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THE ARONSSON-EULER EQUATION
FOR ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS
WITH RESPECT TO CARNOT-CARATHÉODORY METRICS

THOMAS BIESKE AND LUCA CAPOGNA

Abstract. We derive the Euler-Lagrange equation (also known in this setting
as the Aronsson-Euler equation) for absolute minimizers of the L∞ variational
problem {

inf ||∇0u||L∞(Ω),

u = g ∈ Lip(∂Ω) on ∂Ω,

where Ω ⊂G is an open subset of a Carnot group, ∇0u denotes the horizontal
gradient of u : Ω → R, and the Lipschitz class is defined in relation to the
Carnot-Carathéodory metric. In particular, we show that absolute minimiz-
ers are infinite harmonic in the viscosity sense. As a corollary we obtain the
uniqueness of absolute minimizers in a large class of groups. This result ex-
tends previous work of Jensen and of Crandall, Evans and Gariepy. We also
derive the Aronsson-Euler equation for more “regular” absolutely minimiz-
ing Lipschitz extensions corresponding to those Carnot-Carathéodory metrics
which are associated to “free” systems of vector fields.

1. Introduction

In 1967 Aronsson began a systematic study of minimal Lipschitz extensions in
Euclidean space. Such extensions are functions defined in a set Ω ⊂ Rn with the
property that

||u||W 1,∞(Ω) ≤ ||w||W 1,∞(Ω), for all w such that u− w ∈W 1,∞
0 (Ω).

If ∂Ω sufficiently smooth, then the restriction of u to ∂Ω is a Lipschitz function
and u is its minimal Lipschitz extension. Such notion is very useful as a model for
a large class of L∞ variational problems which arise in applications to engineering.
However, in general minimal Lipschitz extensions are neither smooth nor unique.
In [1], Aronsson introduced what may be considered as a canonical minimal Lip-
schitz extension, one which is minimal in every subset of Ω. Such minimizers are
called absolutely minimizing Lipschitz extension, or absolute minimizers for short.
In [1], Aronsson showed that sufficiently smooth absolute minimizers are classical
solutions of the Euler-Lagrange equation associated to this variational problem, the
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∞−Laplacian equation

(1.1)
n∑

i,j=1

∂xi∂xju ∂xiu ∂xju = 0.

(In deference to Aronsson, this equation has subsequently been referred to also as
Aronsson’s Euler equation, or AEE.) Aronsson studied classical solutions of (1.1)
in [2], in particular proving their uniqueness. As a consequence one obtains the
uniqueness of C2 absolute minimizers. However, still thanks to Aronsson’s results, it
is rather easy to verify that in general there are no classical solutions (see [26], page
55). In 1993, in his seminal work [26], Jensen proved that absolute minimizers are
solutions of (1.1) in the viscosity sense, and then established a uniqueness theorem
for such viscosity solutions, thus obtaining the uniqueness of absolute minimizers.
In 2000, Crandall, Evans and Gariepy [12], gave an alternative (and very elegant)
argument for the derivation of Aronsson’s Euler equation, using a rather different
set of ideas from the one in [26]. Their proof makes use of comparison with “cone”
functions, which are solutions of the eikonal equation |∇u| = 1. Thanks to Barron,
Jensen and Wang’s recent paper [3] and to Crandall’s even more recent [11], the
role of this Hamilton-Jacobi equation (and its generalizations) in the L∞ variational
theory has become better understood and has assumed a central character. In these
papers, the authors study absolute minimizers for the variational problems

(1.2) inf ||f(x, u,∇u)||L∞(Ω),

with some minimal hypothesis on f(x, s, p) (e.g., quasiconvexity in p).
The definition of absolutely minimizing Lipschitz extensions can be naturally

formulated in a metric space, as it does not require a differentiable structure. How-
ever, in contrast with the Euclidean picture, very little is known in this general
setting. The study of classical Euclidean problems in PDE, harmonic analysis and
potential theory in the context of suitably regular metric spaces endowed with a
doubling Borel measure is one of the most exciting and challenging trends in modern
analysis (see for instance [9], [24], [23], [28] and references therein).

In [28], Juutinen has proved that absolute minimizers exist in every separable
length space. There are no uniqueness results yet in this general setting, and it
seems very difficult to follow Jensen and Aronsson’s approach, i.e. to study the
Aronsson Euler equation, since the latter is not in divergence form and it is not
obvious how to formulate it in a metric space (where, roughly speaking, one cannot
use second derivatives).

In the present paper we study the derivation of the Aronsson Euler equation,
and the question of uniqueness of absolute minimizers in the setting of Carnot
groups. This is a large class of metric spaces,1 in which a rich algebraic structure
has allowed for the development of a broad range of results in harmonic analysis
and PDE (for an account of such results, see for instance [33] and [19]).

A Carnot group (or nilpotent stratified Lie group) is an analytic simply connected
Lie group G whose Lie algebra g is nilpotent and has a stratification g = V 1⊕ ...⊕
V r, with [V 1, V j ] = V 1+j , j = 1, ..., r − 1, and [V j , V r] = 0 for j = 1, ..., r. We let
Xi,k, k = 1, ..., r and i = 1, ...,mk with2 mk = dim(V k), denote a basis of V k, and

1This class includes Euclidean space, but in general Carnot groups are not even locally bi-
Lipschitz equivalent to a Euclidean space.

