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CONFORMALITY AND Q-HARMONICITY
IN CARNOT GROUPS

LUCA CAPOGNA and MICHAEL COWLING

Abstract
We show that if f is a 1-quasiconformal map defined on an open subset of a Carnot
group G, then composition with f preserves Q-harmonic functions. We combine
this with a regularity theorem for Q-harmonic functions and an algebraic regularity
theorem for maps between Carnot groups to show that f is smooth. We give some
applications to the study of rigidity.

1. Introduction
The theory of quasiconformal maps weaves together analysis and geometry, revealing
fundamental aspects of both disciplines and links between them. Quasiconformal maps
may be studied in very general settings (see, e.g., [18] and [24]) and with minimal
smoothness assumptions. For instance, if �1 and �2 are open subsets of a metric space
(�, �), then the distortion of a homeomorphism f : �1 → �2 is defined by

Hf (p, t) = sup{�(f (q), f (p)) | �(q, p) ≤ t}
inf{�(f (q), f (p)) | �(q, p) ≥ t} ; (1.1)

f is said to be λ-quasiconformal if lim supt→0 Hf (p, t) ≤ λ for all p ∈ �1.
Typically, constraints on the distortion of the map or the geometry of the un-

derlying space yield extra regularity and rigidity properties. Liouville’s 1850 theo-
rem, which states that C4-conformal maps between domains in R

3 are products of
translations, dilations, and inversions, is the prototype. In modern terms, the group
O(1, 4) acts conformally on the sphere S3 and hence locally on R

3 by stereographic
projection, and any conformal map between domains in R

3 is the restriction of the
action of an element of O(1, 4). The same result also holds in R

n when n > 3 (see,
e.g., R. Nevanlinna [27]). A major advance in the theory was the passage from
smoothness assumptions to metric assumptions (see F. W. Gehring [14] and Yu. G.
Reshetnyak [32]): the conclusion of Liouville’s theorem holds for 1-quasiconformal
maps. A useful reference for the classical theory is the book by J. Väisälä [36].
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456 CAPOGNA and COWLING

Similar rigidity theorems hold if the ambient space is not Riemannian. Analogous
results with the Heisenberg group instead of Euclidean space and the sphere in C

n with
its CR structure instead of Sn have been long known (see, e.g., É. Cartan [4],
S.-S. Chern and J. K. Moser [5], N. Tanaka [34], and A. Korányi and H. M.
Reimann [22], [23]). In this work, the notion of conformality involves the Levi metric:
a conformal map is a differentiable contact map whose differential, restricted to the
contact plane, is a multiple of a unitary map. The relevant result for this article is
that sufficiently smooth conformal maps come from the action of the group SU(1, n).
Capogna [2, Corollary 1.4, page 869] and P. Tang [35, Theorem 2.3] extended this to
1-quasiconformal maps by establishing that 1-quasiconformal maps are smooth and
appealing to previous results; their regularity theorems are immediate ancestors of this
article.

An important generalization of the results for CR manifolds is the study of
quasiconformal maps in Carnot groups. These are nilpotent Lie groups with a left-
invariant sub-Riemannian metric on a left-invariant subbundle of the tangent bundle,
called the horizontal bundle, and they admit a group {δt | t ∈ R

+} of automorphisms
which expand when t > 1 and contract when t < 1. We define Carnot groups to
exclude R.

In his celebrated work [25], G. D. Mostow introduced quasiconformal maps
on certain Carnot groups to prove rigidity theorems for rank-one symmetric spaces.
He showed that certain quasi-isometries extend to quasiconformal maps of the ideal
boundary and then that these are conformal.

P. Pansu [28] made the next breakthrough: he proved that quasiconformal maps∗

on general Carnot groups are differentiable in a suitable sense and applied this to study
rigidity. A map f : �1 → �2 between open subsets of Carnot groups is said to be
Pansu differentiable at p in �1 if δ−1

t [f (p)−1f (pδtx)] converges locally uniformly
in x as t → 0. The limit Df (p) is called the Pansu differential at p. In [28] Pansu
showed that a quasiconformal map f is Pansu differentiable almost everywhere and
that Df (p) is a group homomorphism that intertwines the dilations δt . In particular,
Df (p) induces a Lie algebra homomorphism df (p) that sends horizontal vectors to
horizontal vectors. Pansu used this form of differentiability and a study of Lie algebra
automorphisms to prove that in the quaternionic and octonionic Heisenberg groups,
there is a natural generalized contact structure of codimension greater than one, and
the analogue of Liouville’s theorem holds for global maps that preserve the contact
structure.

These ideas have been extended to many more Carnot groups. For example, the
space of smooth, locally defined quasiconformal maps is finite-dimensional for the
so-called groups of Heisenberg type (or, H -type groups; see [21], [8]) when the center
has dimension at least three (see [30]; see also the work of Reimann and F. Ricci [31],

∗Actually, Pansu’s definition of quasiconformality was different but equivalent (see Definition 4.5).
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Cowling and Reimann [9], and Cowling, F. De Mari, A. Korányi, and Reimann [7]).
These results, however, need some smoothness. Capogna [3] followed the approach
of Gehring [14] and proved that 1-quasiconformal maps in H -type groups are smooth.
The point of this article is that 1-quasiconformal maps are smooth in all Carnot groups.

THEOREM 1.1
Suppose that �1 and �2 are open subsets of Carnot groups G1 and G2, and suppose
that f : �1 → �2 is 1-quasiconformal. Then f is smooth.

In R
n, our proof is simpler than Gehring’s [14], as we do not need such a careful

study of the capacity of rings. It may be very hard to generalize Gehring’s approach
to all Carnot groups since there is no explicit Green’s function for the Q-Laplacian
(see (2.3)). However, Gehring’s method does extend to some noncommutative groups
(see [1], [3], [6], [10], and [38]).

The first main step of our proof is to use the deep results of Pansu [28] and
Heinonen and Koskela [18] to prove that the components of the first layer of f are
Q-harmonic (see (2.3)). The regularity theory in [3, Main Theorem, page 264, Theo-
rem 4.6, page 282] then implies that the first layer is smooth. The second main step
is an algebraic regularity argument (see Theorem 6.1) to show that the higher layers
are smooth; we study how the Pansu differential of the map links the layers of its
components.

Theorem 1.1 can be used to prove rigidity theorems for quasiconformal maps
between open subsets in certain classes of groups without any a priori smoothness
assumption. For instance, in Corollary 7.4 we show that if G is a two-step Carnot
group whose only dilation-preserving automorphisms are dilations (see [28, Proposi-
tion 13.1] for a large class of examples), then the only quasiconformal maps between
open subsets of G are translations composed with dilations. Combining Theorem 1.1
with the results in [30], we can show a local version of one of the main results in [28].

