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GENERALIZED MEAN CURVATURE FLOW IN

CARNOT GROUPS

LUCA CAPOGNA AND GIOVANNA CITTI

Abstract. In this paper we study the generalized mean curvature
flow of sets in the sub-Riemannian geometry of Carnot groups. We
extend to our context the level sets method and the weak (viscos-
ity) solutions introduced in the Euclidean setting in [29] and [14].
We establish two special cases of the comparison principle, exis-
tence, uniqueness and basic geometric properties of the flow.

1. Introduction

The evolution of hypersurfaces with normal velocity given by the
mean curvature K arises as the L2 gradient flow of the Riemannian
perimeter functional. A detailed list of references concerning the study
of the mean curvature flow can be found in the monographs [25] and
[67].
Although the mean curvature flow is locally smoothing, even starting

with a smooth manifold as initial data, its flow may develop singulari-
ties before the extinction time, as in the famous example of the dumb-
bell in [29]. Several methods have been suggested in order to study the
behavior of the flow past the formation of singularities: the method of
currents introduced by Brakke [11], the method of generalized (viscos-
ity) solutions indipendently developed by Chen, Giga and Goto [14],
and by Evans and Spruck [29], [26], [27], [28], (see also the generaliza-
tion by Ishii and Souganidis [44]), De Giorgi’s method of barriers [23]
(which was studied in detail by Bellettini and Novaga [6], [7]) and the
closely related definition by Barles and Souganidis [4] and [3].
Most pertinent to the present paper is the work in [29] where, follow-

ing [55] the authors study the flow of level setsMt = {x ∈ R
n | u(x, t) =

0} where the function u is a generalized solution of the degenerate

Key words and phrases. mean curvature flow, sub-Riemannian geometry, Carnot
groups
The authors are partially funded by NSF Career grant DMS-0124318 (LC) and
GALA project (GC).
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quasilinear, non-divergence form PDE

(1.1) ∂tu(x, t) = K|∇u| =
n
∑

i,j=1

(

δij −
∂xi
u∂xj

u

|∇u|2
)

∂2xi xj
u.

Note that the PDE becomes degenerate exactly at the singularity
points of the level sets, that is where |∇u| vanishes. The level set
approach was extended by Ilmanen [42]) to include the study of gener-
alized flow of subsets in Riemannian manifolds.
The Riemannian mean curvature flow has been used both as a model

for the study of sharp-interfaces in material science and in digital image
processing. Recently the first layer of the mamalian visual cortex has
been modelled as a smooth surface with a sub-Riemannian geometry
([40] and [58]). In this setting some perceptual phenomena such as
the formation of subjective surfaces, are described as sub-Riemannian
mean curvature flows and minimal surfaces (see [57], [17], [61], [38],
and [37]).
The focus of the present paper is to study a model case of the sub-

Riemannian analogue of the mean curvature flow: the horizontal mean
curvature flow in Carnot groups.
Sub-Riemannian geometry is an extension of Riemannian geometry

in which, given a manifold G, a metric g0 is only prescribed on a sub-
bundle HG ⊂ TG (called horizontal bundle). The horizontal bundle is
supposed to have the so-called bracket generating properties, i.e. there
is a number r ∈ N such that all sections of TG are generated by linear
combinations of sections ofHG and their commutators up to order r. In
a standard fashion one can associate a control distance dC (the Carnot-
Carathéodory distance) to the sub-Riemannian structure (G,HG, g0).
Blow-up of such geometric structures (see [34], [50] and [60]) give rise
to “linear” sub-Riemannian manifolds called Carnot groups (nilpotent
Lie groups endowed with a control metric, see the next section for a
precise definition). In a sense, Carnot groups are the model for the
tangent spaces to sub-Riemannian manifolds.
Sub-Riemannan structures can also be seen as degenerate limit of

Riemannian structures: Fix an orthonormal frame F0 = {X1, ..., Xm}
of sections of HG and extend it to a frame F of TG. Define Riemann-
ian metrics gǫ, ǫ > 0, extensions of g0 to all of TG, such that at each
point, the length of any non-horizontal section in F is ǫ−1. If we denote
by dǫ the distance function associated to gǫ then (G, dǫ) → (G, dC) in
the sense of the Gromov-Hausdorff convergence between metric spaces
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(see [35],[34], and [51]). For a more in-depth presentation of Sub-
Riemannian geometry we refer the reader to [64], [35],[34], [51], [12]
and references therein.
If G is a Carnot group andM ⊂ G is a smooth hypersurface we define

Σ(M) the set of characteristic points ofM , i.e. the points x ∈M where
the horizontal structure is contained in the tangent space. Derridij [24]
proved that Σ(M) has zero surface measure, this result was later refined
in [1] and [48]. Outside Σ(M) one can define a horizontal normal n0,
the normalized projection onto HM of the Riemannian normal (in any
of the metrics gǫ). Accordingly, the horizontal mean curvature K0

can be defined as the first variation of the sub-Riemannian perimeter
in the horizontal normal direction (see [21], [10], [59], [39] and [62])1.
Generically such curvature is unbounded in a neighborhood of Σ(M)
and cannot be defined at characteristic points.
The horizontal mean curvature flow of a hypersurface of a Carnot

group G is the flow t → Mt ⊂ G in which each point x(t) /∈ Σ(Mt) in
the evolving manifold moves along the horizontal normal with speed
given by the horizontal mean curvature. The corresponding equation,
outside the characteristic set, is

(1.2)
dx

dt
= −K0n

0.

Extending the techniques in [29], the evolving surface Mt can be rep-
resented as zero level set of a function u(x, t) which solves the PDE,

(1.3) ∂tu(x, t) =

m
∑

i,j=1

(

δij −
XiuXju

∑m
i=1(Xiu)2

)

XiXju.

There is an obvious immediate difficulty in the study of this equation:
It is not well defined in Σ(Mt). In contrast with the Euclidean setting
the PDE becomes degenerate not only at singularities of the level sets,
where the full (spatial) gradient of the solution ∇u(·, t) vanishes, but
also at characteristic points. It is in fact only the vanishing of the hor-
izontal portion of the full gradient which determines the characteristic
set. In a sense, points in Σ(Mt) correspond to metric singularities in
the set Mt.
In view of this new difficulty, in the present paper while we are able

to prove existence for the general flow described in (1.3), at the moment
we can prove comparison principles and uniqueness only for a special

1 Closely linked to the study of mean curvature flow, the analysis of minimal
surfaces in the sub-Riemannian setting has recently seen great activity [32], [56],
[15], [16], [33], [22], [5] and [54]).
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class of flows, i.e. either in the presence of particular classes of initial
data or for graphs over Carnot groups.
Bonk and the first named author study in [10] some properties of

smooth solutions of this equation. In that paper the solution is inter-
preted in the vanishing viscosity sense, i.e. limit of Riemannian mean
curvature flows. However they assume the existence of such smooth
vanishing viscosity solution.
For elliptic or parabolic PDE the notion of vanishing viscosity is

equivalent to the notion of viscosity solution (see [20, Section 6]). This
question has not yet been addressed in the sub-Riemannian setting,
where however a number of authors have studied viscosity solutions for
non degenerate PDE: [8], [9], [65], [66], [47], [2], and [49].
In the present paper we give a new definition of continuous (non

smooth) viscosity solutions to (1.3). The novelty of our definition comes
from the fact that the equation is totally degenerate at characteristic
points, where the right hand side of (1.3) is not defined. While we
cannot prove that such viscosity solutions are equivalent to vanishing
viscosity solutions we establish existence and uniqueness of Lipschitz
vanishing viscosity solutions for the initial value problem, and some
basic geometric properties of the flow. Hence our results can be inter-
preted as special limit cases of Ilmanen’s work [42] in the approximation
gǫ → g0 described above.

The paper is organized as follows: In section 2 we give the definition
of viscosity solutions to (1.3) and recall some existing results. In section
3 we prove two particular cases of the comparison theorem between a
bounded subsolution u and a supersolution v of equation (1.3), from
which uniqueness follows. In order to do so it is quite standard to use
as test function the difference of regularized versions of these two func-
tions (the so called sup inf- convolutions) in two different points, with
a penalization term. The choice of this test function and in particu-
lar of the penalization term depends crucially on the sub-Riemannian
character of the problem. In Section 4 we identify simple classes of so-
lutions (self-shrinking cylinders and stationary planes) and construct
bounded barriers which will be used in the proof of existence and in
the study of geometric properties of the flows. The construction of
explicit solutions is not trivial in our setting. The metric sphere, which
is self-shrinking and heavily used in the Euclidean setting (see [29]),
does not have a self-similar evolution in our setting. Indeed it is an
open question wether there is any closed manifold which gives rise to
a self-similar solution. See [10] for a study of self-similar solutions in
the Heisenberg group.



