would be so fast as to appear negligibly different from
zero-rotation cases! Indeed, for all of the experiments in this study, RT rates were
dramatically faster than those of previous mental rotation studies. Biederman and
Gerhardstein interpreted the finding as evidence for viewpoint-invariant encoding,
but it is certainly plausible that rapid rotation from initial viewpoint also occurred.
(For additional comments, see Tarr & Biilthoff, 1995).

In fact, when more complex stimuli are tested over a large range of rotation angles
and axes, there is mounting evidence suggesting that encoding occurs with respect to
initial viewpoint, for both single objects (Biilthoff & Edelman, 1992; Tarr, 1995; Tarr
& Biilthoff, 1995; Tarr & Pinker, 1989; Tarr, Williams, Hayward & Gauthier, 1998)
and arrays of multiple objects (Diwadkar & McNamara, 1997). For example, Tarr
(1995) had participants learn a series of three-dimensional Shepard-Metlzer-like
objects from one viewpoint. In the test phase, the objects either appeared at the same
initial orientation or at new orientations, with respect to the x, y, and z axes. Tarr
found that time to recognize a given object increased linearly as a function of angular
disparity between its initial and tested views. When participants were then allowed to
view the objects from different perspectives, later performance at these now-familiar
perspectives showed few orientation effects. However, when the familiar perspectives
were subsequently presented at new orientations, performance was again found to be
related to the angular disparity from the nearest familiar perspective.
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Viewpoint-dependency is also evidenced in a study by Rock and DiVita (1987).
Participants first viewed nonsense wire figures from one perspective and then per-
formed each of three critical test conditions. In the first, the object appeared in the
same position as initial viewpoint, yielding an identical retinal image; in the second,
the object appeared in a different position, yielding a different retinal image; in the
third, the object appeared in a different position, but was adjusted so that its retinal
image was identical to initial viewpoint. Rock and DiVita found that accuracy was
highest for both conditions in which the object’s retinal image was identical to initial
viewpoint; performance was degraded for the condition in which the objects’ retinal
image varied. It would be interesting to observe whether similar dissociations would
be found with RT data (which was not recorded in this study).

The object recognition studies suggest that some classes of objects are initially
encoded with respect to the relative reference frame, whereas others may be encoded
with respect to the intrinsic frame. Tarr and Biilthoff (1995) have proposed that
viewpoint-dependence increases progressively with greater visual similarity between
the objects being discriminated. This is line with the mental rotation studies in which
object recognition tasks were found to elicit the relative (specifically, retinocentric)
frame (e.g., McMullen & Jolicoeur, 1990). On the other hand, in line with the results
of Biederman and colleagues, more visually distinct objects may be encoded with
respect to the intrinsic frame.

4. Factors affecting imagined viewer rotations

Several research domains have contributed to our understanding of performance
in imagined self-movement. Early developmental work focused on the problem of
whether young children could take the perspective of others. More recent work in
motor imagery has emphasized whether imagined movements of the self are anal-
ogous to corresponding physical movements. Finally, research comparing perfor-
mance of multiple imagined rotations has focused on whether the human visual
system treats all imagined transformations similarly.

4.1. Studies of perspective taking

In contrast to the literature on mental transformations of objects, early studies on
mental transformations of the self suggested that observers generally have difficulties
imagining perspectives other than their own. This work was pioneered by Piaget
(Piaget & Inhelder, 1967). He used the ‘““three mountains™ perspective problem to
demonstrate that children have trouble imagining how a group of mountains would
look from another’s viewpoint, a finding that has been widely replicated (e.g.,
Flavell, 1968; Laurendeau & Pinard, 1970; c.f. Newcombe & Huttenlocher, 1992).

Similar results have also been found with adults. Rock, Wheeler and Tudor (1989)
presented observers with novel twisted-wire objects and asked them to predict what
the objects would look like from a perspective shifted 90° from their own. Partici-
pants exhibited difficulties in updating the objects from the new perspective over a
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range of response measures. However, they also had equal difficulty predicting the
outcome of a 90° rotation of the objects themselves. Thus, it is unclear as to whether
participants’ problems stemmed from a lack of perspective-taking ability or from a
more general inability with representing these stimuli. A subsequent experiment by
Farah, Rochlin and Klein (1994) revealed that the addition of surfaces to the wire
forms facilitated object rotation performance. Unfortunately, viewer rotations were
not tested with these stimuli.