2For simplicity, in the sequel we will denote m1 by m.
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let | · | be a norm in g for which the Xj,k are orthonormal. Since the exponential
map exp : g → G is a diffeomorphism, then we can identify exp(

∑
k

∑
i xi,kXi,k)

with the set of coordinates x = {xi,k}. We denote by dC the Carnot-Carathéodory
distance associated to the basis Xi = Xi,1, i = 1, ...,m1, of the Lie algebra [33]:
Let x, y ∈ G, and for every δ > 0 define

A(δ) = {γ : [0, δ]→ G | γ(0) = x, γ(δ) = y

and γ′(s) =
m∑
i=1

ai(s)Xi(γ(s)), with
m∑
i=1

|ai| ≤ 1}.(1.3)

By virtue of Chow’s theorem [10], we know that for δ large enough the set A is
nonempty. Let us define

dC(x, y) = inf
A(δ) not empty

δ.

If x ∈ G and r > 0, we will denote by BC(x, r) = {y ∈ G | dC(x, y) < r} the metric
balls in the control metric dC . We will also denote by d(·, ·) the pseudo-metric given
by d(x, y) = ||y−1x||, where

||x||2r! =
r∑

k=1

(
mk∑
i=1

|xi,k|2)
r!
k .

The two functions d, dC are equivalent, in the sense that there exists C > 0 such
that for any x ∈ G and r > 0, one has B(x,C−1r) ⊂ BC(x, r) ⊂ B(x,Cr). The
couple (G, dC) is a separable length space (i.e., any two points can be joined by a
length-minimizing curve) [31].

We will denote by ∇0 the horizontal gradient, i.e. the gradient along the hor-
izontal directions X1, ..., Xm1 . The notation ∇u will be used for the Euclidean
gradient in the xi,l variables. Hereafter, whenever we write u ∈ C2 we intend that
the second derivatives ∂xi,l∂xj,ku are continuous, whereas for k ∈ N, the symbol
u ∈ Γk implies that all the horizontal derivatives Xi1Xi2 · · ·Xiku of order k are
continuous.

Carnot groups were introduced by Folland in [16] (see also Folland and Stein [17]
and Stein [33]). Such spaces arise naturally as ideal boundaries of noncompact rank
one symmetric spaces. A well known instance is the Heisenberg group Hn, n ≥ 1
(see [17]), which is isomorphic to the nilpotent part of the Iwasawa decomposition of
U(n, 1), the isometry group of the complex hyperbolic space of dimension n. Such
a group has a Lie algebra stratification h = Cn × R, and group law (z, t)(z′, t′) =
(z + z′, t + t′ + 2Im(〈z, z̄′〉). Carnot groups also arise as limits of Riemannian
manifolds and as tangent spaces to Carnot-Carathéodory spaces (see [22], [30], [19]
and [20]).

If Ω ⊂ G is an open set and u : G → R, then the Lipschitz norm of u in Ω is
given by

||u||Lip(Ω) = sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
dC(x, y)

.

Garofalo and Nhieu [21] have proved that u is Lipschitz if and only if u is weakly
differentiable along the horizontal directions Xi and ||∇0u||L∞(Ω) < ∞ (see also
Franchi, Serapioni and Serra-Cassano [18] for an alternative proof of one of the two
implications). Moreover,

(1.4) ||u||Lip(Ω) = ||∇0u||L∞(Ω).
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Definition 1.1. A function u ∈ Lip(Ω̄) is an absolutely minimizing Lipschitz
extension (of its trace) if for every V ⊂ Ω and v ∈ Lip(V ) such that u = v on ∂V ,
we have

||∇0u||L∞(V ) ≤ ||∇0v||L∞(V ).

We now turn our attention to the Aronsson-Euler equation of the functional
||∇0u||L∞ , the subelliptic ∞−Laplacian equation

(1.5) L∞ u :=
m∑

i,j=1

XiXju Xiu Xju = 0.

This is a fully non-linear, degenerate elliptic equation.

Definition 1.2. Let Ω ⊂ G be an open set. A function u ∈ C(Ω) is a viscosity
subsolution of (1.5) in Ω if for every x0 ∈ Ω and every Γ2 function φ defined in a
neighborhood U of x0, such that u(x0) = φ(x0), and u(x) ≤ φ(x) for x ∈ U , one
has that L∞ φ(x0) ≥ 0. We say that u is a viscosity supersolution at x0 if −u is a
viscosity subsolution at x0, and finally that u is a viscosity solution if it is both a
subsolution and a supersolution in the viscosity sense.

We remark here that if φ is Γ2, then both XlXiφ for l, i = 1, ...,m and ∂xj,2φ,
for j = 1, ...,m2 are continuous functions.