THEOREM 1.2
Suppose that G is the nilpotent group in the Iwasawa decomposition of the isometry
group of the quaternionic or Cayley hyperbolic space. Quasiconformal maps between
two open subsets of G form a finite-dimensional subset of the space of smooth,
generalized contact maps.

In conclusion, two more of our contributions should be highlighted. First, the metric
definition and Pansu’s definition of 1-quasiconformal maps are equivalent (see Corol-
lary 7.2), and second, the morphism property of 1-quasiconformal maps needs no
extra regularity assumptions (see Theorem 5.7).
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2. Preliminary results
In this section we recall the relevant definitions, fix notation, and recall some results
from the literature on which our arguments rest.

A grading of step R of a Lie algebra g is a decomposition of g as a vector-space
direct sum

∑R
k=1 Vk such that [Vi, Vj ] ⊆ Vi+j when 1 ≤ i, j ≤ R; here we interpret

Vi as {0} when i > R and require that VR �= {0}.
A stratified Lie group is a simply connected, necessarily nilpotent group G whose

Lie algebra g has a grading with the additional property that V1 generates g. The map
on g which multiplies the elements of the kth layer Vk by k is a derivation. This gives
rise to a group of automorphic dilations {δt | t ∈ R

+} of g defined by

δt (X1 + · · · + XR) = tX1 + · · · + tRXR,

where Xk ∈ Vk , such that δsδt = δst and δ1 is the identity map (thus δt−1 = δ−1
t ).

We also write δt for the corresponding automorphisms exp ◦ δt ◦ log of G. (Here,
exp denotes the exponential map, which is bijective, and log denotes its inverse.) We
identify the Lie algebra with the tangent space T Ge to G at the identity e, and for X in
g, we write X̃ for the left-invariant vector field that agrees with X at e. The vector fields
in Ṽk determine a subspace TkGp of the tangent space at each point p. In particular,
when k = 1, we obtain the horizontal subspace. These subspaces vary smoothly from
point to point and give rise to subbundles TkG of the tangent bundle. The hypothesis
of stratification implies that the sections of the horizontal tangent bundle, called the
horizontal vector fields, generate all possible vector fields with linear combinations of
commutators of order up to R.

A Carnot group is a stratified group G, other than R, whose Lie algebra g carries
an inner product for which the different layers Vk are orthogonal. Henceforth, G

denotes a Carnot group with Lie algebra g. Denote by πk the orthogonal projection
onto Vk by mk , the vector space dimension of the layer Vk , when k = 1, . . . , R,
and denote by m the dimension m1 + · · · + mR . We identify Vk isometrically with
Euclidean space R

mk , and g with R
m. We write Q for the homogeneous dimension∑R

k=1 kmk of G (see [13]). Since exp is a bijection, we may parametrize G by g. The
measure on G obtained by pushing forward the Lebesgue measure on g is translation
invariant. We denote by |E| the measure of a set E; then |δtE| = tQ|E|.

The simplest noncommutative Carnot group is the Heisenberg group H
1, for

which R = 2, m1 = 2, and m2 = 1. We use it as an example to illustrate some
of the main ideas in a simple setting. A basis of its Lie algebra is {X1, X2, X3},
where [X1, X2] = X3 and [X1, X3] = [X2, X3] = 0. Then V1 = span{X1, X2},
while V2 = span{X3}. We identify H

1 as a set with R
3, writing x or (x1, x2, x3) for

exp(x1X1 + x2X2 + x3X3). The group law is

xy =
(
x1 + y1, x2 + y2, x3 + y3 + 1

2
(x1y2 − x2y1)

)
.
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In coordinates, the left-invariant vector fields X̃1, X̃2, and X̃3 are given by

X̃1 = ∂

∂x1
− x2

2

∂

∂x3
, X̃2 = ∂

∂x2
+ x1

2

∂

∂x3
, and X̃3 = ∂

∂x3
.

Note that [X̃1, X̃2] is X̃3 and that X̃1, X̃2, and X̃3 span the Lie algebra of all left-
invariant vector fields.

The inner product on V1 induces a left-invariant inner product on each horizontal
space. This inner product allows us to define a (left-invariant) Carnot-Carathéodory
metric � on G, as follows. A smooth curve is said to be horizontal if its tangent
vectors are horizontal, that is, they lie in the horizontal tangent space, and the length
of a horizontal curve is the integral of the lengths of its tangent vectors. The distance
between two points is then the infimum of the lengths of the horizontal curves joining
them. The metric is left-translation-invariant and is related to the dilations by the
formula �(δtx, δty) = t �(x, y) for all t ∈ R

+ and all x, y ∈ G. We denote by B(x, t)
the open ball {y ∈ G | �(y, x) < t}; then |B(x, t)| = CGtQ. We write S(x, t) for the
sphere {y ∈ G | �(y, x) = t}. If X ∈ V1, then the curve s 	→ exp(sX) is horizontal
and minimizes lengths, so that

�(exp X, e) = |X|, ∀X ∈ V1. (2.1)

There is a natural pseudonorm ‖·‖ on the stratified Lie algebra g, given by
‖X‖2R! = ∑R

k=1 |πkX|2R!/k , and an associated left-invariant pseudometric �NSW,
given by �NSW(x, y) = || log(y−1x)|| for all x, y ∈ G. According to A. Nagel,
E. M. Stein, and S. Wainger [26], this pseudometric is equivalent to the Carnot-
Carathéodory metric, in that

C1 �(x, y) ≤ �NSW(x, y) ≤ C2 �(x, y), ∀x, y ∈ G (2.2)

(for suitable constants C1 and C2).
We use the symbol � in the following sense. For functions A and B defined on

S, we write A(s) � B(s) for all s in S if and only if there exist constants C1 and
C2 (all constants are taken to be positive) such that C1A(s) ≤ B(s) ≤ C2A(s) for all
s ∈ S. In particular, � � �NSW. Constants are denoted by C, C ′, C ′′, C1, C2, . . . ; their
values may vary from formula to formula and may depend on anything not explicitly
quantified.