4.2. Studies of motor imagery

Another paradigm for studying imagined viewer transformations has produced
more definitive results. This approach examines how well observers can determine
whether depictions of human body parts (such as hands and feet) belong to the right
or left side of a human body (Ashton, McFarland, Walsh & White, 1978; Cooper &
Shepard, 1975; Parsons, 1987a,b, 1994; Sekiyama, 1982). For example, Parsons
(1987a) presented observers with drawings of right and left hands and feet, in various
orientations with respect to the vertical. He found that participants judged quite
easily whether the body parts were right or left by performing egocentric transfor-
mations: They imagined their own hands (and feet) rotating into the orientation of
each corresponding stimulus, rather than imagining the stimulus rotating to the
vertical. Moreover, the starting orientations of internally represented body parts
were not arbitrary. Response latencies for most depicted stimulus orientations cor-
responded to the angular displacement between the physical orientation of the
participant’s relevant body part and the orientation of the stimulus. * Orientation
effects were also found, but these generally corresponded to the degree of awk-
wardness of movement implied by the oriented stimulus. Participants responded
faster and with fewer errors for imagined rotations corresponding to natural
movements than for those corresponding to awkward or uncomfortable movements.

Similar results were obtained for judgments involving full-body rotations (Par-
sons, 1987b). Participants viewed drawings of human bodies with one arm (right or
left) outstretched, at various orientations and axes, and made right/left arm judg-
ments as above. Participants had little trouble solving the task by imagining rotating
their bodies into the misoriented stimuli. Response time to some depictions took
longer, such as those of bodies appearing upside-down or with heads facing away
from the observer. However, these effects were much smaller than the gravitational
misalignment effects reported in object-rotation studies (e.g., Pani, 1993; Pani &
Dupree, 1994; Parsons, 1995). Interestingly, a manipulation designed to make the
environmental frame more salient did not affect judgments. The addition of a ground
plane into the scene did not inhibit participants’ ability to make judgments for de-
pictions of body orientations violating physical laws (e.g., body perpendicular to

3 This was confirmed in a later study where manipulations of the position of participants’ hands affected
response latencies of the same hand stimuli in predictable ways (Parsons, 1994).
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gravitational vertical, appearing to balance on the ground by outstretched right
arm).

Recent neuroimaging studies confirm that these types of tasks require egocentric
encoding. Kosslyn, DiGirolamo, Thompson and Alpert (1998) conducted a positron
emission tomography (PET) study that compared participants’ performance on
same-different discriminations of objects and body parts. Right-handed participants
viewed depictions of either pairs of Shepard—Metzler objects or pairs of hands. In
each pair, one stimulus was at a different orientation with respect to the other.
Kosslyn et al. found that imagined rotations of hands activated primary motor areas
of the brain associated with executing hand movements, whereas imagined rotations
of the objects did not (see also Parsons et al., 1995). Moreover, the activated areas
for the hand task were lateralized to the left hemisphere only, which suggests that
participants had mentally rotated their dominant right hands to solve the task.

These experiments collectively suggest that, similar to intrinsic object rotations,
performance on egocentric viewer rotation tasks may be task-dependent. However,
egocentric rotations appear to be governed by different factors than object rotations.
Imagined rotations of the self adhere to the physiological and kinematic constraints
of corresponding physical actions rather than constraints of external space. Move-
ments that are awkward to perform take longer to imagine. Direct manipulations of
the observers’ own egocentric frame also affect performance. In contrast, manipu-
lations with respect to the environmental frame produce somewhat weaker effects.

4.3. Studies comparing object and viewer rotations

Another approach to determining how reference frames affect mental transfor-
mations is to contrast performance of tasks in which different reference frames are
known to be activated, such as object versus viewer rotations. Direct comparisons
between these two types of rotation have yielded mixed results (Amorim & Stucchi,
1997; Huttenlocher & Presson, 1979; Presson, 1982). Amorim and Stucchi (1997)
found a viewer advantage in a task where participants imagined standing at the
periphery of a large clock that was lying on the horizontal plane. In the center of the
clock they imagined a three-dimensional block letter. For the viewer task, partici-
pants imagined moving themselves to a given location around the clock, and updated
the orientation of the letter by indicating what number it pointed to on the clock
from the new perspective. In the object task, they imagined pointing the letter to a
given location on the clock, and then updated their own position on the clock with
respect to the new letter orientation. Participants performed better in the viewer task
than the object task, as evidenced by faster response times and fewer errors. A
similar viewer advantage has been found for updating after physical movement
(Simons & Wang, 1998).