GENERALIZED MEAN CURVATURE FLOW IN CARNOT GROUPS 5

In Section 5 we prove the existence of Lipschitz vanishing viscos-
ity solutions, and the fact that they are also viscosity solutions. In
the proof of existence we first provide higher order a priori estimates
for the solutions of the approximating Riemannian flows. We cannot
rely on the estimates proved by Ilmanen in [42] as they are dependent
on curvature bounds, which fail in our setting. Moreover the non-
commutativity of the vector fields Xi makes it hard to prove a-priori
higher order estimates. We deal with this problem by using both left-
invariant and right-invariant derivatives. Indeed, such left and right
derivatives commute (by definition), allowing to easily differentiate the
equation. This, along with a parabolic maximum principle yields the
desired bounds.
In Section 6 we prove some simple geometric properties of the evolu-

tion. Lacking a complete comparison principle we cannot show that the
generalized flow does not depend on the choice of the initial defining
function, but only its zero level set. We show that if two setsM, M̂ sat-
isfy M ⊂ M̂ , then the inclusion Mt ⊂ M̂t between their evolutions Mt,
M̂t persists for all times. Since this result depends on the comparison
principle we need some additional hypothesis on M̂t.
For generalized level sets arising out of vanishing viscosity solutions,

we show also that the right invariant control distance between two dis-
joint initial sets increases in the evolution. As a corollary we have that
any initial compact set has a finite extinction time, i.e. the evolving
set shrinks and eventually vanishes in a finite time.
To conclude, we recently learned that Dirr, Dragoni and Von Renesse

have recently studied a probabilistic approach to the mean curvature
flow in the context of the Heisenberg group in the same spirit of [63].
Acknowledgments. Part of the work on this paper was done while

the authors were guests of the Centro di Ricerca Matematica Ennio de
Giorgi, in Pisa, Italy. We thank the staff of the center, M. Giaquinta,
F. Ricci and L. Ambrosio for their hospitality and for interesting con-
versations.

2. Definitions and preliminary results

2.1. Carnot group structure. Let G be an analytic and simply
connected Lie group with topological dimension n and such that its
Lie algebra G admits a stratification G = V 1 ⊕ V 2 ⊕ ... ⊕ V r, where
[V 1, V j] = V j+1, if j = 1, ..., r − 1, and [V k, V r] = 0, k = 1, ..., r. Such
groups are called in [30], [31], and [64] stratified nilpotent Lie groups.
Fix X1, ..., Xm a basis of V 1, called the horizontal frame, and complete
it to a basis (X1, ..., Xn) of G by choosing for every k = 2, · · · r a basis
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of Vk. If Xi belongs to Vk, then we will set d(i) = k. We will denote
by xX =

∑n
i=1 xiXi a generic element of G. Since the exponential map

exp : G → G is a global diffeomorphism we use exponential coordi-
nates in G, and denote x = (x1, · · · , xn) the point exp

(

xX
)

. We also
set xH = (x1, · · · , xm) and xV = (xm+1, ..., Xn) so that x = (xH , xV ).
Define non-isotropic dilations as δs(x) = (sd(i)xi), for s > 0.
We denote by (X1, ..., Xn) (resp. (X̃1, ..., X̃n)) the left invariant (resp.

right invariant) translation of the frame (X1, ..., Xn) of G. Set H(0) =
V 1, and for any x ∈ G we let H(x) = xH(0) = span[X1, ..., Xm](x).
The distribution x → H(x) is called the horizontal sub-bundle H . On
H we define a left invariant positive definite form g0, so thatX1 · · · , Xm

is an orthonormal frame. We let ∇ = (X1, · · · , Xm) denote the hori-
zontal gradient operator. The vectors X1....Xm and their commutators
span all the Lie algebra G, and consequently verify Hörmander’s fi-
nite rank condition ([41]). This allows to use the results from [53],
and define a control distance dC(x, y) associated to the distribution
X1....Xm, which is called the Carnot-Carathéodory metric (denote by

d̃C the corresponding right invariant distance). We call the couple
(G, dC) a Carnot Group.
We define a family of left invariant Riemannian metrics gǫ, ǫ > 0 in

G by requesting that {X1, · · · , Xm.ǫXm+1, · · · , ǫXn} is an orthonormal
frame. We will denote by dǫ the corresponding distance functions.
Correspondingly we use ∇ǫ, (resp. ∇̃ǫ) to denote the left (resp. right)
invariant gradients.
It is well known2 that (G, dǫ) converges in the Gromov-Hausdorff

sense as ǫ → 0 to the sub-Riemannian space (G, dC). The Carnot-
Carathéodory metric is equivalent to a more explicitly defined pseudo-
distance function, that we will call (improperly) gauge distance, defined
as

|x|2r! =
r
∑

k=1

mk
∑

i=1

|xi,k|
2r!
k , and d(x, y) = |y−1x|

If x ∈ G and r > 0, we will denote by B(x, r) = {y ∈ G | d(x, y) < r}
the balls in the gauge distance.
We recall now the expression of the left invariant vector fields in

exponential coordinates (see [60])

(2.1) Xi = ∂i +
r
∑

k=d(i)+1

∑

d(j)=k

pjik(x)∂j ,

2See for instance [35]
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where pjik(x) is an homogeneous polynomial of degree k − d(i) and
depends only on xh, with d(1) ≤ d(h) ≤ k − d(i).

2.2. Horizontal mean curvature flow of hypersurfaces. LetM ⊂
G be a C2 smooth hypersurface, denote by n

ǫ the unit normal in the
metric gǫ and by n

0 =
∑

d(i)=1(n
0)iXi its normalized projection in the

gǫ norm onto the horizontal plane. Note that this is not dependent on
ǫ and is well defined only outside the characteristic set Σ(M) = {x ∈
M | H(x) ⊂ TxM}. The vector n

0 is called horizontal normal and its
(horizontal) divergence

(2.2) K0 =
∑

d(i)=1

Xin
0
i

is known as the horizontal mean curvature of M at x /∈ Σ(M). Note
that even for smooth (in the Euclidean sense) hypersurfaces the hori-
zontal mean curvature may blow up near characteristic points.
We study the flow t → Mt where a point x ∈ Mt evolves with

velocity ∂tx = −K0n
0. The level set approach consists in studying

a PDE describing the evolution of a function u(x, t) such that3 Mt =
{x ∈ G| u(x, t) = 0}. In this setting one has n

ǫ = ∇ǫu/|∇ǫu| and
n

0 = ∇0u/|∇0u|. Consequently, on a formal level, one has

(2.3) ∂tu(x(t), t) =< ∇0u(x(t)), ∂tx(t) >0 +∂tu(x, t)

= −K0 < ∇0u,n
0 > +∂tu = −K0|∇0u|+ ∂tu = 0.

This problem is well approximated by the Riemannian mean cur-
vature flows ∂tx = −Kǫn

ǫ, where Kǫ =
∑n

i=1X
ǫ
in

ǫ

i is the gǫ mean
curvature of M . The corresponding evolution PDE for the level sets
is ∂tu

ǫ = Kǫ|∇ǫu|. We observe that for a given hypersuface, nǫ → n
0

and Ke → K0 as ǫ → 0, outside the characteristic set. We will prove
in Section 5 that uǫ → u weak solution of (2.3).
A simple computation shows that the mean curvature Kǫ of the

manifold {u(x) = 0} is given by the identity

Kǫ|∇ǫu| =
n
∑

i,j=1

(

δij −
Xǫ

i uX
ǫ
ju

|∇ǫu|2
)

Xǫ
iX

ǫ
ju,

3When a manifold is defined as a level set, we tacitly assume that the gradient
of the defining function does not vanish in a neighborhood of the manifold.
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Outside of the characteristic set the horizontal mean curvature K0 is
expressed as

K0|∇0u| =
m
∑

i,j=1

(

δij −
XiuXju

|∇0u|2
)

XiXju.

Consequently (2.3) can be rewritten more explicitly as

(2.4) ut =

m
∑

i,j=1

(

δij −
XiuXju

|∇0u|2
)

XiXju, for x ∈ G, t > 0.