We take the standard basis {X1, . . . , Xm} for g, so that {X1, . . . , Xm1} is a basis
for V1, while {Xm1+1, . . . , Xm1+m2} is a basis for V2, and so on. Then {X̃1, . . . , X̃m}
is a basis for the left-invariant vector fields on G, and {X̃1, . . . , X̃m1} is a basis for
the left-invariant horizontal vector fields. The functions Xi · log : G → R are called
exponential coordinates on G. The Lie algebra element Xi is in the first layer when
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1 ≤ i ≤ m1, and accordingly, we call (X1 · log, . . . , Xm1 · log) : G → R
m1 the first

layer of coordinates.
Suppose that V is a finite-dimensional inner product space. For a function u : G →

V , we write ∇Hu for the vector (X̃1u, . . . , X̃m1u); then ∇h
Hu is a V -valued tensor when

h = 2, 3, . . . . We consider a multi-index (i1, i2, . . . , il) for which 1 ≤ i1, i2, . . . , il ≤
m; we abbreviate this to I and define its homogeneous length |I | to be

∑l
j=1 κij , where

the integer κi is specified by requiring that m1 + · · · + mκi−1 < i ≤ m1 + · · · + mκi

when 1 ≤ i ≤ m. We write ∇I u for X̃i1X̃i2 · · · X̃il u and consider this to be a derivative
of u of order |I | since ∇I (u ◦ δs)(p) = s|I |(∇I u)(δs(p)).

If 0 ≤ α ≤ 1, then the space C0,α(�, V ) is defined to be the set of all continuous
functions u : � → V such that |u(p)−u(q)| ≤ C �(p, q)α for all p, q ∈ �, and when
k ≥ 1, the spaces Ck,α(�, V ) are defined by

Ck,α(�,V ) = {
u : � → V

∣∣ X̃iu ∈ Ck−1,α(�, V ) when 1 ≤ i ≤ m1
}
.

Because every vector field in g̃ arises as a commutator of vector fields in Ṽ1, if
u ∈ Ck,α(�, V ), then ∇I u ∈ C0,α(�, V ) when 0 ≤ |I | ≤ k. In particular, if X̃iu ∈
C∞(�, V ) whenever 1 ≤ i ≤ m1, then u ∈ C∞(�, V ).

The local versions of these spaces C
k,α
loc (�,V ) are defined in the standard way.

Similarly, the subscript 0 on a function space indicates that the functions are compactly
supported. When V is R or C, we omit V in the notation.

By definition, the Lie bracket is bilinear. Clearly, there exists a constant C such
that |[X, Y ]| ≤ C|X| |Y | for all X, Y ∈ g. It follows that if U and V lie in C

k,α
loc (�, g),

then [U, V ] ∈ C
k,α
loc (�, g).

Let � be an open subset of G. When k ∈ N and 1 ≤ P < ∞, we define the
horizontal Sobolev spaces (see [12] and [13]) by

Sk,P (�) = {
u : � → C

∣∣ |∇h
Hu| ∈ LP (�) when 0 ≤ h ≤ k

}
.

The differentiation here must be interpreted in the distributional sense.
A real-valued function u in S

1,Q
loc (�) is said to be a weak solution of the Q-Laplace

equation (Q denotes the homogeneous dimension of G)

∇H · (|∇Hu|Q−2 ∇Hu) = 0 (2.3)

if
∫
�

|∇Hu(x)|Q−2 ∇Hu(x) · ∇Hφ(x) dx = 0 for all φ ∈ C∞
0 (�); such functions are

called Q-harmonic. By a standard density argument, we can change the requirement
that φ ∈ C∞

0 (�) to the requirement that φ ∈ C
0,1
0 (�).

The following regularity theorem, proved in [3, Corollary, page 264], plays a
crucial role in the proof of Theorem 1.1.
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THEOREM 2.1 (Regularity theorem for the Q-Laplacian)
Suppose that u is Q-harmonic, and suppose that |∇Hu| � 1 in a subset of � of full
measure. Then, after changing u on a null set, u ∈ C∞(�).

The Baker-Campbell-Hausdorff (BCH) formula (see [20]) is useful for computations in
Carnot groups. For X and Y in g, the product eXeY is equal to exp(BCH(X, Y )), where
BCH(X, Y ) is a polynomial in X and Y ; more precisely, BCH(X, Y ) = BCH1(X, Y ) +
BCH2(X, Y ) + BCH3(X, Y ) + · · · , where each term BCHi is a homogeneous Lie
algebra polynomial of degree i, that is, a weighted sum of commutators of order i −1.
For instance,

BCH1(X, Y ) = X + Y,

BCH2(X, Y ) = 1

2
[X, Y ],

BCH3(X, Y ) = 1

12

([
X, [X, Y ]

] − [
Y, [X, Y ]

])
,

BCH4(X, Y ) = − 1

48

([
Y, [X, [X, Y ]]

] + [
X, [Y, [X, Y ]]

])
,

and so on. This series terminates with BCHR , as G is nilpotent of step R.
Suppose that T : G1 → G2 is a continuous (hence, smooth; see [20, Theorem

2.6, page 117]) homomorphism of Carnot groups with dilations δ1
t and δ2

t . We say that
T intertwines dilations (and call T a Carnot homomorphism) if δ2

t T = T δ1
t . Then the

(Riemannian) differential T∗(e) of T at the identity is a Lie homomorphism from g1 to
g2 which respects the layers of the two groups. From the definition of the exponential
map, exp T∗(e)W = T exp W for all W ∈ V1. Similarly, if γ : [0, 1] → G1 is a
horizontal curve, then exp T∗(γ (s))(γ̇ (s)) = T exp γ̇ (s). In the rest of this article, we
abuse notation by writing δt for the dilations on all Carnot groups.

LEMMA 2.2
Suppose that T : G1 → G2 is a Carnot homomorphism. Then T is Lipschitz; that is,
�(T x, T y) ≤ C �(x, y) for all x, y ∈ G, where

C = max
{
�(T z, e)

∣∣ z ∈ S(e, 1)
}

= max
{
�(Ty, e)

∣∣ y ∈ exp(V1) ∩ S(e, 1)
}
.

Proof
First, since �(T x, T y) = �(T (y−1x), e) and �(T δtz, e) = t �(z, e) for all x, y, and z

in G1,

�(T x, T y) ≤ max
{
�(T z, e)

∣∣ z ∈ S(e, 1)
}
�(x, y).
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Next, if z ∈ S(e, 1) and ε > 0, then there exists a horizontal curve γ : [0, 1] → G1

such that |γ̇ (s)| ≤ 1 + ε for all s in [0, 1], and γ (0) = e and γ (1) = z. Then T γ (0) = e

and T γ (1) = T z, while

|(T γ )˙(s)| = ∣∣T∗
(
γ (s)

)(
γ̇ (s)

)∣∣
≤ max

{∣∣T∗
(
γ (s)

)
(W )

∣∣ ∣∣ W ∈ V1, |W | ≤ 1 + ε
}

= (1 + ε) max
{
�(T exp W, e)

∣∣ W ∈ V1, |W | ≤ 1
}
,

from (2.1), whence �(T z, e) ≤ max{�(T w, e) | w ∈ exp(V1) ∩ S(e, 1)}. �

3. Calculus on Carnot groups
In Sections 3 – 6, we show that the first layer of a 1-quasiconformal map is smooth.
Some of the material is often described as well known, but we had difficulty finding
detailed references for all the results. We therefore review some features of calculus
on Carnot groups and quasiconformal maps.