Presson (1982) found relatively poor imagined-viewer performance in a study
involving transformations of arrays of objects. In one experiment, participants were
shown an array of blocks and were asked to construct a new array from a perspective
corresponding to either a rotation of themselves around the array or a rotation of the
array itself. Presson reported an advantage for the imagined array rotations, but
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noted that participants solved the task by transforming objects piecemeal, rather
than performing holistic rotations of the array. When the dependent measure was
changed to one of selecting the correct depiction of the array, the array-rotation
advantage disappeared (Presson, 1982, p. 244). In two additional experiments,
participants answered questions about the location of objects in a miniature array
after imagining either the array rotating (Array task) or themselves rotating around
the array (Viewer task). Presson found that performance of either task depended on
the type of question asked. When participants were asked to name an object that
would be present at a given location in the array after performing either type of
imagined rotation (“item’ questions, e.g., “If you/the array were rotated 90°, what
object would be on the right?”’), an advantage for imagined viewer rotations was
found. However, when the task involved stating the location of a named object in the
array after rotation (“position” questions, e.g., “If you/the array were rotated 90°,
where would the drum be?”’), the opposite result was found: Imagined array rota-
tions were superior to viewer rotations. Similar array advantages using position
questions have been reported elsewhere (Hardwick, Mclntyre & Pick, 1976; Hut-
tenlocher & Presson, 1979).

Wraga, Creem and Proffitt (submitted) proposed that the array advantage for
position questions was likely spurious, due to the fact that participants could resort
to strategies other than holistic rotations in the Array task. For example, in solving
the above drum question, participants could simply imagine moving a single object —
the drum — while ignoring the other items in the array. The imagined displacement of
a single object could be achieved via translation rather than rotation, much like a
single car of a Ferris wheel traverses a circular path without rotating. In contrast, the
Viewer task required rotating the prescribed number of degrees and updating the
entire array to find the drum. Imagined translations are generally thought to be
easier to perform than imagined rotations (Easton & Sholl, 1995; Rieser, 1989).

Wraga et al. conducted a variation of Presson’s position question experiment to
test this hypothesis (Wraga, Creem and Proffitt, submitted, Experiment 3). Partici-
pants performed imagined Array and Viewer rotations to position questions. In
addition, “catch trials” were added to both tasks to determine whether participants
were performing rotations. For each catch trial, participants updated the position of
any object in the array relative to the perspective arrived at from a given position
question. For example, if the position question were “Rotate 90°, where is the
drum?”, the catch trial would be “Now, what’s on your right?”” The results revealed
that performance on the position questions was relatively easy in the Array task, but
performance became much poorer on catch trials, indicating that participants had
not holistically rotated the array initially during the position question. In contrast,
performance in the Viewer task was consistent across both question types. Thus, it is
likely that all experiments showing an array advantage using position questions have
inadvertently tapped performance of imagined object translations rather than ro-
tations.

Wraga et al. went on to clarify the conditions under which imagined object- and
viewer rotations are advantageous. In one experiment (Experiment 4), the array was
collapsed into one object: a rectangular block whose four edges were each painted a
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different color. In this way, the four components to be learned (i.e., colors) were
spatially adjoined and thus encodeable as a single unit, much like the four axes of the
body utilized in the Viewer task. Participants either imagined the block rotating
around its own axis (Object task) or imagined themselves rotating around the block
(Viewer task). In another experiment (Experiment 5), an object with a more familiar
configuration (toy car) was used. The car’s components (hood, driver’s side, pas-
senger’s side, trunk) were thus both spatially connected and highly familiar. Despite
either manipulation, participants responded more quickly and made fewer errors in
the Viewer task than the Object task. However, performance in the Car-Object task
improved over the Block-Object task, whereas Viewer performance was equivalent
across both. Wraga et al. attributed the improved performance to the fact that
participants were more successful in performing cohesive transformations of the car’s
components.

A subsequent experiment (Experiment 6) attempted to better facilitate object
rotations, using a somewhat different manipulation. Recent studies have shown that
the ability to localize objects after imagined viewer rotations improves if the observer
is physically rotated while the imagined transformation is being performed (Farrell
& Robertson, 1998; Presson & Montello, 1994; Rieser, 1989; Rieser, Guth & Hill,
1986). Wraga, Creem and Proffitt extended this manipulation to passive rotations of
the object. Participants again performed both Object and Viewer tasks. However, for
each rotation trial of the Object task, the experimenter rotated the block in the
blindfolded participants’ upturned palm while the corresponding degrees were given
verbally. This manipulation led to a significant decrease in response latency and
errors, comparable to Viewer levels. An additional condition with a different group
of participants in which the block remained stationary in participants’ upturned
palm resulted in the typical Viewer advantage. Wraga, Creem and Proffitt concluded
that the turning block had provided participants with haptic information specifying
the object’s orientation with respect to the environment or themselves at every phase
of the transformation, which enhanced their visual imagery of a rigid, cohesive
transformation.