If the Carnot group is a product G = G̃ × R and we use coordinates
(x, e) ∈ G̃ × R, then from (2.4) and by representing the function u as
u(x, e, t) = e−U(x, t), we obtain a special class of evolutions, given by

graphs over G̃ of the form Mt = {(x, U(x, t)) | x ∈ G̃, t > 0} where
U : G̃→ R is a solution of

(2.5) Ut =
m
∑

i,j=1

(

δij −
XiUXjU

1 + |∇0U |2
)

XiXjU, for x ∈ G̃, t > 0.

Note that such graphs are always non-characteristic.

2.2.1. Weak solutions. As in the Euclidean case, one cannot expect
the smoothness of the solution to be preserved for all times. Moreover,
even for smooth solutions, the horizontal gradient vanishes at all char-
acteristic points making the equation degenerate. To overcome these
difficulties we use the subelliptic analogue of viscosity solutions (see
also for earlier related definitions [9],[66]).

Definition 2.1. A function u ∈ C(G × [0,∞) is a weak subsolution
of (2.4) in G × (0,∞) if for any (x, t) ∈ G × (0,∞) and any function
φ ∈ C2(G)× (0,∞) such that u−φ has a local maximum at (x, t) then

(2.6)

∂tφ ≤







∑m
i,j=1

(

δij − XiφXjφ

|∇0φ|2

)

XiXjφ if |∇0φ| 6= 0
∑m

i,j=1(δij − pipj)XiXjφ for some p ∈ R
m, |p| ≤ 1, if |∇0φ| = 0.

A function u ∈ C(G× [0,∞) is a weak supersolution of (2.4) if
(2.7)

∂tφ ≥







∑m
i,j=1

(

δij − XiφXjφ

|∇0φ|2

)

XiXjφ if |∇0φ| 6= 0
∑m

i,j=1(δij − pipj)XiXjφ for some p ∈ R
m, |p| ≤ 1, if |∇0φ| = 0.

A weak solution of (2.4) is a function u which is both a weak subso-
lution and a weak supersolution.



GENERALIZED MEAN CURVATURE FLOW IN CARNOT GROUPS 9

In the graph case G = G̃×R when we consider only evolving surfaces
of the form Mt = {e = U(x), x ∈ G̃}, we can also reduce the class of
test functions in the previous definition to those of the form φ(e, x) =
e− ψ(x). In this way the definition of viscosity solutions becomes

Definition 2.2. A function U ∈ C(G̃ × [0,∞) is a weak subsolution
of (2.5) in G̃ × (0,∞) if for any (x, t) ∈ G̃ × (0,∞) and any function

ψ ∈ C2(G̃) × (0,∞) such that U − ψ has a local maximum at (x, t)
then

(2.8) ∂tψ ≤
m
∑

i,j=1

(

δij −
XiψXjψ

1 + |∇0ψ|2
)

XiXjψ

A function U ∈ C(G̃× [0,∞) is a weak supersolution of (2.5) if

(2.9) ∂tψ ≥
m
∑

i,j=1

(

δij −
XiψXjψ

1 + |∇0ψ|2
)

XiXjψ

A weak solution of (2.5) is a function U which is both a weak sub-
solution and a weak supersolution.

As in [19], [43], in the Euclidean setting and [9] in the Heisenberg
group, we have an equivalent definition of weak sub(super)solutions.

Definition 2.3. A function u ∈ C(G× [0,∞)) ∩ L∞(G× [0,∞)) is a
weak sub-solution of equation (2.4) if whenever (x, t) ∈ G× [0,∞) for
every yX ∈ G and s ∈ R and

u(exp
(

yX
)

(x), t+ s) ≤ u(x, t) +
2
∑

d(i)=1

piyi

+
1

2

m
∑

i,j=1

rijyiyj + qs+ o(|y|2 + s2).(2.10)

for some p ∈ V 1 ⊕ V2, q ∈ R and R = (rij) ∈ R
m×m then

(2.11) q ≤







∑m
i,j=1

(

δij − pipj
|pH |2

)

rij if |pH | 6= 0
∑m

i,j=1(δij − ηiηj)rij for some |η| ≤ 1 if |pH | = 0.

2.2.2. Generalized flow. The evolution of an initial bounded hypers-
uface M0 ⊂ G is described in the following way: Choose a bounded
function f ∈ C(G) such that M0 = {f(x) = 0}. We define the gen-
eralized horizontal mean curvature flow Mt of M0 as the level sets
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Mt = {u(x, t) = 0} for u a weak solution of (2.4) satisfying the initial
condition

(2.12) u(x, 0) = f(x), for x ∈ G.

We remark explicitly that this notion of generalized flow allows for
the evolution of any compact set, not necessarily an hypersurface. In
order for definition to make sense one needs to show that the evolution
does not depend on the choice of the defining function f . Lacking a
suitable form of comparison principle we will not be able to prove this.
however, we will establish existence and special cases of the compar-
ison principle, leading to the basic geometric property of finite time
extinction.

2.3. Preliminary results. In order to study weak solutions of (2.4)
we need the subelliptic analogue of the so called sup-inf convolution as
defined in [66].

Definition 2.4. For ǫ > and u : Rn → R an upper semicontinous and
bounded from below function, the sup-convolution uµ of u is defined
by

uµ = sup
G

(

u(y)− 1

2µ
|y−1x|2r!

)

∀x ∈ G

The inf-convolution vµ of u is defined as

uµ = inf
G

(

u(y) +
1

2µ
|y−1x|2r!

)

∀x ∈ G

If x ∈ G set |x|2E = x21 + · · ·+ x2n. We will say that u is semiconvex if
for some constant C > 0 the function u(x) + C|x|2E is convex in the
Euclidean sense.

We use this definition of semiconvexity as in one of our proofs we
will need to invoke Jensen maximum principle in the Euclidean setting.

Lemma 2.5. If f ∈ C(RN) is semi-convex and achieves a local maxi-
mum at the origin, then there exists a sequence {xk}k∈N converging to
the origin, such that:
(i) for each k ∈ N the function f is twice differentiable in the Eu-

clidean sense at xk

(ii) |DEf(x
k)| = o(1) as k → ∞

(iii) D2
Ef(x

k) ≤ o(1)IN as k → ∞
where we have denoted by DE and D2

E respectively the Euclidean
gradient and the Euclidean Hessian, while IN is the identity N × N
matrix.
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This lemma is a refinement by Jensen [45] of a result of Aleksan-
drov’s. The form in which we state it is from [20, Lemma A.4].
The following lemma due to Wang plays a crucial role in our proofs:

Lemma 2.6. An upper-semicontinous function u : G→ R satisfies

i) uµ is semiconvex and locally Lipschitz continuous with respect
to d.

ii) uµ is pointwise monotonically non decreasing in µ and converges
to u.

iii) if u is a weak subsolution of (2.4), then so is uµ

iv) if u is continuous then uµ converges to u uniformly on compact
sets.

Analogous results hold for the inf-convolution uµ. For the proof see
[66, Proposition 2.3].

3. Comparison principles

The analysis of the generalized mean curvature flow rests on a com-
parison principle which roughly speaking should read as follows: If
u and v are respectively a bounded, subsolution and supersolution of
(2.4), and if u(x, 0) ≤ v(x, 0) for all x ∈ G and either u or v are uni-
formly continuous at time t = 0, then u(x, t) ≤ v(x, t) for all x ∈ G
and t ≥ 0.
The sub-Riemannian geometry underlying our problem, in partic-

ular the existence of characteristic points, makes such a comparison
principle much more difficult than its Euclidean counterpart (see for
instance [29, Theorem 3.2]). In this section we prove two special in-
stances of such a comparison principle, namely in Theorem 3.1 we will
consider functions u and v satisfying more restrictive assumptions at
time t = 0 and in Theorem 3.3 we will consider only graph-like solutions
in a product group G× R.
The main difference between the proof of our Theorem 3.1 and the

corresponding Euclidean result is that the degeneration of the PDE
in the Euclidean setting occurs at points where the gradient of the
solution vanishes. In the subriemannian setting for the degeneration to
occur it suffices that the horizontal componend of the gradient vanish.
To deal with this more singular phenomena we need a fine analysis
of the interplay between the stratification of the Lie algebra and the
properties of super and subsolutions.

Theorem 3.1. Assume that u is a bounded weak subsolution and v is
a bounded weak supersolution of (2.4). Suppose further
(i) For all (xH , xV ), (xH , yV ) ∈ G u(xH , xV , 0) ≤ v(xH , yV , 0).
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(ii) Either u or v is uniformly continuous when restricted to
G× {t = 0}. Then u(x, t) ≤ v(x, t) for all x ∈ G and t ≥ 0.