Viscosity solutions of (1.5) have been recently studied in the papers [5], [13],
[14] and [29]. We mention here that one could consider a stronger definition of
(viscosity) solution, by assuming only that u(x) ≤ φ(x) for x ∈ H(x0) ∩ U , where
H(x0) = span(X1, ..., Xm)(x0) is the so-called horizontal space at x0. This defi-
nition emerges with respect to the Monge-Ampère equation in Carnot groups and
to the definition of horizontal convexity introduced years ago by Caffarelli (and
independently rediscovered in [13]). In this paper we will only use definition 1.2,
and our main motivation comes from the following theorem by Bieske.

Theorem 1.3 (Uniqueness of solutions of (1.5), [5]). Let Ω ⊂ Hn be a connected
open set, and g ∈ C(∂Ω). There exists a unique viscosity solution (in the sense of
Definition 1.2) of the Dirichlet problem

(1.6)

{
L∞ u = 0 in Ω,
u = g in ∂Ω.

The main result of the present paper is the following

Theorem 1.4 (Derivation of the Aronsson-Euler equation). If u ∈ Lip(Ω) is an
absolutely minimizing Lipschitz extension, then u is a viscosity solution of (1.5) in
Ω.

In view of the existence theorem for absolute minimizers in [28], as an immediate
corollary of Theorem 1.4 we have

Corollary 1.5 (Uniqueness of absolutely minimizing Lipschitz extensions). Given
Ω ⊂ Hn, and g ∈ Lip(∂Ω), there exists a unique absolutely minimizing Lipschitz
extension of g in Ω.

We point out that Theorem 1.4 cannot be obtained as a consequence of the
results in [3] and [11], as the functional |∇0u|2 = f(x,∇u) is not quasiconvex in
the ∇u component. This can be easily checked by a direct computation in the
Heisenberg group setting.
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The proof of Theorem 1.4 is based on a comparison of the absolute minimizer u
with a suitably chosen test function V . This approach is inspired by the ideas in
[12] and [11]. The argument of Crandall [11], in particular, provides the blueprint
for our proof. The main difference between Crandall’s proof and ours is in the
construction of the test function. In [11] the commutation of mixed derivatives is
used in a crucial way when differentiating the Hamilton-Jacobi equation. However
in our setting the vector fields do not commute, resulting in the appearance of an
extra term. This extra term affects the construction of the comparison function.
In the proof of Theorem 1.4 we deal with this problem through a refinement of
Crandall’s original argument.

There are a number of immediate generalizations of Theorem 1.4 to more gen-
eral functionals f(x, s, p), where p now denotes the variables corresponding to the
horizontal gradient, in which f(x, s, p) is required to satisfy conditions similar to
(f1)-(f3) in [11]. We will not address these generalizations here, and rather focus
on the model case. A less obvious extension of our results concerns the deriva-
tion of the Aronsson Euler equation for absolute minimizers with respect to the
Carnot-Carathéodory distance associated to more general systems of vector fields
(as in [25]). The reason why our proof does not extend to this setting is that we
use in a crucial way the Taylor formula [17] and the approximation through group
mollifiers. Another fundamental aspect of our proofs is the possibility of finding a
“good” system of coordinates. While one can think of several ways to deal with
the absence of either of these useful tools in the general setting (see for instance
[8], [21], and [18]), it is not yet clear to us how to carry out the extension.

With the extra assumption that the horizontal derivatives of the absolute mini-
mizer are continuous, in Section 4 we derive the Aronsson Euler equation for abso-
lutely minimizing Lipschitz extensions with respect to the Carnot-Carathéodory
metric associated to a system of smooth vector fields X1, ..., Xm which satisfy
Hörmander’s finite rank condition, i.e., at every point x0 ∈ Rn, the set of all
Xi’s and their commutators up to order r ∈ N generates an n-dimensional vector
space. If X1, ..., Xm satisfy Hörmander’s condition, we will call them Hörmander
vector fields. We also need to assume that the vector fields are free up to order
r (see Definition 4.2 in Section 4), in order to find an appropriate system of local
coordinates. Our main tool in the proof of this result will be the approximation
techniques developed by Rothschild and Stein [32]. In that fundamental paper,
the authors showed how to approximate locally the analytic and geometric struc-
ture associated to a system of free Hörmander vector fields with a Carnot group
structure (see Theorem 4.5). In the approximation there are error terms which
are “well-behaved”, and most of our proofs will deal with estimates of these error
terms.

In many examples, one can construct adequate Taylor approximations for a
given set of smooth Hörmander vector fields, thus avoiding the need to invoke the
Carnot group approximation. In the last section of the paper we show a specific
example in which the Rothschild-Stein theorem is not needed. For a larger, and
more significative class of examples see [7], where non-free vector fields are studied.3

3After this paper was submitted, C. Wang informed us that he has proved a more general ver-
sion of our result in his recent preprint [34]. Namely, absolutely minimizing Lipschitz extensions
with respect to any CC metric (associated to a system of Hörmander vector fields) are viscosity
solutions of the infinite sub-Laplacian. His proof differs from ours in two points: (i) The com-
parison between the AMLE and the test function in his paper is based on the Euclidean Taylor
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2. Preliminary definitions and results

In this section we recall some basic definitions and results about Taylor poly-
nomials in nilpotent Lie groups (see [17] for a more detailed treatment). We also
provide an elementary proof of Theorem 1.4 for C2 absolute minimizers, inspired
by an argument by Jensen.

