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A NOTE ON THE ENGULFING PROPERTY
AND THE Γ1+α-REGULARITY OF CONVEX FUNCTIONS

IN CARNOT GROUPS

LUCA CAPOGNA AND DIEGO MALDONADO

(Communicated by Michael T. Lacey)

Abstract. We study the engulfing property for convex functions in Carnot
groups. As an application we show that the horizontal gradient of functions
with this property is Hölder continuous.

1. Introduction

A celebrated result of Caffarelli [3] establishes that every strictly convex, gen-
eralized solution u of the Monge-Ampère equation in R

n, det D2u = µ must be
in the class C1,α

loc (Rn) for some α ∈ (0, 1), provided the Borel measure µ satisfies a
suitable doubling property (see also the monograph by Gutierrez [15] and references
therein). This result is at the core of the geometrical approach to the regularity
theory for Monge-Ampère. The Aleksandrov-Bakelman-Pucci (ABP) maximum
principle is a crucial tool in this approach. It serves as a link between the measure
theoretic and geometric aspects of the solution u. As an instance of its applications,
it can be proved that the mentioned doubling property of µ is equivalent to a geo-
metric property of the sections of u known as the E(Rn, K) engulfing property (see
Caffarelli [2], Gutiérrez and Huang [16], Gutierrez [15], and Forzani and Maldonado
[11]).

Recently there has been considerable interest in the study of fully non-linear
equations in Carnot groups. In particular, several interesting results concerning
Monge-Ampère-type equations and notions of Hessian measures have been proved
by Gutierrez and Montanari [17], [18], Garofalo and Tournier [14], Danielli et al. [4],
[6], Lu et al. [22]. At the moment it seems very difficult to obtain sub-Riemannian
analogues of Euclidean regularity results such as Caffarelli’s [3]. There are two
different kinds of obstacles met when attempting to achieve this goal. On one
hand, presently it is not clear which equation or which Hessian measure is the sub-
Riemannian correct analogue of the Euclidean objects. On the other hand, proving
regularity of the gradient of solutions of subelliptic equations is generally quite
difficult because of the non-commutativity of the vector fields involved. We believe
that a more geometric point of view would greatly benefit the analytic intuition in
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3192 LUCA CAPOGNA AND DIEGO MALDONADO

this area. For instance, one needs a better understanding of the properties of the
horizontal Gauss map in order to even formulate an appropriate ABP principle.

The purpose of this note is to show that, independently of the ABP principle, one
can still introduce appropriate geometric objects, i.e. a sub-Riemannian analogue
of the engulfing property E(G, K) (see Definition 3.4 below), to obtain regularity
in the Folland-Stein class Γ1+α of convex functions in Carnot groups.

The main result of this paper is the following.

Theorem 1.1. Let G be a Carnot group and consider a strictly convex, every-
where differentiable function u which satisfies the engulfing property E(G, K). If
X1, ..., Xm denote a left-invariant basis for the first layer of the stratification of the
Lie algebra of G, then we have that Xiu, i = 1, ..., m, is 1/K-Hölder continuous
with respect to any left-invariant homogeneous pseudo-norm in G.

Unlike the proofs in [3] and [15] in the Euclidean setting, our proof for Theorem
1.1 will be a constructive one. This will allow us to quantify the Hölder exponent for
Xiu. The key point in our argument is a reduction of the general discussion to the
one-dimensional case (see Lemma 3.5 below). Our approach is strongly influenced
by the techniques used by Forzani and Maldonado in [10], [11], and [12].

To conclude this Introduction, we recall that in the Euclidean setting the engulf-
ing property is equivalent to the doubling property for the Hessian measure. If an
analogue equivalence were to hold in the setting of Carnot groups, then Theorem
1.1 would immediately yield a regularity result for solutions to subelliptic Monge-
Ampère-type equations similar to the one proved in [3]. From this point of view,
the main contribution of this note is to shift the focus of the regularity theory more
towards the study of the geometry of solutions.