Remark 3.2. By choosing an appropriate barrier function we use the
comparison principle above it to prove the finite time extinction for
compact initial data.

Proof. 1. Should the thesis fail, then for α > 0 small enough,

(3.1) max
x,t

(u(x, t)− v(x, t)− αt) ≥ a/2 > 0.

Consequently, if we choose µ > 0 and sufficiently small,

(3.2) max
x,t

(uµ(x, t)− vµ(x, t)− αt) ≥ a/4 > 0.

where the functions uµ and vµ denote respectively the sup and inf
convolutions of u and v, defined as in (2.6).

2. Given δ, λ > 0 define for x ∈ G, yX ∈ G and t, t+ s ∈ [0,+∞[

(3.3) Φ(x, y, t, s)

≡ uµ(y, s)−vµ(x, t)−αt−δ−1(|(x−1y)H|4+|s−t|4)−λ(|x|2r!+|y|2r!+|t|2+|s|2).
We explicitly note that (x−1y)H, simply reduces to the standard Eu-
clidean difference in the first layer V1 = R

m. In view (3.2) we see

(3.4) max
x,y,t,s

Φ(x, y, t, s) ≥ a/4 > 0.

Choose a point (x̄, ȳ, t̄, s̄), so that

(3.5) Φ(x̄, ȳ, t̄, s̄) = max
x,y,t,s

Φ(x, y, t, s).

Then (3.3) and (3.4) together with the boundedness of uµ and vµ,
implies

(3.6) λ(|x̄|2r! + |ȳ|2r! + |t̄|2 + |s̄|2) ≤ C, |(x̄−1ȳ)H |, |s̄− t̄| ≤ Cδ1/4.

where C > 0 is a constant independent of λ and δ. We remark that
(3.6) and the homogeneity of the gauge function implies that

(3.7) ∇0(λ|x|2r!)|x=x̄ = O(λ1/2r!) and ∇2
0(λ|x|2r!)|x=x̄ = O(λ1/r!),

for λ sufficiently small.

3. Arguing as in [29] and using Wang’s Lemma 2.6, we deduce now
that

(3.8) t̄, s̄ > σ(µ) = c
√
µ
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and that

(3.9) uµ is a weak subsolution

and

(3.10) vµ is a weak supersolution.

Suppose that (3.8) does not hold, then t̄, s̄ ≤ c
√
µ. Assuming u(·, 0) is

uniformly continuous we have

0 < a/4 ≤ Φ(x̄, ȳ, t̄, s̄)

≤ uµ(ȳ, s̄)− vµ(x̄, t̄) ≤ u(ȳ, s̄)− v(x̄, t̄) + o(1) as µ→ 0 (in view of Lemma 2.6)

≤ u(ȳ, 0)− v(x̄, 0) + o(1) as µ→ 0 (in view of continuity )

= u((ȳH, ȳV ), 0)− v((x̄H , x̄V ), 0) + o(1) as µ → 0

≤ u((x̄H , ȳV ), 0)− v((x̄H , x̄V ), 0) + o(1) as µ→ 0

and δ → 0 (in view of the uniform continuity of u)

≤ o(1) (in view of assumption (i)).

4. Next, we show that |ȳ−1x̄|H is bounded away from zero uniformly
in λ. Using the fact that (x̄, ȳ, t̄, s̄) is a maximum point

(3.11)

uµ(y, s)−vµ(x, t)−αt−δ−1(|(x−1y)H |4+|s−t|4)−λ(|x|2r!+|y|2r!+|t|2+|s|2)
≤ uµ(ȳ, s̄)−vµ(x̄, t̄)−αt̄−δ−1(|(x̄−1ȳ)H |4+|s̄−t̄|4)−λ(|x̄|2r!+|ȳ|2r!+|t̄|2+|s̄|2).
Substituting x = x̄, t = t̄, in the previous expression yields

(3.12) uµ(y, s) ≤ uµ(ȳ, s̄)

+ δ−1
(

|(x̄−1y)H|4 − |(x̄−1ȳ)H |4 + |s− t̄|4 − |s̄− t̄|4
)

+ λ(|y|2r! − |ȳ|2r! + |s|2 − |s̄|2).

Choosing z such that y = ȳz = exp(zX)(ȳ) we see that (x̄−1y)H =
(x̄−1ȳz)H . Observe that

(3.13) |(x̄−1y)H |4 − |(x̄−1ȳ)H |4 =
m
∑

i=1

fizi +
m
∑

i,j=1

fijzizj + o(|z|2)

with

(3.14) fi = −4|(ȳ−1x̄)H |2(ȳ−1x̄)i,

and fij = 4
(

|(ȳ−1x̄)H |2δij + 2(ȳ−1x̄)i(ȳ
−1x̄)j

)

i, j = 1, · · · , m.
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Moreover

(3.15) λ|y|2r! − λ|ȳ|2r! =
2
∑

d(i)=1

kizi +
m
∑

i,j=1

kijzizj + o(|z|2)

with

(3.16) |ki| ≤ Cλ|ȳ|2r!−d(i) = O(λ1/r!), and

|kij| ≤ Cλ|ȳ|2r!−2 = O(λ1/r!),

here we have used (3.7). Substituting (3.13) - (3.16) in (3.12) we obtain

(3.17) uµ(exp(zX)(ȳ), s)

≤ uµ(ȳ, s̄) + δ−1
(

m
∑

i=1

fizi +
m
∑

ij=1

fijzizj
)

+ 4δ−1(s̄− t̄)3(s− s̄)

+ 2λs̄(s− s̄) +
2
∑

d(i)=1

kizi +
m
∑

ij=1

kijzizj + o(|z|2 + |s− s̄|).

In view of Definition 2.3 we have

4δ−1(s̄− t̄)3 + 2λs̄2 ≤
m
∑

ij=1

(

δij −
(ki + δ−1fi)(kj + δ−1fj)

|k + δ−1f |2
)
∣

∣

∣

∣

y=ȳ

(kij + δ−1fij)

∣

∣

∣

∣

y=ȳ

≤ 2|(kij + δ−1fij)|
≤ C|(ȳ−1x̄)H |+O(λ1/r!).(3.18)

Substituting y = ȳ, s = s̄, in (3.11) yields

(3.19) vµ(x, t) ≥ vµ(x̄, t̄)− α(t− t̄)

− δ−1
(

|(x−1ȳ)H |4 − |(x̄−1ȳ)H |4 + |s̄− t|4 − |s̄− t̄|4
)

+ λ(|ȳ|2r! − |y|2r! + |t̄|2 − |t|2).
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Setting z = x̄−1x and arguing as above we obtain

(3.20) vµ(exp(zX)(x̄), t)

≥ vµ(x̄, t̄)− α(t− t̄)− δ−1
(

m
∑

i=1

fizi +

m
∑

ij=1

fijzizj
)

+ 4δ−1(s̄− t̄)3(t− t̄)

− 2λt̄(t− t̄)−
(

2
∑

d(i)=1

kizi +

m
∑

ij=1

kijzizj
)

+ o(|z|2 + |t− t̄|).

By Definition 2.3 it follows that

(3.21) − (α− 4δ−1(s̄− t̄)3 + 2λt̄2)

≥ −
m
∑

ij=1

(

δij −
(ki + δ−1fi)(kj + δ−1fj)

|k + δ−1f |2
)
∣

∣

∣

∣

x=x̄

(kij + δ−1fij)

∣

∣

∣

∣

x=x̄

Consequently

(3.22) α ≤ 4δ−1(s̄− t̄)3 − 2λt̄ + c(|kij|+ δ−1|fij|)
≤ 4δ−1(s̄− t̄)3 + Cδ−1|(x̄−1ȳ)H |2 +O(λ1/r!)

In conclusion, using (3.18) we have

α ≤ 2Cδ−1|(x̄−1ȳ)H |2,
for λ sufficiently small.

5. In view of Lemma 2.6 the function

Φ(x, y, t, s) + C|x, y, t, s|2E
is convex in the Euclidean sense in a neighborhood of (x̄, ȳ, t̄, s̄), which
is a maximum point for of Φ(x, y, t, s). Using Jensen’s Lemma 2.5 we
see that there exists points (xk, yk, tk, sk) such that

(3.23) (xk, yk, tk, sk) → (x̄, ȳ, t̄, s̄)

Φ, uµ, vµ are twice differentiable in the Euclidean4 sense at (xk, yk, tk, sk)

(3.24) DE,x,y,t,sΦ(x
k, yk, tk, sk) → 0,

(3.25) D2
E,x,y,t,sΦ(x

k, yk, tk, sk) ≤ o(1)I2n+2.