One of the most important features of Carnot groups is the existence of a one-
parameter family of non-isotropic dilations δs(x) = (skxi,k), for s > 0. A function
f defined in G is homogeneous of order λ ∈ R if f(δs(x)) = sλf(x) for any s > 0.
The elements of the basis Xi,k act as k-th order differential operators when viewed
as left invariant vector fields on G, i.e., Xi,kf(δs(x)) = sk(Xi,kf)(δs(x)).

Definition 2.1. A polynomial in G is a function which can be expressed in the
exponential coordinates as

P (x) =
∑
I

aIx
I ,

where I = (ij,k)k=1,...,r
j=1,...,mk

is a multi-index, the aI are real numbers, and

xI =
∏

k=1,...,r;
j=1,...,mk

x
ij,k
j,k .

The homogeneous degree of the monomial xI is given by the sum
r∑

k=1

mk∑
j=1

k ij,k.

The (homogeneous) degree of polynomials is defined accordingly. For any integer
d, let us denote by Pd the set of polynomials of homogeneous degree less than or
equal to d.

Next we need to express the vector fields Xi,k in exponential coordinates. From
the Baker-Campbell-Hausdorff formula we obtain, for l = 1, ..., r − 1 and n =
1, ...,ml,

(2.1) Xn,l(x) = ∂xn,l +
r−1∑
ν=l

mν+1∑
j=1

fn,lj,ν+1(x1, x2, ..., xν+1−l)∂xj,ν+1 ,

where xi = (x1,i, ..., xmi,i), the fn,lj,k are polynomials of degree d = k − l, and the
components of xν may appear raised to the highest power of k−l

ν (the polynomial
coefficients depend on the group constants). For l = r we simply have Xn,r(x) =
∂xn,r . From (2.1) it is immediate that if P is a group polynomial of degree d ∈ N,
then Xi,1P is a group polynomial of degree d − 1. If d ≥ k, then Xi,kP is a
polynomial of degree d− k.

Recall that if we consider a multi-index I = [(i1, k1), (i2, k2), ..., (il, kl)], with
l ∈ N, 0 ≤ kj ≤ r, and 1 ≤ ij ≤ mkj , then if f is a smooth function defined in G,
we will denote a derivative of f of order |I| =

∑l
j=1 kj by

XIf = Xi1,k1Xi2,k2 ...Xil,klf.

polynomials (by a clever adaptation of Crandall’s argument) and not on the group Taylor poly-
nomials. (ii) Once the test function is constructed, he uses the argument in [3] rather than follow
Crandall’s paper [11]. On the other hand, our construction of explicit test functions with con-
trolled “subelliptic” Taylor polynomials may be useful in studying more general fully non-linear
equations.
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Next we recall the definition of (left) Taylor polynomial in Carnot groups (see
pg. 35, in [17]).

Definition 2.2. If f ∈ C∞0 (G) and k is an integer, then the k-th order Taylor
polynomial Pk of f at the origin 0 is the unique polynomial of homogeneous order
less than or equal to k such that

XIPk(0) = XIf(0),

for all multi-indices I such that |I| ≤ k.

The following theorem is the stratified Taylor inequality (see [17], Theorem 1.42).

Theorem 2.3. If k ≥ 1, then there exist positive constants Ck and b such that for
all u ∈ Γk(G), and for all x, y ∈ G,

|u(xy)− Pk(y)| ≤ Ck||y||k sup
B(0,bk||y||), |I|=k

|XIu(xz)−XIu(x)|.

Here Pk(y) denotes the k-th order Taylor polynomial of u at the point x.

It is useful to write the polynomial P2 explicitly for a function u ∈ Γ2(G) at the
origin: Set T = (∂x1,2u(0), ..., ∂xm2,2

u(0)), x1 = (x1,1, ..., xm,1), x2 = (x1,2, ..., xm2,2)
and denote by

(2.2) H =
( X1X1u(0), ... , X1Xmu(0)

... ...
XmX1u(0), ... , XmXmu(0)

)
the horizontal Hessian of u at the origin, and by

(2.3) H? =
1
2

(
H +HT

)
,

the symmetrized horizontal Hessian. With this notation we have

P2(x) = u(0) + 〈∇0u(0), x1〉+ 〈T, x2〉+
1
2
〈Hx, x〉

= u(0) + 〈∇0u(0), x1〉+ 〈T, x2〉+
1
2
〈H?x, x〉.(2.4)

We will need the following elementary consequence of Theorem 2.3.

Corollary 2.4. Let U ⊂ G be a neighborhood of the origin, k ∈ N, k ≥ 2, and u, v ∈
Γk(U). Denote by H? and K? the symmetrized Hessians of u and v respectively.
If u(0) = v(0) and ∂xi,ku(0) = ∂xi,kv(0), for k = 1, 2 and i = 1, ...,mk, and if
H? > K?, then there exists ε = ε(u, v,G) > 0 such that u > v in B(0, ε) \ {0} ⊂ U .