2. Carnot groups

Let G be an analytic and simply connected Lie group such that its Lie algebra
G admits a stratification G = V 1 ⊕ V 2 ⊕ ... ⊕ V r, where [V 1, V j ] = V j+1, if
j = 1, ..., r − 1, and [V k, V r] = 0, k = 1, ..., r. Such groups are called stratified
nilpotent Lie groups in [7], [9], and [25]. We will call them more briefly Carnot
groups. For k = 1, ..., r, we let mk = dim(V k) and denote by X1,k, ..., Xmk,k a basis
of V k. The exponential map exp : G → G is a global diffeomorphism, and we use
exponential coordinates in G, i.e., if

x = exp
( r∑

k=1

mk∑
i=1

xi,kXi,k

)
,

then we will write x = (xi,k)k=1,...,r
i=1,...,mk

. Define non-isotropic dilations as δs(x) =
(skxi,k), for s > 0. Throughout the paper, for any x ∈ G, we denote by x1 the
projection of x onto the first layer V 1, i.e. x1 = (x1,1, ..., xm1,1). We set H(0) =
V 1, and for any x ∈ G we let H(x) = xH(0) = span[X1,1, ..., Xm1,1](x). The
distribution H(x) is called the horizontal subbundle.

The vectors X1,1....Xm1,1 and their commutators span all the Lie algebra G, and
consequently verify Hörmander’s finite rank condition ([19]). Following [23], one
can define a left invariant control metric dC(x, y) associated to the distribution
X1,1....Xm1,1, which is called the Carnot-Carathéodory metric. If x ∈ G and r > 0,
we will denote by BC(x, r) = {y ∈ G | dC(x, y) < r} the metric balls in the control
metric dC .
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The Carnot-Carathéodory metric is equivalent to a more explicitly defined
pseudo-distance function, that we will call (improperly) gauge distance, defined
as

|x|2r!
G =

r∑
k=1

mk∑
i=1

|xi,k|
2r!
k and d(x, y) = |y−1x|G.

From the results of Nagel, Stein and Wainger in [23], there exists a constant a =
a(G) > 1 such that

(2.1) a−1dC(x, y) ≤ d(x, y) ≤ adC(x, y),

for any x, y ∈ G. Both dC and d give rise to the same notions of differentiability,
and rectifiable curves. If we denote by B(x, r) the metric balls in the pseudo
distance d(x, y), then |B(x, r)| = cGrQ, where Q =

∑r
k=1

∑mk

i=1 kmk denotes the
homogeneous dimension of the group G.

If u is a function defined on G we will use the notation Xu = (X1,1u, ..., Xm1,1u).
If x0 ∈ G, 0 < α < 1, and f is a function defined in a neighborhood Ω of x0, we
can define the Folland-Stein Hölder norm of f at x0 as

||f ||Γα(x0) = sup
x�=x0,x∈Ω

|f(x) − f(x0)|
|x−1

0 x|αG
.

If Ω ⊂ G is an open set and 0 < α < 1, then we define

Γα(Ω) = {f : Ω → R | ||f ||Γα(x) ≤ C(f, Ω, α) < ∞ for any x ∈ Ω}.

The local version of the Hölder space is defined as follows:

Γα
loc(Ω) = {f : Ω → R | af ∈ Γα(Ω), for some a ∈ C∞

0 (Ω)}.

We also have the analogue of the Euclidean C1,α class, i.e.

Γ1+α
loc (Ω) = {f : Ω → R | Xi,1f ∈ Γα

loc(Ω) for any index i = 0, ..., m1}.

We will measure Hölder continuity of functions by means of the Campanato 1+α
class (see p. 142 in [9] for a more general definition).

Definition 2.1. Let B(x, R) ⊂ G. If α ∈ (0, 1), we set C1+α
∞,1 (x) to be the space of

all functions u ∈ L∞
loc(B(x, R)) such that

[u]∞,1+α(x) = sup
0<r<R

inf
P∈Rm1

r−1−α sup
0<|y|<r

|u(xy) − u(x) − 〈P, y1〉| < ∞.

If Ω ⊂ G is an open set, we define C1+α
∞,1 (Ω) to be the set of functions u such that

[u]∞,1+α,Ω = supB(x,R)⊂Ω[u]∞,1+α(x) < ∞.

The relation between C1+α
∞,1 and the Folland-Stein Hölder space Γ1+α is given in

the following theorem (see [9], [20] and [21]).

Theorem 2.2. Let α ∈ (0, 1). If u ∈ C1+α
∞,1 (B(x0, r)), then Xu ∈ Γα(B(x0, r)).