From (3.24) we immediately deduce that

(3.26) ∇uµ(yk, sk) → p+ λ∇(|y|2r!)|y=ȳ

4We denote derivatives in the Euclidean metric with the letter DE
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(3.27) ∇vµ(xk, tk) → p− λ∇(|x|2r!)|x=x̄

where

p = 4δ−1|(ȳ−1x̄)H |2(ȳ−1x̄)H 6= 0.

Moreover

(3.28) ∂su
µ(yk, sk) → q + 2λs̄, ∂tvµ(x

k, tk) → q − α− 2λt̄

with

q ≡ 4δ−1|(s̄− t̄)|2(s̄− t̄).

On the other hand D2
E,x,yΦ = A1 + A2 where

A1 = D2
E,x,y(u

µ − vµ − δ−1|(y−1x)H |4)

and

A2 = D2
E,x,y(λ|x|2r! + λ|y|2r!)

In view of (3.25) we have that at the point (xk, yk, tk, sk),

A1 ≤ o(1)I2n+2 −A2.

If we denote with A the Hessian in the x variable of |(y−1x)H |, then
for every w ∈ R

n

(3.29) (w,w)A1

(

w
w

)

= (w,w)

(

D2
E,yu

µ(y, s)−A A
A −D2

E,xvµ(x, t)

)(

w
w

)

=< (D2
E,yu

µ(y, s)−D2
E,xvµ(x, t))w,w > .

Using (3.25) and Lemma 5.4 it follows that5

Rk − R̄k ≤ o(1)Im −∇2(λ|xk|2r! + λ|yk|2r!)∗,

where

Rk = ∇2uµ(yk, sk)∗, R̄k = ∇2vµ(x
k, tk)∗.

Using Lemma 2.6 and passing to a subsequence if necessary we see that
there exist m×m matrices R, R̄ such that Rk → R, R̄k → R̄ and

R− R̄ ≤ (λ|x̄|2r! + λ|ȳ|2r!) = O(λ1/r!)Im.

5We denote with A∗ the matrix (A+AT )/2
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Using the fact that uµ is a subsolution and vµ is a supersolution, and
passing to the limit

(3.30) q +O(λ1/r!) ≤
(

δij −
(pi +O(λ1/r!))(pj +O(λ1/r!))

|p+O(λ1/r!)|2
)

Rij

and q − α +O(λ1/r!) ≥
(

δij −
(pi +O(λ1/r!))(pj +O(λ1/r!))

|p+O(λ1/r!)|2
)

R̄ij .

Subtracting, for λ sufficiently small, we obtain a contradiction, and
complete the proof. �

Next we turn our attention to the special case of evolving graphs

u(x, e, t) = e− U(x, t)

in product groups of the form G̃× R. As we have seen, u solves (2.4)
if and only if U solves (2.5).

Theorem 3.3. Assume that U is a bounded weak subsolution and V
is a bounded weak supersolution of (2.5). Suppose further

(i) For all x ∈ G̃ U(x, 0) ≤ V (x, 0).
(ii) Either U or V is uniformly continuous when restricted to
G̃ × {t = 0}. Then U(x, t) ≤ V (x, t) for all x ∈ G̃ and t ≥ 0. In

particular, bounded weak solutions of (2.5) are unique.

Remark 3.4. For bounded domains and in the special case of the Heisen-
berg group this theorem follows from the results of Bieske [9]. See also
the comparison principle for the Gauss curvature flow established in
[36].

Proof. We follow closely the steps in the proof of Theorem 3.1 and
outline only the main differences. Arguing by contradiction one easily
sees that the function

Φ(x, y, t, s) = Uµ(y, s)−Vµ(x, t)−αt−
1

δ

(

|yx−1|4E+|s−t|4
)

−λ
(

|x|2r!+|y|2r!+|t|2+|s|2
)

,

has a strictly positive maximum at the point (x̄, ȳ, t̄, s̄) with

t̄, s̄ ≤ c
√
µ,

λ

(

|x|2r! + |y|2r! + |t|2 + |s|2
)

≤ C,

and

|ȳx̄−1|4E, |s̄− t̄|4 ≤ Cδ.



18 LUCA CAPOGNA AND GIOVANNA CITTI

Next we invoke Jensen’s Lemma 2.5 and obtain a sequence of points
(xk, yk, tk, sk) such that (3.23),(3.24),(3.24), and (3.25) hold. In such
points we obviously have

∇x
0Φ = −∇0Vµ −

1

δ
∇x

0(|yx−1|4E)− λ∇0|x|2r!,

and

∇y
0Φ = ∇0U

µ − 1

δ
∇y

0(|yx−1|4E)− λ∇0|y|2r!.

Next we observe that for any differentiable function f : G̃ → R and
for any left invariant vector field Z one has

(3.31) Zxf(yx−1) = −Zyf(yx−1 =
d

ds
f(ye−sZx−1)|s=0.

Similarly, if f is twice differentiable and W is another left invariant
vector field then

ZxW xf(yx−1) = ZyW yf(yx−1) = −ZxW yf(yx−1) = −ZxW yf(yx−1)

We immediately deduce that

(3.32) ∇Uµ(yk, sk) → p+ λ∇0(|y|2r!)|y=ȳ

(3.33) ∇Vµ(xk, tk) → p− λ∇0(|x|2r!)|x=x̄

where

p = ∇y
0(|yx−1|4E).

Moreover

(3.34) ∂su
µ(yk, sk) → q + 2λs̄, ∂tvµ(x

k, tk) → q − α− 2λt̄

with

q ≡ 4δ−1|(s̄− t̄)|2(s̄− t̄).

Note that, unlike for the PDE (2.4), here we do not have to prove
that p 6= 0, as (2.5) does not degenerate with the vanishing of the
gradient of its solution.
Using the computations above it is fairly straightforward to repro-

duce the argument in (3.29)-(3.30) and thus conclude the proof of the
theorem.

�

4. Construction of barriers

In this section we construct explicit bounded weak solutions of (1.3),
which we later use as barrier functions in the proof of the existence
theorem.
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4.1. Self-shrinking cylinder. Let

(4.1) u0(x, t) =
|xH |2
2

+ (m− 1)t.

This function depends only on the first layer variables and the mean
curvature operator, restricted to this layer reduce to the Euclidean
mean curvature operator in R

m. The function u0 satisfies (2.4) away
from the characteristic set {0} × V 2 ⊕ · · ·V r (it is actually a weak
solution in all of G). The level sets Mt = {x : u0(x, t) = R0

2
} of this

function are products of a sphere evolving by Euclidean mean curvature
flow in V1 with initial data ∂B(0, R0), with the higher layers V2⊕· · ·⊕Vr.
Note that the classical evolution is defined up to time

R2
0

2(m−1)
. Moreover

Mt do not contain any characteristic point and constitute a self-similar

flow, i.e. Mt = δλ(t)M0, with λ =

√

R2
0

2
− t(m− 1).

4.2. Coordinate planes are equilibrium solutions. Our goal here
is to show that the coordinate planes xi = 0, d(i) = 1, 2 are minimal
surfaces, i.e. their mean curvature vanishes identically outside of their
characteristic set.

Remark 4.1. The result is false if d(i) = 3 as one can easily see by
examining the plane x4 = 0 in the Engel group [18]. This group is best
described in terms of its Lie algebra stratification G = V1 ⊕ V2 ⊕ V3,
where the dimension of V1 is 2 and the dimension of V2 and V3 is
1. The algebra has a system of generators X1, X2 ∈ V1 satisfying
[X1, X2] = X3 ∈ V2, [X1, X3] = X4 ∈ V3 and all the other commutators
vanish. A possible representation of these vector fields in coordinates
(x1, · · · , x4) is

X1 = ∂x1
− 1

2
x2∂x3

−
(x3
2

+
x1x2
12

)

∂x4
, X2 = ∂x2

+
1

2
x1∂x3

+
1

12
x21∂x4

X3 = ∂x3
+
x1
2
∂x4

, and X4 = ∂x4
.

A direct computation yields

K0 = −
(

(x3
2

+
x1x2
12

)2

+
x41
144

)−3/2
x31x3
144

,

away from the characteristic points.