We conclude this section with a simple proof of the derivation of the Aronsson
Euler equation for Γ2 absolutely minimizing Lipschitz extensions in Carnot groups.

Theorem 2.5. Let Ω ⊂ G be an open domain. If u ∈ Γ2(Ω) is an absolutely
minimizing Lipschitz extension, then u is a (classical) solution of (1.5) in Ω.

Proof. Let x′ be an arbitrary point in the domain Ω, which in turn is a subset of
the Carnot group G, and let u be a Γ2 absolute minimizer. We wish to show that
u is infinite harmonic at x′. Since the ∞−Laplacian operator L∞ is left-invariant,
then without loss of generality we may assume x′ is the origin. By the smoothness
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of u, we may use the second order Taylor polynomial formula given by equation
(2.4) and the error estimates in Theorem 2.3 to obtain

u(p) = u(0) + 〈∇0u(0), x1〉+ 〈T, x2〉+
1
2
〈H?x1, x1〉+ o(‖p‖2)

= u(0) +
m∑
i=1

xi,1Xiu(0) +
m2∑
i=1

xi,2Xi,2u(0) +
1
2

m∑
i,j=1

H?
ijxi,1xj,1 + o(‖p‖2).

Using this expansion, we obtain, for any k ∈ {1, 2, . . . ,m},

(2.5) Xku(p) = Xku(0) +
m∑
i=1

H?
ikxi,1 +

m2∑
j=1

fk,1j,2 (x1)Xj,2u(0) + o(‖p‖),

where the fk,1j,2 are as in equation (2.1). Recall that the various fk,1j,2 are polynomials
of homogeneous degree one, and in particular, we have

fk,1j,2 =
m∑
i=1

cjk,ixi,1,

where the antisymmetry of the Lie bracket operation produces

(2.6) cjk,i = −cji,k.

Squaring (2.5), we arrive at

(Xku(p))2 = (Xku(0))2 + 2Xku(0)
m∑
i=1

H?
ikxi,1

+ 2Xku(0)
m2∑
j=1

fk,1j,2 (x1)Xj,2u(0) + o(‖p‖).

The latter, combined with a standard computation, produces

‖∇0u(p)‖2 = ‖∇0u(0)‖2 + 2
m∑
i=1

Pixi,1 + o(‖p‖),

where the coefficient Pi is given by

Pi =
m∑
k=1

Xku(0)H?
ik +

m∑
k=1

m2∑
j=1

cjk,iXku(0)Xj,2u(0).

If Pi = 0, i = 1, ...,m, then clearly
∑m

i=1 PiXiu(0) = 0, and hence in view of
(2.6) we would have

L∞ u(0) =
m∑
i=1

m∑
k=1

Xku(0)Xiu(0)H?
ik

= −
m∑
i=1

m∑
k=1

m2∑
j=1

cjk,iXiu(0) Xku(0)Xj,2u(0) = 0,(2.7)

thus concluding the proof of the theorem.
We are left with the case

m∑
i=1

P 2
i 6= 0.
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Note that the maximum of ‖∇0u(p)‖2 in the Euclidean ball BE(0, η) = {p :∑
i,j x

2
i,j ≤ η2} occurs when

∑m
i=1 x

2
i,1 = η2, and in particular when

xi,1 = ηPi(
m∑
j=1

P 2
j )−

1
2 .

We thus conclude that

‖∇0u(p)‖2L∞(BE(0,η)) = ‖∇0u(0)‖2 + 2η(
m∑
i=1

P 2
i )

1
2 + o(η).

Next, we consider the Γ2 function v defined by

v(p) = u(p) +
γ

2
(ε2 −

r∑
k=1

mk∑
i=1

x2
i,k),

where γ and ε are parameters sufficiently close to 0. Proceeding as above, we
compute the Taylor polynomial for v as

v(p) = u(0) +
γ

2
ε2 +

m∑
i=1

xi,1Xiu(0) +
m2∑
i=1

xi,2Xi,2u(0)

+
1
2

m∑
i,j=1

H̃?
ijxi,1xj,1 + o(‖p‖2),

where H̃?
ij = H?

ij − γδij . Observing that u = v on the Euclidean sphere of radius
ε, we proceed as above and conclude that

‖∇0u(p)‖2L∞(BE(0,ε)) = ‖∇0u(0)‖2 + 2ε(
m∑
i=1

P 2
i )

1
2 + o(ε),

‖∇0v(p)‖2L∞(BE(0,ε)) = ‖∇0u(0)‖2 + 2ε(
m∑
i=1

P̃ 2
i )

1
2 + o(ε),

where Pi is defined as above and P̃i is defined analogously,

P̃i =
m∑
k=1

Xku(0)H̃?
ik +

m∑
k=1

m2∑
j=1

cjk,iXku(0)Xj,2u(0) = Pi − γXi u(0).

Since u is an absolute minimizer, we have

0 ≤ ‖∇0v(p)‖2L∞(BE(0,ε)) − ‖∇0u(p)‖2L∞(BE(0,ε)).