The next two lemmata allow for a weaker form of the Morrey-Campanato norm,
involving only horizontal directions. First we recall a result of Folland-Stein [9,
Lemma 1.40].

Lemma 2.3. There exists C > 0 and N ∈ N such that for all y ∈ G one can find
x1, ..., xn ∈ expH(0) such that y = x1...xn, n ≤ N , and |xi| ≤ C|y|.
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We also observe explicitly that if x1, ..., xn ∈ exp H(0), then

(2.2) π1(x1...xn) = x1 + ... + xn.

Lemma 2.4. Let Ω ⊂ G be an open set, u ∈ L∞
loc(Ω) and α ∈ (0, 1). If there exists

C = C(u, Ω) > 0 such that for any B(x, R) ⊂ Ω the function u satisfies

sup
0<r<R

inf
P∈Rm1

r−1−α sup
y∈exp H(0),0<|y|<r

|u(xy) − u(x) − 〈P, y〉|< ∞,

then Xu ∈ Γα(Ω).

Proof. Let x, y ∈ G and u as in the hypothesis. In view of (2.2) we have that

u(xy) −
[
u(x) −

〈
P, π1(y)

〉]
= u(xx1...xn) −

[
u(x) −

〈
P, π1(x1...xn)

〉]

=
n∑

k=1

(
u(xx1...xk) − u(xx1...xk−1) −

〈
P, xk

〉)
,(2.3)

for all P ∈ R
m1 . If we consider the supremum in y of the left-hand side and bound

it with the supremum over all choices x1, ..., xn as in Lemma 2.3, we obtain

(2.4) inf
P∈Rm1

sup
0<|y|<R

∣∣∣∣u(xy) −
[
u(x) −

〈
P, π1(y)

〉]∣∣∣∣
≤ inf

P∈Rm1

n∑
k=1

sup
xk∈exp H(0),0<|xk|<R

∣∣∣∣u(xx1...xk) −
[
u(xx1...xk−1) −

〈
P, xk

〉]∣∣∣∣.
In view of the hypotheses there exists a constant C = C(u, Ω) > 0 such that the

left-hand side of (2.4) is bounded by CR1+α. We have thus proved that

u ∈ C1+α
∞,1 (x)

and that supB(x,R)⊂Ω[u]∞,1+α(x) < C. The result now follows from Theorem
2.2. �

3. Convex functions and the engulfing property

Roughly speaking, the notion of convex functions in the subelliptic setting takes
into account both the behavior of a function along the horizontal directions and
the non-integrable structure of the horizontal subbundle.

Convex functions in the Heisenberg group setting were first introduced by Luis
Caffarelli (in unpublished work from 1996). This notion did not really surface in
the literature until 2002, when it was independently formulated and studied, in
the more general setting of Carnot groups, in [4] and in [22]. Essentially, a convex
function in G is a function whose restriction to horizontal lines through any fixed
point are Euclidean convex functions of one variable.

Definition 3.1. A proper function u : G → R is convex if for any x ∈ G and
s ∈ [0, 1] one has

u(xδs(y)) ≤ (1 − s)u(x) + su(xy) for all y ∈ exp H(0).

As a consequence of the work in [4] and [22] one has that convex functions
are Lipschitz continuous with respect to the Gauge pseudo-distance d(·, ·), hence
differentiable almost everywhere along the horizontal directions X1,1, ..., Xm1,1 (see
for instance [24] and [13]).
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For any x ∈ G and y ∈ expH(0) we define the function φx,y : R → R as

(3.1) φx,y(s) = u(xδs(y)).

In [22, Lemma 4.1] it is shown that u is convex if and only if φx,y is convex for
all choices of x ∈ G and y ∈ expH(0). If u is twice differentiable along the
horizontal directions at a point xδs(y), then a direct computation (see for instance
[4, Proposition 5.2 and 5.4]) yields

(3.2) φ′
x,y(s) = 〈Xu(xδs(y)), y〉 and φ′′

x,y(s) = 〈D2u(xδs(y))y, y〉,

where D2u is the horizontal Hessian, i.e. the symmetric part of the m1×m1 matrix
whose (i, j) entry is Xi,1Xj,1u.