Throughout this section, we suppose that �1, �2, and �3 are open subsets of
Carnot groups G1, G2, and G3, and we suppose that f is a map from �1 to �2. We
write f ∈ C0,α(�1, �2) if �(f (p), f (q)) ≤ C �(p, q)α for all p, q ∈ �1.

There is an important notational issue: for functions whose values lie in multi-
plicative groups, expressions such as f −1(p) are ambiguous. We always write f −1(p)
for the value of the inverse function f −1 at p, and we write f (p)−1 for [f (p)]−1, the
multiplicative inverse of the group element f (p).

Definition 3.1
Given f : �1 → �2 and p in �1, we define

Lipf (p) = lim sup
q→p

�(f (q), f (p))
�(q, p)

,

lipf (p) = lim inf
q→p

�(f (q), f (p))
�(q, p)

.

Suppose that f : �1 → �2 is a homeomorphism, and suppose that p ∈ �1. Then

lipf (p) = [
Lipf −1

(
f (p)

)]−1
, (3.1)

and for small t , the distortion (1.1) is given by

Hf (p, t) = max{�(f (q), f (p)) | �(q, p) = t}
min{�(f (q), f (p)) | �(q, p) = t} (3.2)

because G1 and G2 are manifolds.
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Definition 3.2
A continuous function f : �1 → �2 is said to be Pansu differentiable at a point p

in �1 if the functions x 	→ δ−1
t [f (p)−1f (pδtx)] converge locally uniformly to a Lie

group homomorphism Df (p) as t → 0.

The homomorphism Df (p) : G1 → G2, called the Pansu differential, is a Carnot
homomorphism. The Lie derivative of Df (p), written df (p), is a grading-preserving
Lie homomorphism from g1 to g2.

LEMMA 3.3
If f : �1 → �2 is Pansu differentiable at p, then

Lipf (p) = max
{
�

(
Df (p)x, e

) ∣∣ x ∈ S(e, 1)
}

= max
{|df (p)X| ∣∣ X ∈ V1, |X| = 1

}
,

and
lipf (p) = min

{
�
(
Df (p)x, e

) ∣∣ x ∈ S(e, 1)
}
.

If, in addition, Lipf (p) �= 0, then

lim sup
t→0

Hf (p, t) = Lipf (p)

lipf (p)
.

Proof
Since f is Pansu differentiable at p,

lim
t→0

�(f (pδtx), f (p))

t
= lim

t→0
�

(
δ−1
t [f (p)−1f (pδtx)], e

)
= �

(
Df (p)x, e

)
uniformly for x in S(e, 1). Since the function x 	→ Df (p)x is continuous, it has a
maximum and minimum on S(e, 1). Therefore

Lipf (p) = lim sup
q→p

�(f (q), f (p))
�(q, p)

= lim sup
t→0

max
x∈S(e,1)

�(f (pδtx), f (p))

t

= max
x∈S(e,1)

�
(
Df (p)x, e

)
.

The second equality for Lipf (p) follows from Lemma 2.2. To prove the equality for
lipf (p), we exchange suprema and maxima with infima and minima in the argument
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above. Finally, from (3.2),

lim sup
t→0

Hf (p, t) = lim sup
t→0

max{�(f (q), f (p)) | �(q, p) = t}
min{�(f (q), f (p)) | �(q, p) = t}

= lim sup
t→0

max{�(f (pδtx), f (p)) | x ∈ S(e, 1)}
min{�(f (pδtx), f (p)) | x ∈ S(e, 1)}

= limt→0 max{�(f (pδtx), f (p)) | x ∈ S(e, 1)}/t

limt→0 min{�(f (pδtx), f (p)) | x ∈ S(e, 1)}/t

= Lipf (p)

lipf (p)
,

unless the last expression is of the form 0/0. �

Since df (p) respects the gradings, the matrix representing df (p) is block diagonal,
and since it is a Lie algebra homomorphism, the top block, which represents the action
on V1, determines the other blocks. We now show that the restrictions to V1 of the
Pansu differential df and of the Riemannian differential coincide when they both exist
(cf. [17, Section 3]).

LEMMA 3.4
Suppose that f : �1 → �2 is Pansu differentiable at p in �1. Write f (p)−1f (px)
as exp(F (x)), and write F (x) as F1(x) + · · · +FR(x), where Fj (x) ∈ Vj . If 1 ≤ k ≤
j ≤ R and X ∈ Vk , then X̃Fj (e) exists, and

X̃Fj (e) =
{

df (p)X if k = j ,
0 if k < j.

In addition, Fk◦exp |Vk
is differentiable in the usual sense at the origin, with differential

(Fk ◦ exp |Vk
)∗(0), which is equal to df (p)|Vk

.

Proof
Since f is Pansu differentiable at p,

lim
t→0

δ−1
t [f (p)−1f (pδt exp X)] = Df (p)(exp X)

uniformly for X in Vk of norm at most 1. Thus there exists a function ε : R
+ → R

+

such that limt→0 ε(t) = 0 and

�
(
δ−1
t [f (p)−1f (pδt exp X)], Df (p)(exp X)

) ≤ ε(t)
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for all X ∈ Vk such that |X| ≤ 1. Now df (p)X ∈ Vk , and thus

�
(
δ−1
t [f (p)−1f (pδt exp X)],Df (p)(exp X)

)
= t−1 �

(
[f (p)−1f (pδt exp X)], δtDf (p)(exp X)

)
= t−1 �

(
exp(F (δt exp X)), exp(δtdf (p)X)

)
= t−1 �

(
exp(−df (p)tkX) exp(F (exp tkX)), e

)
= t−1 �

(
exp(BCH(−df (p)tkX, F (exp tkX))), e

)
� t−1

( R∑
j=1

∣∣πj BCH
(−df (p)tkX, F (exp tkX)

)∣∣2R!/j
)1/2R!