That is,

0 ≤ 2ε
(

(
m∑
i=1

P̃ 2
i )

1
2 − (

m∑
i=1

P 2
i )

1
2

)
+ o(ε),

so that, dividing by 2ε and letting ε→ 0, we obtain

0 ≤ (
m∑
i=1

P̃ 2
i )

1
2 − (

m∑
i=1

P 2
i )

1
2 ,

and consequently,

0 ≤
m∑
i=1

P̃ 2
i −

m∑
i=1

P 2
i .
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Using the definition of H̃?
ij , we compute

P̃ 2
i = P 2

i + 2γPiXiu(0) + (γXiu(0))2,

so that we ultimately arrive at

0 ≤
m∑
i=1

(
2γPiXiu(0) + (γXiu(0))2

)
≡ F (γ).

Now F (0) = 0, and so

F (γ)− F (0)
γ − 0

=
m∑
i=1

PiXiu(0) + γ

m∑
i=1

(Xiu(0))2,

so that

F ′(0) =
m∑
i=1

PiXiu(0),

and we conclude that

0 =
m∑
i=1

PiXiu(0)

=
m∑
i=1

m∑
k=1

Xiu(0)Xku(0)H?
ik +

m∑
i=1

m∑
k=1

m2∑
j=1

Xiu(0)Xku(0)Xj,2u(0)cjk,i

= L∞ u(0) + 0,

where the last equality is a consequence of (2.6). �

The previous argument is very similar to the proof of the corresponding Eu-
clidean result in [26]. The main difference rests in the shape of the Taylor polyno-
mial, which accounts for an extra term in the second order part Pi.

3. Derivation of the Aronsson-Euler equations

for Lipschitz absolute minimizers in Carnot groups

In this section we prove Theorem 1.4. We start with a lemma which extends
Crandall’s argument in [11], pages 5-6, to the Carnot group setting.

Lemma 3.1. Let u ∈ Lip(B(0, 1)), u(0) = 0 and set µ > 0. If for ε > 0 small
enough one can find a function Vε ∈ Γ2(Ūε), where Uε ⊂ B(0,

√
ε
µ) is a neighborhood

of the origin, such that

Vε(0) = −ε,
Vε < u in Uε,(3.1)
Vε = u on ∂Uε,

u < Vε outside the ball B(0,
√
ε

µ
)

and

(3.2) |∇0Vε| = 1 in a neighborhood of Uε,

then u cannot be absolutely minimizing in B(0, 1).
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Proof. We argue by contradiction. Assume that u is an absolute minimizer; then

(3.3) |∇0u| ≤ 1,

a.e. in Uε. Let γ be the horizontal curve obtained as a solution of the ODE

(3.4)
d

dt
γ = −

[
(∇0Vε)∇0

]∣∣∣∣
γ

, and γ(0) = 0.

Since | ddtγ| = 1, and γ is horizontal, then there exist ε > 0 and Cε > 0 such that
for 0 ≤ t < ε one has

(3.5) C−1
ε t ≤ ||γ||G ≤ Cεt.

Let us assume at this point that u ∈ Γ1(B(0, 1)), and show how to conclude the
proof with this extra hypothesis. A simple computation gives

(3.6)
d

dt

(
Vε(γ)− u(γ)

)
= −

〈
∇0Vε ,

(
∇0Vε(γ)−∇0u(γ)

)〉
.

From (3.3) we have
d

dt

(
Vε(γ)− u(γ)

)
≤ 0.

Hence for any t > 0,

(3.7)
(
Vε(γ)− u(γ)

)
(t) ≤

(
Vε(γ)− u(γ)

)
(0) = −ε.

The latter implies that γ ∈ Uε for any t > 0, but this contradicts (3.5) and the fact
that Uε ⊂ B(0,

√
ε
µ). In fact, the curve γ will exit the ball B(0,

√
ε
µ ) after a time

roughly equivalent to
√
ε.

If u /∈ Γ1(B(0, 1)), then (3.6) does not hold in general for every t > 0. To
circumvent this obstacle we mollify the function u. We emphasize that only at this
point of the proof do we use the group structure.

Let φ ∈ C∞0 (B(0, 2)), φ ≥ 0 and
∫
G φdH = 1. For any k ∈ N, set φk(x) =

kQφ(δ 1
k

(x)) and

uk(x) := u ∗ φk =
∫
G

u(y−1x)φk(y)dH(y).

Since the horizontal vector fields X1, ..., Xm are left-invariant, then ∇0uk = (∇0u)∗
φk. Consequently

(3.8) ||∇0uk||L∞(Uε) ≤ ||∇0u||L∞(Uε) ≤ 1.

For any ε, δ > 0 we can find k0 large enough so that

uk(0) > − ε
2
> Vε(0),(3.9)

uk ≤ Vε + δ outside the ball B(0,
√
ε

µ
)

Repeating the argument in (3.6) and (3.7), we obtain

(3.10) Vε(γ)− uk(γ) ≤ Vε(0)− uk(0) < − ε
2

;

hence for every t > 0 we have

(3.11) Vε(γ)(t) < uk(γ)(t)− ε

2
.
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On the other hand, in view of (3.5), after a time roughly equal to
√
ε we have

γ(t) /∈ B(0,
√

ε
µ). From (3.11) and (3.9) we have

(3.12) uk(γ)− δ ≤ uk(γ)− ε

2
,

after a time roughly equal to
√
ε has elapsed. If we choose δ < ε

2 and k sufficiently
large, we obtain a contradiction. �

We are ready now to proceed with the proof of the main result.