Definition 3.2. Let u : G → R be a convex function. Let x ∈ G, P ∈ R
m1 and

R > 0. The section S(x, P, R) is given by{
xy such that y ∈ expH(0) and u(xy) < u(x) +

〈
P, y

〉
+ R

}
.

If P is omitted, then we are assuming u, horizontally differentiable at x and S(x, R),
is implicitly defined by the choice P = Xu(x).

Definition 3.3. Let u : G → R be a convex function. Let x ∈ G, y ∈ expH(0)
and t ∈ R such that xδt(y) is a differentiability point for u. For R > 0 we define
the section

Sφx,y
(t, R) =

{
s ∈ R | u(xδs(y)) < u(xδt(y)) +

〈
Xu(xδt(y)), y

〉
(s − t) + R

}

=
{

s ∈ R | φx,y(s) < φx,y(t) + φ′
x,y(t)(s − t) + R

}
.(3.3)

Next we introduce the Carnot group analogue of the engulfing property intro-
duced by Caffarelli.

Definition 3.4. We say that the differentiable, convex function u : G → R satisfies
the engulfing property E(G, K) if there exists K ≥ 1 such that for any x ∈ G and
R > 0, if xy ∈ S(x, R), then x ∈ S(xy, KR).

If G = R
n is the usual Euclidean space, then this definition is the classi-

cal one (see for instance [15, Section 3.3.2]). In this setting, examples of con-
vex functions verifying the engulfing property include those functions u such that
0 < λ ≤ detD2u ≤ Λ, in the Aleksandrov sense, for some constants λ, Λ. The
archetypal example is the function u(x) = |x|2/2, whose sections coincide with
the Euclidean balls. More examples come from functions u verifying det D2u = p,
where p is a (non-negative) polynomial. In this case the constant K depends on n
and the degree of p, but not on its coefficients (see [15]). Non-Euclidean examples
are constructed in Corollary 3.8.

The following two results are crucial steps in the proof of Theorem 1.1. The first
one allows us to reduce matters to the one-dimensional situation. The second one
provides quantitative information about the engulfing property in dimension one.

Lemma 3.5. If u : G → R is a differentiable convex function, x ∈ G, y ∈ expH(0)
and φx,y is defined as in (3.1), then u ∈ E(G, K) if and only if φx,y ∈ E(R, K).
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Proof. Assume that φx,y satisfies the engulfing property E(R, K). Choose xy ∈
S(x, R), so that y ∈ exp H(0) and

(3.4) u(xy) < u(x) +
〈

Xu(x), y

〉
+ R.

The latter can also be read in terms of φx,y as 1 ∈ Sφx,y
(0, R). Consequently we

have 0 ∈ Sφx,y
(1, KR), which in turn implies

(3.5) u(x) < u(xy) +
〈

Xu(xy), y

〉
(−1) + KR.

Observe that (xy)−1x = y−1 and that, since y ∈ exp H(0), y−1 = −y. From (3.5)
we conclude x = xyy−1 ∈ S(xy, KR).

Vice versa, if s ∈ Sφx,y
(t, R), then u(xδsy) < u(xδty) + 〈Xu(x), y〉(s − t) + R,

that is, xδsy ∈ S(xδty, R). Assuming u ∈ E(G, K) we have xδty ∈ S(xδsy, KR)
which immediately yields t ∈ Sφx,y

(s, KR), concluding the proof. �

Lemma 3.6. If φ ∈ E(R, K), φ(0) = 0, then for any t ∈ R one has

1
K

(
φ(t) − φ′(0)t

)
≤ φ′(t)t − φ(t) ≤ K

(
φ(t) − φ′(0)t

)
.

Proof. Let t ∈ R and set R = φ′(t)t − φ(t). Since φ is convex we have that
R ≥ 0. For any ε > 0 we then obtain 0 = φ(0) < φ(t) + φ′(t)(−t) + R + ε, that is,
0 ∈ S(t, R + ε). The engulfing property E(R, K) yields

φ(t) < φ(0) + φ′(0)t + K(R + ε),

which in turn implies

(3.6)
φ(t) − φ′(0)t

K
< φ′(t)t − φ(t) + ε,

for all ε > 0 and t ∈ R. To prove the second inequality in (3.6) we let R̃ =
−φ′(0)t − φ(0) + φ(t) and observe that by convexity R̃ ≥ 0. Consequently we can
write φ(t) < φ(0)+φ′(0)t+ R̃+ ε, i.e., t ∈ S(0, R+ ε). We invoke φ ∈ E(R, K) and
obtain

φ(0) < φ(t) − φ′(t)t + K[−φ′(0)t − φ(0) + φ(t) + ε].
The latter immediately yields

(3.7)
φ′(t)t − φ(t)

K
< φ(t) − φ′(0)t + ε.