,

whence |πj BCH(−df (p)tkX, F (exp tkX))| ≤ C[tε(t)]j uniformly for X in Vk of
norm at most 1; or equivalently,∣∣πj BCH

(−df (p)Y, F (exp Y )
)∣∣ ≤ C

(|Y |1/kε(|Y |1/k)
)j

(3.3)

uniformly for Y in Vk , by (2.2).
If 1 ≤ j < k and Y ∈ Vk , then BCH(−df (p)Y, F (exp Y )) = Fj (exp Y ) + R,

where R ∈ Vj+1⊕· · ·⊕VR , so πj BCH(−df (p)Y, F (exp Y )) = Fj (exp Y ), and hence,

|Fj (exp Y )| ≤ C
(|Y |1/kε(|Y |1/k)

)j = Cj |Y |j/kεj (|Y |),

where εj (t) → 0 as t → 0.
Next, we consider the case where k = j . For Y in Vk , direct computation shows

that πkBCH(−df (p)Y, F (exp Y )) = Fk(exp Y ) − df (p)Y , whence

|Fk(exp Y ) − df (p)Y | ≤ C |Y |ε(|Y |1/k)k = Ck|Y |εk(|Y |),

where εk(t) → 0 as t → 0. Thus Fk ◦exp |Vk
is differentiable with derivative df (p)|Vk

,
as required. Consequently, |Fk(exp Y )| ≤ Ck|Y |ε′

k(|Y |), where ε′
k(t) remains bounded

as t → 0.
Now, we consider the case where j > k. For Y in Vk ,

πk+1BCH
(−df (p)Y, F (exp Y )

) = Fk+1(exp Y ) − 1

2
[df (p)Y, F1(exp Y )],

and from the estimates above, if |Y | ≤ 1, then∣∣[df (p)Y, F1(exp Y )]
∣∣ ≤ C |df (p)Y | |F1(exp Y )|

≤
{

C ′|Y |1+1/kε(|Y |1/k) if k > 1,

C ′′|Y |2 if k = 1.
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It follows that |Fk+1(exp Y )| ≤ Ck+1|Y |(k+1)/kεk+1(|Y |), where εk+1(t) remains
bounded as t → 0. Continuing inductively, it is easy to show that if j > k, then
|Fj (exp Y )| ≤ Cj |Y |j/kεj (|Y |), where εj (t) remains bounded as t → 0, whence
Fj ◦ exp |Vk

is differentiable, and its derivative is zero. �

COROLLARY 3.5
Suppose that u : �1 → V is a function from an open subset �1 of the Carnot group G1

to a vector space V . Then if Du(p) exists, so does ∇Hu(p), and X̃u(p) = Du(p) exp X

for all X ∈ V1. Consequently, Lipu(p) = |∇Hu(p)|.

LEMMA 3.6
Suppose that u : �1 → R is Q-harmonic. Then (after correction on a null set) u is
continuous and Pansu differentiable almost everywhere in �1.

Proof
The proof has two steps. First, one shows that for any bounded ball �0 such that
�̄0 ⊂ �1, there exists P in (Q,∞) such that ∇Hu is in LP (�0). This requires a
standard argument based on Gehring’s reverse Hölder inequality (see [17, (6.2)]). It
follows from a Sobolev-type embedding theorem that (after correction on a null set)
u is continuous.

Next, one shows that S1,P (�0)-functions are Pansu differentiable almost every-
where. By the LP -version of Lebesgue’s differentiation theorem,

lim
t→0

1

|B(p, 2t)|
∫

B(p,2t)
|∇Hu(x) − ∇Hu(p)|P dx = 0 (3.4)

for almost every p ∈ �0. Fix any such point p, and define the function v by
v(q) = u(q) − u(p) − 〈∇Hu(p), π1(log p−1q)〉. (We write π1 for the orthogonal
projection of g onto V1.) To show that u is Pansu differentiable at p, we must show
that |v(q)| = o(�(q, p)) as q → p. For this, we use a Morrey-type estimate (see, e.g.,
[17, Lemma 6.10]):

|v(q)| = |v(q) − v(p)|

≤ C �(q, p)1−Q/P
(∫

B(p,2 �(q,p))
|∇Hv(x)|P dx

)1/P

= C �(q, p)1−Q/P
(∫

B(p,2 �(q,p))
|∇Hu(x) − ∇Hu(p)|P dx

)1/P

= C ′ �(q, p)
( 1

|B(p, 2 �(q, p))|
∫

B(p,2 �(q,p))
|∇Hu(x) − ∇Hu(p)|P dx

)1/P

= o
(
�(q, p)

)
,
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by (3.4), uniformly in q such that B(p, 2 �(q, p)) ⊂ �0. �

LEMMA 3.7 (Chain rule)
Suppose that f : �1 → �2 is Pansu differentiable at p, and suppose that g : �2 →
�3 is Pansu differentiable at f (p). Then g ◦ f is Pansu differentiable at p, and
D(g ◦ f )(p) = (Dg)(f (p))Df (p).

Proof
Fix a compact set K1 in G1. Since f is Pansu differentiable at p, if t ≤ 1 and x ∈ K1,
then δ−1

t [f (p)−1f (pδtx)] lies in a compact set K2 in G2. Further, (Dg)(f (p))y =
limt→0 δ−1

t [g(f (p))−1g(f (p)δty)] uniformly for y ∈ K2, as g is Pansu differentiable
at f (p). Take y to be δ−1

t [f (p)−1f (pδtx)]. Then if t ≤ 1,

�
(
δ−1
t [g(f (p))−1g(f (pδtx))], (Dg)(f (p))Df (p)x

)
≤ �

(
δ−1
t [g(f (p))−1g(f (pδtx))], (Dg)(f (p))δ−1

t [f (p)−1f (pδtx)]
)

+ �
(
(Dg)(f (p))δ−1

t [f (p)−1f (pδtx)], (Dg)(f (p))Df (p)x
)

≤ sup
y∈K2

�
(
δ−1
t [g(f (p))−1g(f (p)δty)], (Dg)(f (p))y

)
+ C �

(
δ−1
t [f (p)−1f (pδtx)], Df (p)x

)
since (Dg)(f (p)) is Lipschitz, and this converges as needed. �

4. Quasiconformal maps
In this section, we suppose that �1 and �2 are open subsets of Carnot groups G1 and
G2 and that f : �1 → �2 is a homeomorphism. We define the distortion Hf (p, t) of
f by (1.1) or (3.2).

Definition 4.1
The map f : �1 → �2 is said to be quasiconformal if there exists a constant λ such
that lim supt→0 Hf (p, t) ≤ λ for all p ∈ �1.

Next, f is said to be weakly quasisymmetric if there exists a constant H such that
Hf (p, t) ≤ H for all p ∈ �1 and t ∈ R

+.
Finally, f is said to be quasisymmetric if there exists an increasing homeo-

morphism η : R
+ → R

+ such that �(f (p), f (r)) ≤ η(s) �(f (p), f (q)) whenever
p, q, r ∈ �1 and �(p, r) ≤ s �(p, q).

Each of these definitions has a local version; for instance, f is locally quasiconformal
if it is quasiconformal in a neighborhood of each point.
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THEOREM 4.2
Suppose that f : �1 → �2 is a quasiconformal map. Then f is locally quasisymmet-
ric.

For quasiconformal maps on R
n, this result is now classical. Heinonen and Koskela

proved it for Carnot groups (see [18, Theorem 1.3]) and later for more general man-
ifolds (see [19, Theorem 4.7]). Väisälä [37, Theorem 2.9] had already shown the
equivalence of weak quasisymmetry and quasisymmetry.