The starting point of our argument is the expression (2.1) for the
vector fields Xi, d(i) = 1 in terms of exponential coordinates

Xi = ∂xi
+

∑

d(j)=1,d(h)=2

chijxj∂xh
+ higher order terms .
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The Campbell-Hausdorff formula implies the anti-symmetry relation
chij = −chji. It is immediate to observe that, if d(k) = 2 one has

(4.2) Xi(xk) =
∑

d(j)=1

ckijxj , and XiXj(xk) = ckji, for d(i) = d(j) = 1.

Set u(x) = xk, d(k) = 2 then |∇0u|2 ≤ C(x21+· · ·+x2m) and (XiXju)
∗ =

0. Consequently,
m
∑

i,j=1

(

δij −
XiukXju

|∇0u|2
)

XiXju = 0,

if |∇0u| 6= 0.
Let us explicitly note that all the barriers u0 (as in Section 4.1),

uk = x2k (with d(k) = 2) we have constructed so far, satisfy the following
properties

(H1) uk are solutions of the equation (2.4) in {x ∈ G||∇0uk| 6= 0} ×
(0,∞).

(H2) uk are subcaloric (i.e. ∂tuk ≤
∑m

i=1X
2
i uk) in G× (0,∞).

(H3) For every C > 0 there exists C̃ > 0 such that if |xH |, |uk| ≤ C
then6 |∇1uk|+

∑n
i,j=1 |XiXjuk| ≤ C̃, d(k) ≤ 2.

4.3. Bounded barriers. Define the cut-off function ψ : [0,∞) → R,

ψ(s) =

{

(s− 2)3 if 0 ≤ s ≤ 2,

0 if 2 ≤ s.

Note that

(4.3) − 8 ≤ ψ ≤ 0, ψ′ ≥ 0, |ψ′′| ≤ C1

√

ψ′ ≤ C2,

Set vi(x, t) = ψ(ui(x, t)), where ui are C
2
E functions satisfying (H1)–

(H2) above.

Lemma 4.2. Assume there exists C > 0 such that

(4.4) ψ′′(uk)|∇1uk| ≤ C and ψ′(uk)

n
∑

i,j=1

|XiXjuk| ≤ C.

There exists C0 = C0(C1, C2, C) such that if we set wδ
i (x, t) = vi(x, t)−

C0

√
δt, then for all x ∈ G, t > 0 and ǫ > 0 sufficiently small with

respect to δ, one has

∂tw
δ
k ≤

n
∑

i,j=1

(

δij −
Xǫ

iw
δ
kX

ǫ
jw

δ
k

|∇ǫwδ
k|2 + δ2

)

Xǫ
iX

ǫ
jw

δ
k.

6Here we recall that ∇1 denotes the full Riemannian gradient in the metric g1.
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Remark 4.3. Note that in view of (H3), estimates (4.4) hold for k = 0
with no further assumption. If |xH | ≤ C then (4.4) hold also for
d(k) = 2

Proof. It suffices to show that

∂tvk −
n
∑

i,j=1

(

δij −
Xǫ

i vkX
ǫ
jvk

|∇ǫvk|2 + δ2

)

Xǫ
iX

ǫ
jvk ≤ C0

√
δ.

The left-hand side can be rewritten as

ψ′(uk)∂tuk

−
n
∑

i,j=1

(

δij−
ψ′(uk)

2Xǫ
i ukX

ǫ
juk

ψ′(uk)2|∇ǫuk|2 + δ2

)

(

ψ′(uk)X
ǫ
iX

ǫ
juk+ψ

′′(uk)X
ǫ
i ukX

ǫ
juk
)

= ψ′(uk)∂tuk −
∑

d(i)=d(j)=1

(

· · ·
)

−
∑

d(i)+d(j)>2

(

· · ·
)

= ψ′(uk)∂tuk + S1 + S2.

Now we distinguish two cases: If |∇0uk| = 0 then we have

(4.5) ψ′(uk)∂tuk + S1 = ψ′(uk)∂tuk −
m
∑

i=1

X2
i uk ≤ 0.

In case |∇0uk| 6= 0 we decompose S1 as follows

S1 = −
m
∑

i,j=1

(

δij −
XiukXjuk
|∇0uk|2

+
XiukXjuk
|∇0uk|2

− XiukXjuk[ψ
′(uk)]

2

|∇0uk|2[ψ′(uk)]2 + δ2
+

XiukXjuk[ψ
′(uk)]

2

|∇0uk|2[ψ′(uk)]2 + δ2
(4.6)

− XiukXjuk[ψ
′(uk)]

2

|∇ǫuk|2[ψ′(uk)]2 + δ2

)

(

ψ′(uk)XiXjuk + ψ′′(uk)XiukXjuk
)

= S11 + S12 + S13.

where

(4.7)

S11 = −
m
∑

i,j=1

(

XiukXjuk
|∇0uk|2

− XiukXjuk[ψ
′(uk)]

2

|∇ǫuk|2[ψ′(uk)]2 + δ2

)

ψ′(uk)XiukXjuk

= −
(

δ2 + ψ′(uk)
2ǫ2
∑

d(i)>1(Xiuk)
2

|∇ǫuk|2ψ′(uk)2 + δ2

) m
∑

i,j=1

XiukXjuk
|∇0uk|2

ψ′(uk)XiXjuk ≤ 0.
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Where the last indequality follows from ψ′ ≥ 0, hypotheses (H1) and
(H2) coupled with the expression

(4.8) −
m
∑

i,j=1

XiukXjuk
|∇0uk|2

XiXjuk

=
m
∑

i,j=1

(

δij −
XiukXjuk
|∇0uk|2

)

XiXjuk −
m
∑

i=1

X2
i uk ≤ 0

Next we estimate

S12 = −
m
∑

i,j=1

(

XiukXjuk
|∇0uk|2

− XiukXjuk[ψ
′(uk)]

2

|∇0uk|2[ψ′(uk)]2 + δ2

)

ψ′′(uk)XiukXjuk

= −ψ′′(uk)
δ2|∇0uk|2

|∇0uk|2[ψ′(uk)]2 + δ2
.(4.9)

In view of (4.3), if ψ′(uk) ≥ δ one has

S12 ≤
ψ′′(uk)δ

2

ψ′(uk)
≤ C0

δ2

|ψ′(uk)|3/2
≤ C0

√
δ.

In case ψ′(uk) < δ then from (H3) and (4.4) we obtain

S12 ≤ |ψ′′(uk)||∇0uk|2 ≤ C0

√
δ.

Here we used the fact that ψ′′(uk) = 0 if |uk| ≥ 2. If we choose ǫ2 ≤ δ9/2

then

S13 = −
m
∑

i,j=1

(

[ψ′(uk)]
2XiukXjuk

|∇0uk|2[ψ′(uk)]2 + δ2
− XiukXjuk[ψ

′(uk)]
2

|∇ǫuk|2[ψ′(uk)]2 + δ2

)

ψ′′(uk)XiukXjuk

= −ψ′′(uk)ǫ
2

[ψ′(uk)]
4|∇0uk|4

∑

d(i)>1(Xiuk)
2

(|∇0uk|2[ψ′(uk)]2 + δ2)(|∇ǫuk|2[ψ′(uk)]2 + δ2)

≤ C5
2C

6 ǫ
2

δ4
≤ C0

√
δ.

To conclude the proof we now estimate the higher layer derivatives in
S2. Observing that ǫ ≤ δ9/4 ≤

√
δ, one has

S2 = −
∑

d(i)+d(j)>2

ψ′′(uk)

(

δij −
ψ′(uk)

2Xǫ
iukX

ǫ
juk

ψ′(uk)2|∇ǫuk|2 + δ2

)

(

ψ′(uk)X
ǫ
iX

ǫ
juk + ψ′′(uk)X

ǫ
i ukX

ǫ
juk
)

= O(ǫ) = O(
√
δ).

�
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5. Existence of weak solutions

In this section we prove the existence of weak solutions to the initial
value problem for (2.4). Such solution will arise as limit of solutions of
regularized parabolic equations.
For δ, σ > 0, for all ξ ∈ G and 1 ≤ i, j ≤ n we define the coefficients

of the approximating equations

Aǫ,δ
ij (ξ) =

(

δij −
ξiξj

|ξ|2 + δ

)

,

and

Aǫ,δ,σ
ij (ξ) = Aǫ,δ

ij (ξ) + σδij .