The lemma follows from (3.6) and (3.7) by letting ε → 0. �

In [12], Forzani and the second-named author proved that the comparison prop-
erty in the previous lemma actually characterizes the engulfing property: If φ :
R → R is a convex differentiable function, then φ ∈ E(R, K) if and only if

K + 1
K

(φ(y) − φ(x) − φ′(x)(y − x))

≤ (φ′(x) − φ′(y)) (x − y)

≤ (K + 1) (φ(y) − φ(x) − φ′(x)(y − x)) ,

for every x, y ∈ R. Also, if φ is strictly convex, then φ ∈ E(R, K) if and only if φ′

is a quasi-symmetric mapping in R (see [10]).
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We conclude this section by constructing more examples of functions satisfying
the engulfing property. Let us recall the following important result.

Proposition 3.7. If φ : R → R is a differentiable, strictly convex function such
that µ(a, b) = φ′(b)−φ′(a) (that is, µ = φ′′ in the weak sense) is a doubling measure,
then φ ∈ E(R, K), where K depends only on the doubling constants. Moreover, if
m ≤ µ ≤ M , for some positive constants m and M , then K = K(M/m).1

This proposition is due to Gutiérrez and Huang [16], and it holds in any dimen-
sion. Moreover, its converse is also true, i.e. the engulfing property of φ is equivalent
to the doubling property of its Hessian measure (see [11]).

Using (3.2), Lemma 3.5, and applying Proposition 3.7 to the restrictions φx,y of
a strictly convex function u to horizontal lines we immediately obtain

Corollary 3.8. Let u : G → R be a strictly convex function. If the horizontal
restrictions φx,y give rise to doubling measures as in Proposition 3.7 with doubling
constants uniform in x ∈ G and unit y ∈ R

m, then u ∈ E(G, K) for some choice
of K depending on the doubling constants. In particular, if there exists C > 0 such
that the minimum eigenvalue λ and the maximum eigenvalue Λ of the horizontal
Hessian D2u satisfy C−1 < λ ≤ Λ < C, then u ∈ E(G, K) for some K = K(Λ/λ).

Remark 3.9. We do not know if the hypotheses C−1 < λΛ < C would guarantee
the engulfing property for strictly convex functions. If true, this would provide
a link between the horizontal Monge-Ampère measure detD2u and the geometry
of u in the spirit of the Gutiérrez-Huang result. On the other hand, in view of
the counterexamples from [5], µ = detD2u might not be the appropriate Hessian
measure to be considered.

4. Proof of Theorem 1.1

Lemma 3.6 yields

(4.1)
(

1 +
1
K

)
1
t
≤

[
φ′(t) − φ′(0)
φ(t) − φ′(0)t

]
≤

(
1 + K

)
1
t
,

for all t > 0. The first inequality implies that

t 
→ φ(t) − φ′(0)t
t1+

1
K

is non-decreasing in (0,∞). Hence, for any choice of t0 > 0 we deduce that

sup
0<t<t0

φ(t) − φ′(0)t
t1+

1
K

=
φ(t0) − φ′(0)t0

t
1+ 1

K
0

.

It is an easy exercise to check that if φ ∈ E(R, K) and ϕ(t) := φ(−t), then ϕ ∈
E(R, K). Therefore, we obtain

(4.2) sup
0<|t|<t0

∣∣φ(t) − φ′(0)t
∣∣

|t|1+ 1
K

= max
(

φ(t0) − φ′(0)t0

t
1+ 1

K
0

,
φ(−t0) + φ′(0)t0

t
1+ 1

K
0

)
=: C.

1For the exact dependence see [12, Section 7].
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Reading (4.2) in terms of the function u we have

(4.3) sup
y∈exp H(0),0<|y|<1

∣∣u(xy) − u(x)− < Xu(x), y >
∣∣

|y|1+ 1
K

≤ C.

The proof follows from Lemma 2.4 and (4.3). �
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