Proof of Theorem 1.4. Let u ∈ Lip(Ω) be an absolutely minimizing Lipschitz ex-
tension, and assume that there is a point where it fails to be ∞−harmonic in the
viscosity sense. By left invariance of the vector fields (and of the equation) we can
assume without loss of generality that such a point is the origin. Let φ be a Γ2

function defined in a neighborhood of the origin such that

u(0) = φ(0),
u(x) ≤ φ(x) for every x in a neighborhood of the origin,(3.13)
L∞ φ(0) < 0.

To simplify the notation, we let

m×m symmetric matrix H = {Hij}, with Hij =
1
2

(XiXjφ(0) +XjXiφ(0)),

m vector D = ∇0φ(0),
m vector B = −HD,
m2 vector T = {∂xi2φ(0)} for i = 1, ...,m2.

With this notation, (3.13) reads

(3.14)
〈
B,D

〉
> 0, and

〈
HD,D

〉
< 0.

Since the ∞−Laplacian L∞ is a homogeneous operator of order 4, which is
invariant under the action of the orthogonal groups O(mi) acting on the spaces V i,
without loss of generality we can assume that

D = (1, 0, ..., 0) ∈ Rm and T = (τ, 0, ..., 0) ∈ Rm2 .

Denote by C = {Cij} the antisymmetric m×m matrix

(3.15) Cji =
1
2

[Xi, Xj]φ(0).

In the case of the Heisenberg group, C is the symplectic matrix J . We now
proceed with the construction of a comparison function Vε, with the property listed
in the hypothesis of Lemma 3.1. The construction closely follows the argument in
[3] and [11], but it is more delicate, as the vector fields do not commute and the
Taylor formula reflects the anisotropicity of the metric.

We will build Vε as a solution of a Hamilton-Jacobi equation. Our first step
consists in constructing the initial data and the initial manifold.

Step 1. Let M = P + H , where P is an m ×m symmetric matrix defined by
the formula

(3.16) Pz = z +
〈(C −H)D, z〉
〈(C −H)D,D〉 (C −H)D − 〈D, z〉D, for any z ∈ Rm.
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It is easy to verify the following properties of M : for every z, z′ ∈ Rm,

〈Pz, z〉 > 0,
〈Pz, z′〉 = 〈Pz′, z〉,
PD = (C −H)D, and so 〈PD,D〉 = −〈HD,D〉 > 0.

Hence we have

(3.17) M > H and MD = CD.

Step 2. Define the hyperplane

L = {x ∈ g such that
m∑
j=1

Bjxj,1 = 0}.

Note that for any yi,k, k = 2, ..., r and i = 1, ...,mk, we have (D, yi,k) /∈ L. Let N be
the dimension of g. If we denote by Y1, ..., YN−1 a basis of L, then {Y1, ..., YN−1, D}
is a basis of g = RN . Set

h(x) =
〈
D,x1

〉
+

1
2

〈
Mx1, x1

〉
+
〈
T, x2

〉
,

where we have set x1 = (x1,1, x2,1, ..., xm,1) and x2 = (x1,2, ..., xm2,2).
Step 3. We use the method of characteristics (see [15], 3.2.3 to 3.2.4) to solve

the Cauchy problem for the eikonal equation

(3.18)

{
|∇0V | = 1 in a neighborhood O of the origin,
V = h on L ∩O,

subject to the constraint

(3.19) ∂xi,kV (0) = ∂xi,kφ(0), for k = 1, 2 and i = 1, ...,mk.

To obtain a local solution in a neighborhood of the origin, we need to verify
that L is not characteristic for (3.18) at the origin. If we write the vector fields as
Xi =

∑
α aiα∂xα and set, for p ∈ g,

f(x, p) =
1
2

m∑
i=1

[
aiα pα

]2

and

ψ(x) =
〈
B, x

〉
,

then the non-characteristic condition ([27]) is

(3.20)
〈
∇pf(x, p),∇xψ

〉
6= 0,

when x = 0 and p = ∇V (0). Here we have denoted by ∇p and ∇x the Euclidean
derivatives in the p and x variables. Note that f(0,∇φ(0)) = f(0, ∂xi,1φ(0), i =
1, ...,m) = 1/2. A direct computation and the constraint (3.19) yield that at the
origin one has 〈

∇pf(x, p),∇xψ
〉

=
m∑
i=1

(XiV )Xiψ =
〈
B,D

〉
> 0.

Step 4. We want to show that

(3.21) Vij = Mij ,
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where Vij = 1
2 (XiXjV (0)+XjXiV (0)). This is the part of the proof where the non-

commutativity of the horizontal vector fields plays a major role. Let us differentiate
the eikonal equation (3.18) along the direction Xi. We obtain

(3.22)
m∑
j=1

XiXjV XjV = 0.