Proposition 5.1. For any f ∈ C∞(G) there exists a unique solution
uǫ,δ ∈ C∞(G)× (0,∞)) of the initial value problem

(5.1)
∂

∂t
uǫ,δ =

n
∑

i,j=1

Aǫ,δ
ij (∇ǫu

ǫ,δ)Xǫ
iX

ǫ
ju

ǫ,δ in x ∈ G, t > 0,

and uǫ,δ(x, 0) = f(x) for all x ∈ G.

Moreover, for all t > 0 one has

||uǫ,δ(·, t)||L∞(G) ≤ ||f ||L∞(G)

||∇̃ǫu
ǫ,δ(·, t)||L∞(G) ≤ ||∇̃ǫf ||L∞(G).

Corollary 5.2. Let u, f be as in the statement of Theorem 5.1. For
any compact set K ⊂ G there exists C = C(K,G) > 0 such that if
0 ≤ ǫ < 1,

(5.2) ||∇ǫu
ǫ,δ(·, t)||L∞(K) ≤ C||∇Ef ||L∞(G).

Ilmanen [42, page 685] shows that there exists a unique smooth so-
lution uǫ,δ to (5.1) satisfying the bounds

||uǫ,δ(·, t)||L∞(G) ≤ ||f ||L∞(G)

||∂tuǫ,δ(·, t)||L∞(G) ≤ C||XiXjf ||L∞(G)

||∇ǫu
ǫ,δ(·, t)||L∞(G) ≤ e−λt||∇ǫf ||L∞(G),

where λ denotes the lowest eigenvalue for the Ricci tensor of the Rie-
mannian metric gǫ. A direct computation (see [13] for details) shows
that λ = − 1

ǫ2
. As a consequence the estimates (5.2) which are uniform

in ǫ do not follow immediately from (5.3).
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Proof. We follow the outline of the analogue Euclidean result proved
in [29, Theorem 4.1]. For σ > 0 we consider smooth solutions7 uǫ,δ,σ of
the equation

(5.3)
∂

∂t
uǫ,δ,σ =

n
∑

i,j=1

Aǫ,δ,σ
ij (∇ǫu

ǫ,δ,σ)Xǫ
iX

ǫ
ju

ǫ,δ,σ,

with initial data uǫ,δ,σ(x, 0) = f(x), for all x ∈ G. In view of the
maximum principle we obtain

(5.4) ||uǫ,δ,σ(·, t)||L∞(G) ≤ ||f ||L∞(G).

Since X̃1, ...., X̃n commute with the left-invariant vector fieldsX1, ..., Xn

then we can differentiate (5.3) along these directions and obtain the new
equation

(5.5)
∂

∂t
w =

n
∑

i,j=1

[

Aǫ,δ,σ
ij (∇ǫu

ǫ,δ,σ)Xǫ
iX

ǫ
jw

+

(

∂ξkA
ǫ,δ,σ
ij

)

(∇ǫu
ǫ,δ,σ)Xǫ

iX
ǫ
ju

ǫ,δ,σXkw

]

,

where we have let w = X̃iu
ǫ,δ,σ, for all i = 1, ..., n. The “elliptic”

maximum principle applied to (5.5) yields

(5.6) ||∇̃ǫu
ǫ,δ,σ(·, t)||L∞(G) ≤ ||∇̃ǫf ||L∞(G).

Since the right invariant vector fields {X̃1, · · · , X̃n} form a basis of the
tangent bundle of G, estimate (5.6) implies that

(5.7) ||∇ǫu
ǫ,δ,σ(·, t)||L∞(G) ≤ C||∇̃ǫf ||L∞(G),

for some positive constant C depending only on G.
As remarked in [29] the equation (5.5) satisfies coercivity conditions

(

1− M2

M2 + δ

)

|ξ|2 ≤
n
∑

i,j=1

Aǫ,δ,σ
ij (ξ)ξiξj ≤ 3|ξ|2,

uniformly in σ > 0 and provided |ξ| ≤M . Classical parabolic regular-
ity theory (see [46]) yields estimates on all derivatives of uǫ,δ,σ which
are uniform in 0 < σ < 1. To conclude the proof we use (5.4) and (5.7),
Ascoli-Arzela’ convergence theorem and Ilmanen’s uniqueness result to

7Existence and uniqueness are guaranteed by classical parabolic theory [46]
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show that uǫ,δ,σ → uǫ,δ uniformly in the C1 norm on compact sets as
σ → 0. �

Next, we need to extend to our setting Evans and Spruck’s argument
in the proof of [29, Theorem 4.2]. The difficulty here is that we have
two parameters rather than one. To our advantage we have the fact
that estimates (5.2) are stable with respect to both δ → 0 and ǫ→ 0.

Theorem 5.3. For any bounded f ∈ C(G) there exists a viscosity
solution u ∈ C(G× (0,∞)) of

(5.8) ∂tu =

m
∑

i,j=1

A0,0
ij (∇0u)XiXju in G× (0,∞) and u(x, 0) = f(x).

Let Aǫ = (aǫij) be the matrix of coefficients of Xǫ
1, ..., X

ǫ
n in exponen-

tial coordinates, i.e. Xǫ
i =

∑n
k=1 a

ǫ
ik∂xk

.

Lemma 5.4. Let w be C2 and such that at (x0, t0) one has D2
Ew ≤ 0

and ∇Ew = 0, then

(Xǫ
iX

ǫ
jw)

∗ =
Xǫ

iT
ǫ
jw +Xǫ

jX
ǫ
iw

2
≤ 0.

Proof. A direct computation shows that

(Xǫ
iX

ǫ
jw)

∗ =
n
∑

lk=1

aǫila
ǫ
jk∂xk

∂xl
w.

Hence, for all η ∈ R
n one has

n
∑

i,j=1

(Xǫ
iX

ǫ
jw)

∗ηiηj =

n
∑

lk=1

(D2
Ew)lk([A

ǫ]Tη)l([A
ǫ]Tη)k ≤ 0.

�

Proof of Theorem 5.3. Without loss of generality we can assume that
∇Ef is bounded. The general case follows as in [29, p. 659]. Let
ǫk, δk → 0 be two sequences of positive numbers such that ǫk/δk → 0.
In view of (5.2) it is possible to find a sequence (corresponding to
subsequences of ǫk and δk) u

k = uǫk,δk of smooth solutions to (5.1), with
initial data f and such that there exists a locally Lipschitz (with respect
to the Euclidean distance) function u such that uk → u uniformly on
compact sets. Following the argument in [29, Theorem 4.2] we first
show that u is a viscosity solution of (5.8) and then prove that it is
constant in a set of the form {|x|+ t ≥ R}, with R depending on K.
Consider φ ∈ C∞(G × (0,∞)) such that u − φ has a local strict

maximum point at (x0, t0). The uniform convergence uk → u implies
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that there exists a sequence of points (xk, tk) → (xo, t0) such that uk−φ
has a local maximum at (xk, tk). In particular

∇Eu
k = ∇Eφ, ∂tu

k = ∂tφ, and D2
E(u

k − φ) ≤ 0 at (xk, tk).

In view of Lemma 5.4 we have that at the point (xk, tk),

(5.9) ∂tφ− Aǫk,δk
ij (∇ǫkφ)X

ǫk
i X

ǫk
j φ

≤ ∂tu
k − Aǫk,δk

ij (∇ǫku
k)Xǫk

i X
ǫk
j (uk + φ− uk) ≤ 0.

If ∇0φ(x0, t0) 6= 0 then we simply take the limit as k → ∞ in (5.9) and
conclude that u satisfies condition (2.6) in the definition of viscosity
subsolution. If ∇0φ(x0, t0) = 0 then we set

ηk =
∇ǫkφ(xk, tk)

√

|∇ǫkφ(xk, tk)|2 + δ2k
.

There exists η ∈ R
n such that ηk → η. Notice that for j = m+ 1, ..., n

one has

(5.10) |(ηk)j| =
ǫk|Xjφ(xk, tk)|

√

|∇ǫkφ(xk, tk)|2 + δ2k

≤ (ǫk/δk)|Xjφ(xk, tk)|
√

(ǫk/δk)2
∑

d(i)>1(Xiφ(xk, tk))2 + 1
.

Since this expression vanishes as k → ∞ we have ηj = 0 for j =
m+ 1, ..., n. The PDE (5.9) now reads as

∂tφ(xk, tk)−
n
∑

i,j=1

(δij − ηki η
j
j )X

ǫk
i X

ǫk
j φ(xk, tk) ≤ 0,

then as k → ∞ we obtain

(5.11) ∂tφ(x0, t0) ≤
m
∑

i,j=1

(δij − ηiηk)XiXjφ(x0, t0),

concluding the proof in the case in which u− φ has a local strict max-
imum point at (x0, t0). If the maximum point is not strict we argue as
in [29] and repeat the argument above with φ replaced by

φ̃(x, t) = φ(x, t) + |x−1
0 x|2r! + |t− t0|4,

Using Lemma 5.4 and repeating the previous argument one can prove
the analogue of (5.9) or (5.11) and from there reaching the conclusion.