5. Conclusions

The goal of this paper was to examine the spatial reference frames relevant to
imagined object and viewer rotations, in order to understand the relatively longer
RTs and higher error rates found with object performance in recent studies. A
critical factor to this result may be the type of task utilized in rotation comparison
studies. Most studies have used tasks in which observers predict a rotational out-
come, either of themselves or of an object (e.g., Presson, 1982; Wraga, Creem and
Proffitt, submitted). As reviewed in this paper, a common finding of the mental
rotation literature was that these types of predicted-rotation tasks are difficult
to perform on objects (e.g., Pani, 1993; Pani & Dupree, 1994; Parsons, 1995). In
general, the accuracy of such judgments was found to be heavily dependent on



M. Wraga et al. | Acta Psychologica 102 (1999) 247-264 261

alignment of the object with respect to the environmental frame. When the object
was misaligned, performance deteriorated. Moreover, poor performance was not due
to memory load: In some of the experiments (e.g., Pani & Dupree, 1994), the object
to be rotated was physically present during the task. On the other hand, recognition
tasks such as normal-mirror discriminations, same-different judgments, and object
classifications were found to be relatively easier.

What might account for this marked discrepancy in object-rotation performance?
The answer may lie in the representational requirements of the two respective task
types. Recognition tasks require a match between two existing representations, or in
the case of sequential stimulus presentation, a match of an existing representation to
a stored one. Thus, the beginning and end positions of a given rotation event are pre-
determined and nonarbitrary. To solve such a task, all of an object’s components are
collectively rotated into congruence with the end-position representation. A decision
is then made as to whether all of the components match up to those of the end-
position representation. In contrast, a predicted-outcome task requires the building
of a new representation from an existing one: Its rotation event has an indeterminate
end position. Difficulties in this task might thus stem from inherent problems with
performing cohesive rotations of all components of the intrinsic representation.
Indeed, several studies have indicated that, when given the opportunity, observers
opt to transform single components of an object rather than complete a holistic
rotation (Presson, 1982; Wraga, Creem and Proffitt, submitted). Moreover, Wraga,
Creem and Proffitt’s block-turning experiment demonstrated that such performance
could be improved when on-line haptic information for an object’s rigid, cohesive
rotation was given.

In the context of this difficulty, the evidence for viewpoint-specific encoding re-
ported in the object-recognition literature makes sense (e.g., Biilthoff & Edelman,
1992; Tarr, 1995; Tarr & Pinker, 1989). Perhaps the nonarbitrary starting points that
result from viewpoint-specific encoding help facilitate rotation of the intrinsic frame.

Object difficulties aside, it is of equal importance to ascertain why predicted-
outcome tasks of imagined viewer rotations are found to be less problematic. The
answer may be revealed in the structure of the relative reference frame itself. The
front-back and right-left axes of the relative frame “belong” to the observer. When
the observer moves, the entire relative frame moves with her: It is biologically im-
possible to move the relative frame in a piecemeal fashion. In contrast, most objects
can be easily separated into parts. An evolutionary argument can also be made for
this difference in abilities. We have evolved as moving organisms in a relatively stable
environment, in which objects themselves rarely rotate. Thus, updating the world
with respect to the relative frame may be a more natural ability (for similar com-
ments, see also Farrell & Robertson, 1998; Simons & Wang, 1998; Wraga, Creem
and Proffitt, submitted).

To summarize, the discrepancy between performance of imagined object and
viewer rotations may be attributable to differences in the way their corresponding
reference frames are transformed by the human cognitive system. This review
showed that difficulties in performing cohesive rotations of an object’s intrinsic frame
result in reliance on information from other frames, such as the environmental
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frame. In contrast, the stability of the observer’s relative frame renders its rotations
to be less susceptible to multiple-frame influences.

Acknowledgements

This research was supported by NIMH grant no. MH11462 to the first author,
and NIMH grant no. MH52640 to the third author. We wish to thank Dan Simons,
Mike Tarr, Johan Wagemans, and one anonymous reviewer for helpful comments
on a previous draft of this paper.