Obviously, quasisymmetry implies weak quasisymmetry (and H = η(1)), which
in turn implies quasiconformality, so that the local versions of these properties are
equivalent. The next result is elementary.

LEMMA 4.3
Suppose that f : �1 → �2 is an η-quasisymmetric map. Then f −1 : �2 → �1 is
η̃-quasisymmetric, where η̃(s) = [η−1(s−1)]−1.

COROLLARY 4.4
Suppose that f : �1 → �2 is a quasiconformal map. Then f −1 : �2 → �1 is locally
quasiconformal.

Pansu [28] uses a different definition of quasiconformality.

Definition 4.5
A homeomorphism f : �1 → �2 is said to be Pansu quasiconformal if f and f −1

are locally quasisymmetric.∗

In light of Theorem 4.2, Lemma 4.3, and Corollary 4.4, Pansu quasiconformality is
equivalent to quasiconformality, at least locally. We now focus on the connections
between Pansu differentiability and quasiconformality. The next fundamental result
was proved by Pansu [28, Théorème 2, Proposition 7.3].

THEOREM 4.6
Suppose that f : �1 → �2 is locally quasiconformal. Then f is Pansu differentiable
almost everywhere. Moreover, the maps f and f −1 are absolutely continuous; that is,
|f (E)| = 0 if and only if |E| = 0.

Suppose that f : �1 → �2 is quasiconformal. Then f and f −1 are absolutely contin-
uous, and we may define a measure µ on �1 by the formula µ(E) = |f (E)|. Clearly,
µ is absolutely continuous, and so it has a Radon-Nikodym derivative, say, f ′. By

∗Pansu apparently requires a uniform choice of η; this uniformity does not seem to play a significant role.
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Lebesgue’s differentiation theorem,

f ′(p) = lim
t→0

|f (B(p, t))|
|B(p, t)|

for almost all p in �1. The change of variables formula∫
�1

u
(
f (x)

)
f ′(x) dx =

∫
f (�1)

u(y) dy

follows (see Federer [11, Section 2.9]). If Df (p) and f ′(p) exist, then

f ′(p) ≤ lim
t→0

|(B(f (p), Lipf (p)t))|
|B(p, t)| = Lipf (p)Q,

and similarly, f ′(p) ≥ lipf (p)Q. From Lemma 3.3,

Lipf (p)Q ≥ f ′(p) ≥ lim sup
t→0

Hf (p, t)−QLipf (p)Q,

(4.1)
lipf (p)Q ≤ f ′(p) ≤ lim sup

t→0
Hf (p, t)Qlipf (p)Q.

Since f ′ is locally integrable, Lipf ∈ L
Q
loc(�1).

5. 1-Quasiconformal maps
Again, we assume throughout this section that �1 and �2 are open subsets of Carnot
groups G1 and G2.

Definition 5.1
A homeomorphism f : �1 → �2 is said to be 1-quasiconformal if limt→0 Hf (p, t) =
1 for all p ∈ �1.

Further, f is said to be 1-quasiconformal in the sense of Pansu (which we shorten
to P 1-quasiconformal) if f is locally quasiconformal, and Df (p) is a similarity (i.e.,
a product of a dilation and an isometry) for almost all p.

LEMMA 5.2
Suppose that f : �1 → �2 is Pansu differentiable at p, and suppose that Df (p) is
a similarity. Then df (p)|V1 is a similarity. More precisely, for all X ∈ V1, we have
|df (p)X| = Lipf (p)|X|.

Proof
Since the Pansu derivative Df (p) is a similarity, from Lemma 3.3 we infer that
�(Df (p)x, e) = Lipf (p) �(x, e) for all x in G. From Lemma 2.2, if X ∈ V1, then
�
(
exp(df (p)X), e

) = Lipf (p) �(exp X, e). �
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LEMMA 5.3
Suppose that f : �1 → �2 is 1-quasiconformal. Then f is also P 1-quasiconformal.

Proof
Take p in �1, where f is Pansu differentiable. In view of Lemma 3.3 and of the fact
that lim supt→0 Hf (p, t) = 1,

min
{
�
(
Df (p)x, e

) ∣∣ x ∈ S(e, 1)
} = max

{
�
(
Df (p)x, e

) ∣∣ x ∈ S(e, 1)
}
.

Consequently, for all y such that �(y, e) = t ,

�
(
Df (p)y, e

) = t �
(
Df (p)x, e

) = tLipf (p) �(x, e) = Lipf (p) �(y, e),

where x = δ−1
t y, which shows that Df (p) is indeed a similarity. �

The converse is less obvious. If f is not smooth, then we may lack information about
Hf (p, t) for p in a null set. In Corollary 7.2, we show that the two definitions are in
fact equivalent.

LEMMA 5.4
Suppose that f : �1 → �2 is P 1-quasiconformal. Then f −1 is also P 1-quasiconfor-
mal. Furthermore, Lipf

Q = f ′ almost everywhere.

Proof
Compare with [28, Lemme 7.11]. By Theorem 4.6, f and f −1 are absolutely contin-
uous. By the chain rule, D(f −1)(f (p)) Df (p) = I for almost all p, and the inverse
of a similarity is a similarity. Hence D(f −1) is a similarity almost everywhere. The
second statement follows from (4.1). �

The following crucial result is due to Pansu [28, Lemme 11.4] (see the more recent
article [1, Theorem 6.6] for a different proof).

THEOREM 5.5
Suppose that f : �1 → �2 is P 1-quasiconformal. Then f and f −1 are locally
Lipschitz regular; that is, for any compact subset �0 of �1,

�(p, q) � �
(
f (p), f (q)

)
, ∀p, q ∈ �0.

Before our next result, recall that (X1 · log f, . . . , Xm1 · log f ) is the first layer of f in
exponential coordinates.
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PROPOSITION 5.6
Suppose that f : �1 → �2 is P 1-quasiconformal. For each compact subset �0 of
�1, and for all i = 1, . . . , m1,

|∇H (Xi · log f )(p)| � 1 for a.a. p in �0. (5.1)

Proof
From (3.1) and Theorem 5.5 applied to f and f −1, Lipf and Lipf

−1 are locally
bounded. The map df (p)|V1 is an orthogonal map, multiplied by dilation by a factor
of Lipf (p). The norm of any row (or column) of a positive multiple of an orthogonal
matrix is the multiplying factor. Thus if we represent df (p) as a matrix, the norm of
any column is Lipf (p), which is bounded and bounded away from zero. �

The following result was known (see [17]) for quasiregular maps f , satisfying the
further regularity condition that the distributional derivatives X̃if (where 1 ≤ i ≤ m,
not just 1 ≤ i ≤ m1) lie locally in Lm(G1). A priori, 1-quasiconformal maps need
not satisfy this condition. N. S. Dairbekov [10] found a clever way to eliminate the
regularity assumption in the step-two case.