�
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Remark 5.5. If |∇̃f | ≤ C and u is a viscosity solution of the initial
value problem in Theorem 5.3, then

(5.12) L̃ip(u)(·, t) = sup
x∈G,h∈R with h 6=0

u(exp(hX̃)(x), t)− u(x, t)

|h| ≤ C.

Theorem 5.6. Let G be a Carnot group of step two. If we assume that
the function f ∈ C(G) is constant in a neighborhood G \K of infinity,
then any weak solution u of the initial value problem (5.8) constructed
as in Theorem 5.3 is constant in a set of the form {|x|+ t ≥ R}, with
R depending on K.

Proof. Without loss of generality we can assume that the initial data
f satisfies |f | ≤ 1 in G and f(x) = 0 if |x| > 1. Denote by ui, d(i) ≤ 2,
the barrier functions constructed in Section 4 and ψ the cut-off function
defined in Section 4.3. For all x ∈ G and t > 0 set vi(x, t) = ψ(ui(x, t)),

and wδ
i (x, t) = vi(x, t)−C0

√
δt. In view of Lemma 4.2 we have that for

all x ∈ G, t > 0 and ǫ > 0 sufficiently small with respect to δ, one has

(5.13) ∂tw
δ
k ≤

n
∑

i,j=1

(

δij −
Xǫ

iw
δ
kX

ǫ
jw

δ
k

|∇ǫwδ
k|2 + δ2

)

Xǫ
iX

ǫ
jw

δ
k,

in the set where (4.4) holds. Note that wδ
0(x, 0) = ψ(|xH |2/2) = 0

for |xH | ≥ 2 and wδ
0(x, 0) ≤ −1 if |xH | ≤ 1. Also, observe that for

d(k) = 2, we have wδ
k(x, 0) = 0 if x2k ≥ 2 and wδ

k(x, 0) ≤ −1 if x2k ≤ 1.
Let uǫ,δ be as in Proposition 5.1, that is a solution of the approximating
equation with initial data g. Since f(x) ≥ wδ

0(x, 0) for all x ∈ G, then
in view of the classical comparison principle for smooth solutions of
quasilinear parabolic equations (see [46]) we have uǫ,δ(x, t) ≥ wδ

0(x, t)
for all x ∈ G and t > 0. In view of the uniform convergence proved
above, if we let δ, ǫ → 0 we obtain u(x, t) ≥ ψ(|xH |2/2 + (m− 1)t) ≥ 0
for |xH |2/2 + (m − 1)t ≥ 2. An analgous argument yields u(x, t) = 0
in the set |xH |2/2 + (m− 1)t ≥ 2.
At this point we restrict our attention to the the region A = {x ∈

G| |xH | ≤ 2}, since we already know that u(x, t) vanishes outside A
for every t > 0. Note that (4.4) holds for wδ

k, d(k) = 2 in the set A.
Applying Lemma 4.2 we obtain that wδ

k satisfies (5.13) in A. Since
f(x) ≥ wδ

k(x, 0) for all x ∈ G, the classical maximum principle ensures
that uǫ,δ(x, t) ≥ wδ

k(x, t), for x ∈ A, t > 0. Arguing as above u(x, t) ≥
ψ(x2k) for x ∈ A, t > 0. In particular u(x, t) ≥ 0 for x ∈ A such that
x2k ≥ 2. Similar arguments, applied to −u, yields u = 0 in the same set.
In conclusion u(x, t) = 0 for all (x.t) such that |xH |2/2+ (m− 1)t ≥ 2,
x2k ≥ 2, d(k) = 2. �
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6. Some geometric properties of the flow

As we mentioned earlier, lacking a complete form of the comparison
principle, we cannot prove that the generalized mean curvature flow
defined in Section 2, does not depend on the choice of the initial data
f , but only on its zero level set. However we can show two basic
geometric properties for the flow, namely (i) separation property and
(ii) show that the right invariant distance between level sets is not
increasing with time.
We say that a level set M = {u(x) = 0} is cylindric if u(xH , xV ) is

constant in the xV variables.

Proposition 6.1. Let M0, M̂0 be subset of G and denote by Mt and
M̂t the corresponding generalized flows. We have
(i) If M0 ⊂ M̂0 and M̂t, t ≥ 0 is cylindric, then Mt ⊂ M̂t, for all

t > 0.
(ii) For this part we consider the flows Mt, M̂t arising as level set

of the solutions constructed in Theorem 5.3. If we denote by d̃(·, ·) the
right invariant CC distance, then

d̃(M0, M̂0) ≤ d̃(Mt, M̂t)

for all t > 0.

Proof. Part (i) is a direct consequence of the comparison principle.

As for (ii) assume that d̃(M0, M̂0) > 0. We recall a result of Monti

and Serra Cassano in [52], where it is proved that |∇̃0d̃(· · · ,M0)| =
1 outside M0. Thanks to this result it is immediate to construct a
function f̃ such that f̃ = 1 on M0, vanishes in {x ∈ G : d̃(x,M0) >

d̃(M0, M̂0)} and |∇̃f̃ | ≤ d̃(M0, M̂0)
−1. A simple modification of this

construction yelds a function f such that M0 is its zero level set, M̂0

its 1- level set and |∇̃0f | ≤ d̃(M0, M̂0)
−1. Let us denote by u the unique

weak solutions to (2.4) with initial data f , and denote Mt its zero level

set, and M̂t its 1- level set. For each t > 0 we choose points x ∈ Mt,
x̂ ∈ M̂t such that d̃(x, x̂) = d̃(Mt, M̂t). Using Corollary 5.2 we have

1 = |u(x, t)− u(x̂, t)| ≤ L̃ip(u)d̃(x, x̂) ≤ L̃ip(g)d̃(x, x̂) =
d̃(Mt, M̂t)

d̃(M0, M̂0)
,

concluding the proof. �

We recall that the self-similar cylinder, as defined in Section 4.1,
vanishes in a finite time. As a corollary we deduce that any compact
set evolves within a shrinking cylinder and vanishes in a finite time.



GENERALIZED MEAN CURVATURE FLOW IN CARNOT GROUPS 29

References

[1] Balogh, Z. Size of characteristic sets and functions with prescribed gradient.
J. Reine Angew. Math. 564 (2003), 63–83.

[2] Balogh, Z. M., and Rickly, M. Regularity of convex functions on Heisen-
berg groups. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2, 4 (2003), 847–868.

[3] Barles, G., and Souganidis, P. E. Convergence of approximation schemes
for fully nonlinear second order equations. Asymptotic Anal. 4, 3 (1991), 271–
283.

[4] Barles, G., and Souganidis, P. E. A new approach to front propagation
problems: theory and applications. Arch. Rational Mech. Anal. 141, 3 (1998),
237–296.

[5] Barone Adesi, V., Serra Cassano, F., and Vittone, D. The Bernstein
problem for intrinsic graphs in Heisenberg groups and calibrations. Calc. Var.
Partial Differential Equations 30, 1 (2007), 17–49.

[6] Bellettini, G., and Novaga, M.Minimal barriers for geometric evolutions.
J. Differential Equations 139, 1 (1997), 76–103.

[7] Bellettini, G., and Novaga, M. Comparison results between minimal bar-
riers and viscosity solutions for geometric evolutions. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. (4) 26, 1 (1998), 97–131.

[8] Bieske, T. On∞-harmonic functions on the Heisenberg group.Comm. Partial
Differential Equations 3-4, 27 (2002), 727–761.

[9] Bieske, T. Comparison principle for parabolic equations in the Heisenberg
group. Electron. J. Differential Equations (2005), No. 95, 11 pp. (electronic).

[10] Bonk, M., and Capogna, L. Mean curvature flow in the Heisenberg group.
Preprint.

[11] Brakke, K. A. The motion of a surface by its mean curvature, vol. 20 of
Mathematical Notes. Princeton University Press, Princeton, N.J., 1978.

[12] Capogna, L., Danielli, D., Pauls, S., and Tyson, J. An introduction to
the Heisenberg group and the sub-Riemannian isoperimetric problem, vol. 259
of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
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