References

Amorim, M., & Stucchi, N. (1997). Viewer- and object-centered mental explorations of an imagined
environment are not equivalent. Cognitive Brain Research, 5, 229-239.

Ashton, R., McFarland, K., Walsh, F., & White, K. (1978). Imagery ability and the identification of
hands: A chronometric analysis. Acta Psychologica, 42, 253-262.

Biederman, I., & Cooper, E. E. (1991). Evidence for complete translational and reflectional invariance in
visual priming. Perception, 20, 585-593.

Biederman, 1., & Cooper, E. E. (1992). Size invariance in visual object priming. Journal of Experimental
Psychology: Human Perception and Performance, 18, 121-133.

Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence for three-
dimensional viewpoint invariance. Journal of Experimental Psychology: Human Perception and
Performance, 19, 1162-1182.

Biederman, 1., & Gerhardstein, P. C. (1995). Viewpoint-dependent mechanisms in visual object
recognition: Reply to Tarr and Biilthoff. Journal of Experimental Psychology: Human Perception and
Performance, 21, 1506-1514.

Biilthoff, H. H., & Edelman, S. (1992). Psychophysical support for a two-dimensional view interpolation
theory of object recognition. Proceedings of the National Academy of Sciences, 89, 60—64.

Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, G. J., Thompson, W. L., Anderson, A. K.,
Bookheimer, S. Y., Rosen, B. R., & Belliveau, J. W. (1996). Changes in cortical activity during mental
rotation: A mapping study using functional MRI. Brain, 119, 89-100.

Cooper, L. A. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 7, 20-43.

Cooper, L. A., & Shepard, R. N. (1975). Mental transformations in the identification of left and right
hands. Journal of Experimental Psychology: Human Perception and Performance, 104, 48-56.

Corballis, M. C., Nagourney, B. A., Shetzer, L. L., & Stefanatos, G. (1978). Mental rotation under head
tilt: Factors influencing the location of the subjective reference frame. Perception & Psychophysics, 24,
263-273.

Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependence in scene recognition. Psychological
Science, 8, 302-307.

Easton, R. D., & Sholl, M. J. (1995). Object-array structure, frames of reference, and retrieval of spatial
knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 483-500.
Farah, M. J., Rochlin, R., & Klein, K. L. (1994). Orientation invariance and geometric primitives in shape

recognition. Cognitive Science, 18, 325-344.

Farrell, M. J., & Robertson, I. H. (1998). Mental rotation and the automatic updating of body-centered
spatial relationships. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 227—
233.

Flavell, J. (1968). The development of role-taking and communication skills in children. New York: Wiley.

Hardwick, D., Mclntyre, C., & Pick, H. (1976). The content and manipulation of cognitive maps in
children and adults. Monographs of the society for research in child development, 41.



M. Wraga et al. | Acta Psychologica 102 (1999) 247-264 263

Hinton, G. E., & Parsons, L. M. (1988). Scene-based and viewer-centered representations for comparing
shapes. Cognition, 30, 1-35.

Hummel, J. E. (1994). Reference frames and relations in computational models of object recognition.
Current Directions in Psychological Science, 3, 111-116.

Huttenlocher, J., & Presson, C. C. (1979). The coding and transformation of spatial information. Cognitive
Psychology, 11, 375-394.

Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and
individual differences in spatial ability. Psychological Review, 92, 137-172.

Kosslyn, S. M., DiGirolamo, G. J., Thompson, W. L., & Alpert, N. M. (1998). Mental rotation of objects
versus hands: Neural mechanisms revealed by positron emission tomography. Psychophysiology, 35,
151-161.

Laurendeau, M., Pinard, A. (1970). The development of the concept of space in the child. New York:
International University Press.

Lawsson (1999). Achieving visual object containing across flame rotation and depth rotation. Acta
Psychologica 102, 221-245.

Luyat, M., Ohlmann, T., & Barraud, P. A. (1997). Subjective vertical and postural activity. Acta
Psychologica, 95, 181-193.

Massironi, M., & Luccio, R. (1989). Organizational versus geometric factors in mental rotation and
folding tasks. Perception, 18, 321-332.

McMullen, P. A., & Jolicoeur, P. (1990). The spatial frame of reference in object naming and
discrimination of left-right reflections. Memory & Cognition, 18, 99-115.

Newcombe, N., & Huttenlocher, J. (1992). Children’s early ability to solve perspective-taking problems.
Developmental Psychology, 28, 635-643.

Paillard, L. (1991). Motor and representational framing of space. In J. Paillard (Ed.), Brain and space (pp.
163-182). Oxford: Oxford University Press.