THEOREM 5.7 (Morphism property)
Suppose that f : �1 → �2 is P 1-quasiconformal. If u is Q-harmonic in �2, then
u ◦ f is Q-harmonic in �1.

Proof
For any p for which Df (p) is a similarity and any function w which is Pansu
differentiable at f (p), we have Lipw◦f (p) = Lipw(f (p))Lipf (p) and, by Corol-
lary 3.5,

Lipw◦f (p)2 = ∇H (w ◦ f )(p) · ∇H (w ◦ f )(p),

Lipw

(
f (p)

)2 = (∇Hw) ◦ f (p) · (∇Hw) ◦ f (p),

whence ∇H (w ◦ f ) · ∇H (w ◦ f ) = Lipf
2 (∇Hw) ◦ f · (∇Hw) ◦ f almost everywhere.

Polarization of this identity shows that for almost everywhere Pansu differentiable
functions u and v,

∇H (u ◦ f ) · ∇H (v ◦ f ) = Lipf
2 (∇Hu) ◦ f · (∇Hv) ◦ f

almost everywhere.
Now we change variables. For any ψ ∈ C

0,1
0 (�1), we write φ for ψ ◦ f −1; then

φ ∈ C
0,1
0 (�2). By Lemma 3.6, every Q-harmonic function u is Pansu differentiable
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almost everywhere From Lemma 5.4, f ′ = Lipf
Q, and∫

�1

|∇H (u ◦ f )(x)|Q−2 ∇H (u ◦ f )(x) · ∇Hψ(x) dx

=
∫

�1

|∇H (u ◦ f )(x)|Q−2 ∇H (u ◦ f )(x) · ∇H (φ ◦ f )(x) dx

=
∫

�1

Lipf (x)Q
∣∣(∇Hu)

(
f (x)

)∣∣Q−2
(∇Hu)

(
f (x)

) · (∇Hφ)
(
f (x)

)
dx

=
∫

f (�1)
|(∇Hu)(y)|Q−2 (∇Hu)(y) · (∇Hφ)(y) dy

= 0

since u is a weak solution of (2.3). �

COROLLARY 5.8 (Regularity of the first layer of 1-quasiconformal maps)
Suppose that f : �1 → �2 is P 1-quasiconformal. Then π1 log f ∈ C∞(�1).

Proof
When 1 ≤ i ≤ m1, the coordinate functions Xi · log are Q-harmonic. Hence the
functions Xi · log f are too, by Theorem 5.7. The conclusion follows from (5.1) and
Theorem 2.1. �

6. Algebraic regularity

THEOREM 6.1
Suppose that �1 and �2 are open subsets of Carnot groups G1 and G2; that π1 log f ∈
C

k,β

loc (�1, g2), where k ≥ 1 and β ∈ [0, 1]; and that f ∈ C
0,α
loc (�1, �2), where α >

1/2. Then log f ∈ C
k,β

loc (�1, g2).

Note that the theorem does not hold if α = 1/2; to see this, consider the map
f : (x1, x2, x3) 	→ (x3, x2, |x1|) in the Heisenberg group H

1. This map is not contact
but is locally C0,1/2.

To explain our ideas, we first present the proof of Theorem 6.1 in the setting of
the Heisenberg group. Take open subsets �1 and �2 of H

1 and f : �1 → �2, as in the
statement of the theorem. Now f ∈ C

0,α
loc (�1, �2), so �(f (p exp tX1), f (p)) ≤ Ctα

for small t . In coordinates, we write f (p) as (f1(p), f2(p), f3(p)). Using the Nagel-
Stein-Wainger pseudometric and the group law, as in the proof of Lemma 3.4, we see
that∣∣∣f3(p exp tX1) − f3(p) + f1(p exp tX1)f2(p) − f2(p exp tX1)f1(p)

2

∣∣∣ ≤ Ct2α.
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We approximate the C1,β-numerator of the fraction, using its first-order Taylor poly-
nomial in t , and find that∣∣∣f3(p exp tX1) − f3(p) + t

2

(
f2(p)X̃1f1(p) − f1(p)X̃1f2(p)

)∣∣∣ = o(t).

Thus X̃1f3(p) exists and is equal to (f1(p)X̃1f2(p)−f2(p)X̃1f1(p))/2. By hypothesis,
f1, f2 ∈ Ck,β(�1), and so X̃1f3 ∈ Ck−1,β(�1). The same argument is applied to the
vector field X̃2 to complete the proof.

Proof of Theorem 6.1
We show by induction that if πj log f ∈ Ck,β(�1, g2) when j = 1, 2, . . . , l−1, where
l ≥ 2, then πl log f ∈ Ck,β(�1, g2).

Fix a point p in �1, and fix X in V1. Since f ∈ C
0,α
loc (�1,�2), there exists an

interval I containing zero, and a constant C, such that

�
(
f (p exp tX), f (p)

) ≤ C �(p exp tX, p)α = C �(exp tX, e)α = C|tX|α

for all t ∈ I . Write f (q) as exp(F (q)). Then

�
(
f (p exp tX), f (p)

) = �
(
exp(−F (p)) exp(F (p exp tX)), e

)
= �

(
exp BCH(−F (p), F (p exp tX)), e

)
�

( R∑
k=1

∣∣πkBCH
(−F (p), F (p exp tX)

)∣∣2R!/k
)1/2R!

.

From the hypothesis, it follows that∣∣πlBCH
(−F (p), F (p exp tX)

)∣∣ ≤ C|t |lα ∀t ∈ I. (6.1)

Write F1(q) for π1F (q) + · · · + πl−1F (q), F2(q) for πlF (q), and F3(q) for
πl+1F (q) + · · · + πRF (q). As g2 is graded, πlBCH(−F (p), F (p exp tX)) is equal to

F2(p exp tX) − F2(p) + πlBCH
(−F1(p), F1(p exp tX)

)
, (6.2)

and πlBCH(−F1(p), F1(p exp tX)) is a finite weighted sum of projections of commu-
tators; assuming that l ≥ 4, a typical term is

πl

[
F1(p), [F1(p exp tX), [F1(p), F1(p exp tX)]]

]
.

By hypothesis, F1 ∈ Ck,β(�1, g2), so F1(p exp tX) = F1(p) + tX̃F1(p) + o(t).
Substituting this into our typical commutator, we obtain

tπl

[
F1(p), [F1(p), [F1(p), X̃F1(p)]]

] + o(t).
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In general, we obtain t multiplied by a commutator involving F1(p) (perhaps
more than once) and X̃F1(p) (once only), and higher-order terms. From (6.1),
(6.2), and our discussion of πlBCH(−F1(p), F1(p exp tX)), we deduce that
πlBCH(−F1(p), F1(p exp tX)) is equal to

t
d

dt
πlBCH

(−F1(p), F1(p exp tX)
)∣∣

t=0 + o(t),

and hence,∣∣∣F2(p exp tX) − F2(p) + t
d

dt
πlBCH

(−F1(p), F1(p exp tX)
) ∣∣

t=0

∣∣∣ = o(t).

From [20, Chapter II, Theorem 1.7],

d

dt
BCH(−A,A + tB)|t=0 = exp(−adA) − I

adA
B,

whence

X̃F2(p) = − d

dt
πlBCH

(−F1(p), F1(p exp tX)
) ∣∣

t=0

= −
∞∑

n=1

(adF1(p))n−1XF1(p)

n!
.

The latter, in turn, is a weighted sum of commutators such as (for instance)[
F1(p), [F1(p), [F1(p), X̃F1(p)]]

]
, so that X̃F2 ∈ Ck−1,β(�1). Since X is an arbitrary

element of V1, we conclude that F2 ∈ Ck,β(�1). �

7. Proof of Theorem 1.1 and applications
We assume throughout this section that �1 and �2 are open subsets of Carnot groups
G1 and G2.

Proof of Theorem 1.1
Take a P 1-quasiconformal map f : �1 → �2. Then Xi · log f is smooth when
1 ≤ i ≤ m1, by Corollary 5.8, and f is locally Lipschitz, by Theorem 5.5. Apply
Theorem 6.1. �

Definition 7.1
The diffeomorphism f : �1 → �2 is said to be conformal if it is Pansu differentiable
and df , restricted to V1, is a similarity everywhere.



CONFORMALITY IN CARNOT GROUPS 475

COROLLARY 7.2
For a map f : �1 → �2, the following are equivalent:
(i) f is 1-quasiconformal;
(ii) f is P 1-quasiconformal;
(iii) f is smooth and conformal.

Proof
Lemma 5.3 shows that (i) implies (ii). Conversely, suppose that f is P 1-
quasiconformal. By Lemma 5.4, so is f −1. By Theorem 1.1, f and f −1 are Pansu
differentiable everywhere, and so Df is invertible, by the chain rule. Apply Lemma 3.3.
The equivalence of (ii) and (iii) follows from Theorem 1.1 and (2.1). �

Pansu [28, Proposition 13.1] gives examples of two-step Carnot groups whose Carnot
automorphisms are all dilations. We show that all quasiconformal maps of domains in
these groups are compositions of translations and dilations. Pansu was clearly aware
of this result (see, e.g., [29] and [28, Théorème 4]).

LEMMA 7.3
Suppose that �1 and �2 are connected open subsets of a Carnot group G of step
at most 2. Suppose that f : �1 → �2 is quasiconformal, and suppose that Df is a
dilation almost everywhere in �1. Then f is a translation composed with a dilation.

Proof
By hypothesis, f is P 1-quasiconformal, and hence, smooth. Thus Df is a dilation
everywhere. Write Df (p) as δα(p). We show first that α is constant.

Take linearly independent X and Y in V1. Then X and Y generate a two- or three-
dimensional subalgebra n(X, Y ) of g, depending on whether or not [X, Y ] = 0. Write
N(X, Y ) for exp(n(X, Y )). The vector fields Z̃ corresponding to Z in n(X, Y ) give
rise to an integrable distribution on G, and G is foliated by the cosets of N(X, Y ). The
differential of f maps (X̃)p and (Ỹ )p to multiples of (X̃)f (p) and (Ỹ )f (p), so f respects
the foliation and maps connected components of leaves to connected components of
leaves.

Fix p in �1, and restrict f to the leaf through p. By composing f with translations,
we may suppose that p = e and f (p) = e. Thus, at least locally, f is a map of
N(X, Y ) into itself, whose Pansu derivative is a dilation at each point. Suppose that
N(X, Y ) = R

2. We write the restricted map f in coordinates, and then




∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2


 =

(
α 0

0 α

)
.
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It follows that ∂α/∂x1 = ∂2f2/∂x1∂x2 = 0, and similarly, ∂α/∂x2 = 0. We conclude
that α is locally constant on the cosets of N(X, Y ) in this case.

If n(X, Y ) is three-dimensional, then the restriction of f to N(X, Y ) is a
1-quasiconformal map between domains of the Heisenberg group; hence by [22,
Theorem 8], it is the restriction of the action of an element of SU(1, 2). These actions
are described in [22, Section E], and those whose Pansu differential is a dilation at
every point are made of dilations and translations. Thus α is locally constant on the
cosets of N(X, Y ) in this case too.

It follows that X̃α = 0 on �1. But X was an arbitrary element of V1 \ {0}, so
∇Hα = 0 and α is constant.

By composing with δ−1
α , we may assume that Df = δ1 everywhere in �1. By

again considering the leaves of the foliation associated to N(X, Y ), we see that f

acts as a translation on each leaf. This means that if q ∈ �1 and f (q1) = q2, then
f (q1 exp(tX)) = q2 exp(tX) for all sufficiently small t .

Suppose that X1, . . . , XN ∈ V1, and suppose that f (q1) = q2. By iterating the
preceding argument, it may be seen that

f
(
q1 exp(t1X1) · · · exp(tNXN )

) = q2 exp(t1X1) · · · exp(tNXN )

for all sufficiently small t1, . . . , tN . From [12, Lemma 5.1], it follows that f (q1x) = q2x

for all x in some neighborhood of the identity in G1.
Let �0 be {p ∈ �1 | f (p) = q2q

−1
1 p}. Then �0 is clearly nonempty and closed

and, by the argument above, is also open, so it is all �1. This shows that f is a
translation on �1. �

COROLLARY 7.4
Suppose that G is a step-two Carnot group whose Carnot automorphisms are all
dilations. Then the 1-quasiconformal maps between domains of G are all translations
composed with dilations.

Before we state our final result, we recall that the so-called H -type groups (see [8],
[21]) are important examples of Carnot groups.

COROLLARY 7.5
Suppose that G is an H -type group whose Lie algebra has center of dimension larger
than 2. The 1-quasiconformal maps between open subsets of G are smooth and form
a finite-dimensional space.

Proof
This follows from the work of Reimann [30], who established the correspond-
ing infinitesimal result. Our main theorem allows us to obtain information about
1-quasiconformal maps by the standard method. �
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For many H -type groups, all 1-quasiconformal maps are composed of translations
and dilations. However, for the Iwasawa N-groups of real rank-one simple Lie groups,
the group of 1-quasiconformal maps is like the Möbius group and contains inversions
as well.
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