Pani, J. R. (1993). Limits on the comprehension of rotational motion: Mental imagery of rotations with
oblique components. Perception, 22, 785-808.

Pani, J. R. (1997). Descriptions of orientation in physical reasoning. Current Directions in Psychological
Science, 6, 121-126.

Pani, J. R., & Dupree, D. (1994). Spatial reference systems in the comprehension of rotational motion.
Perception, 23, 929-946.

Parsons, L. M. (1987a). Imagined spatial transformation of one’s body. Journal of Experimental
Psychology: General, 116, 172-191.

Parsons, L. M. (1987b). Imagined spatial transformations of one’s hands and feet. Cognitive Psychology,
19, 178-241.

Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally
simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20, 709-730.

Parsons, L. M. (1995). Inability to reason about an object’s orientation using an axis and angle of rotation.
Journal of Experimental Psychology: Human Perception and Performance, 21, 1259-1277.

Parsons, L. M., Fox, P. T., Downs, J. H., Glass, T., Hirsch, T. B., Martin, C. C., Jerabek, P. A., &
Lancaster, J. L. (1995). Use of implicit motor imagery for visual shape discrimination as revealed by
PET. Nature, 375, 54-58.

Piaget, J., & Inhelder, B. (1967). The child’s conception of space, (pp. 209-246). New York: Norton
(Original work published 1948).

Presson, C. C. (1982). Strategies in spatial reasoning. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 8, 243-251.

Presson, C. C., & Montello, D. R. (1994). Updating after rotation and translational body movements:
Coordinate structure of perspective space. Perception, 23, 1447-1455.

Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 15, 1157-1165.

Rieser, J. J., Guth, D. A., & Hill, E. W. (1986). Sensitivity to perspective structure while walking without
vision. Perception, 15, 173-188.

Rock, 1. (1973). Orientation and form. New York: Academic Press.

Rock, 1., & DiVita, J. (1987). A case of viewer-centered object perception. Cognitive Psychology, 19, 280-293.



264 M. Wraga et al. | Acta Psychologica 102 (1999) 247-264

Rock, 1., & Heimer, W. (1975). The effect of retinal and phenomenal orientation on the perception of
form. American Journal of Psychology, 70, 493-511.

Rock, 1., Wheeler, D., & Tudor, L. (1989). Can we imagine how objects look from other viewpoints?.
Cognitive Psychology, 21, 185-210.

Sekiyama, H. (1982). Kinesthetic aspects of mental representation in the identification of left and right
hands. Perception & Psychophysics, 32, 89-95.

Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant kinematics of
perceiving, imagining, thinking, and dreaming. Psychological Review, 91, 417-447.

Shepard, R. N. (1994). Perceptual-cognitive universals as reflections of the world. Psychonomic Bulletin &
Review, 1, 2-28.

Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT
Press.

Shepard, R. N., & Hurwitz, S. (1984). Upward direction, mental rotation, and discrimination of left and
right turns in maps. Cognition, 18, 161-193.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972),
701-703.

Shiffrar, M. M., & Shepard, R. N. (1991). Comparison of cube rotations around axes inclined relative to
the environment or to the cube. Journal of Experimental Psychology: Human Perception and
Performance, 17, 44-54.

Simons, D. J., & Wang, R. F. (1998). Perceiving real-world viewpoint changes. Psychological Science, 9,
315-320.

Tarr, M. J. (1995). Rotating objects to recognize them: A case study on the role of viewpoint dependency
in the recognition of three-dimensional objects. Psychonomic Bulletin & Review, 2, 55-82.

Tarr, M. J., & Bilthoff, H. H. (1995). Is human object recognition better described by geon structural
descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). Journal of
Experimental Psychology: Human Perception and Performance, 21, 1494-1505.

Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape recognition.
Cognitive Psychology, 21, 233-282.

Tarr, M. J., Williams, P., Hayward, W. G., & Gauthier, 1. (1998). Three-dimensional object recognition is
viewpoint-dependent. Nature Neuroscience, 1, 275-277.

Willems, B., & Wagemans, J. (submitted). Matching multi-component objects from different viewpoints:
Normalization but not mental rotation.

Wraga, M., Creem, S. H., & Proffitt, D. R. (submitted). Updating scenes after imagined object- and viewer-
rotations.



	The Influence of Spatial Reference Frames on Imagined Object-and vVewer Rotations
	Recommended Citation

	PII: S0001-6918(98)00057-2