When we evaluate the latter at the origin, we obtain

VijDj =
m∑
j=1

1
2

(
XiXjV (0) +XjXiV (0)

)
Dj =

m∑
j=1

1
2

[Xj , Xi]V (0)Dj

=
m∑
j=1

CijDj = (by (3.17) and (3.19)) =
m∑
j=1

MijDj .(3.23)

On the other hand, if x, x′ ∈ L, then the horizontal vectors

Z =
m∑
i=1

xi,1Xi and Z ′ =
m∑
i=1

x′i,1Xi

are tangent to L. Since V = h along L, then

ZZ ′V = ZZ ′h =
m∑

i,j=1

xi,1x
′
j,1XiXjh

=
m∑

i,j=1

xi,1x
′
j,1XiXj

(
1
2

〈
Mx1, x

′
1

〉
+
〈
T, x2

〉)
.(3.24)

An explicit computation yields〈
Vx1, x

′
1

〉
=

1
2

(
Z ′Z + ZZ ′

)
V (0)

=
〈
Mx1, x

′
1

〉
.(3.25)

Hence for any x, x′ ∈ L we have

(3.26)
〈
Mx1, x

′
1

〉
=
〈
Vx1, x

′
1

〉
.

Since for any ξ ∈ g we can write ξ =
∑N−1

i=1 yiYi + dD, then by virtue of (3.23),
(3.26) and the symmetry of M , we obtain〈

Mξ1, ξ1

〉
=
〈
Vξ1, ξ1

〉
.

Equality (3.21) follows from the latter and from the polarization identity.
Step 5. From the results in Steps 1-4 we have that V is a smooth function in a

neighborhood of the origin such that

V (0) = φ(0) = 0, ∇0V (0) = D, {∂xi,2V (0)} = Ti, i = 1, ...,m2,

and
V = M > H.

For ε > 0, set Vε = V − ε. From Corollary 2.4 (essentially Taylor’s theorem) we
immediately obtain that

Vε > φ− ε
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in O \ {0}, where O is a neighborhood of the origin (independent of ε). For µ > 0
sufficiently small, we can find a neighborhood of the origin Oµ ⊂ O such that

(3.27) Vε(x) > φ(x) − ε+ µ||x||2, for x ∈ Oµ \ {0}.

Observe that for ε > 0 small enough, such that B(0,
√

ε
µ ) ⊂ Oµ, and for

r ≥
√
ε

µ
and x ∈ ∂B(0, r) ∩Oµ,

one has

(3.28) u(x) ≤ φ(x) ≤ φ(x) + (µr2 − ε) = φ(x) − ε+ µ||x||2 < Vε(x).

Hence there exists4 a neighborhood Uε of the origin such that

(3.29) Vε = u in ∂Uε, and Vε < u in Uε.

Without loss of generality we can assume that Uε is connected. From (3.28) we
have Uε ⊂ B(0,

√
ε
µ ). The contradiction now stems from (3.28), (3.29) and Lemma

3.1. �

4. Derivation of the Aronsson-Euler equation

for Γ1
absolute minimizers

with respect to more general Carnot-Carathéodory metrics

In this section we study the Aronsson-Euler equation for absolutely minimiz-
ing Lipschitz extensions corresponding to those Carnot-Carathéodory metrics as-
sociated to systems of smooth vector fields which satisfy Hörmander’s finite rank
hypothesis (with rank r ∈ N) and are free up to step r. In this case, we can ap-
proximate the structure of the CC space with an osculating Carnot group, using
techniques and ideas which were first introduced by Rothschild and Stein in their
celebrated paper [32].

We believe that a more direct proof could be given, without using this approx-
imation scheme. In the last section of the paper we show how to derive the same
theorem, in a particular example, without using the Rothschild-Stein results. Apart
from the study of the Grushin case [7], the general non-free Hörmander case is still
open.

Let X1, ..., Xm be a system of smooth vector fields in Rn, which satisfy Hörman-
der’s finite rank condition [25] up to step r ∈ N, i.e., at every x ∈ Rn, the vector
fields and all their commutators up to order r generate Rn.

In this section we want to extend the results of Theorem 1.4, and derive the
Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with re-
spect to the Carnot-Carathéodory metric associated to the system X1, ..., Xm, in
the presence of an extra assumption: the vector fields are free up to step r.

Definition 4.1. A free Lie algebra gm,s is a nilpotent Lie algebra of step s having
m generators, but otherwise as few relations among the commutators as possible.

To construct such an object we first need to consider the infinite dimensional,
free Lie algebra GF on n generators Y1, ..., Yn. Roughly speaking, the only relations
among the commutators of the Yi’s are given by anticommutativity and the Jacobi
identity. For each i ∈ N, define GiF inductively as G1

F = GF , and Gi+1
F = [GiF , GF ].

4We omit the dependence on µ, which from now on is a fixed number.
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For r ≥ 1, we will define gn,r = GF /G
r+1
F . For more details, see [32], Example 4,

page 256.

Definition 4.2. Denote by nm,s the dimension (as a vector space) of the free
nilpotent Lie algebra gm,s. Let X1, ..., Xm be a set of smooth vector fields defined
in an open neighborhood of a point xo ∈ Rn, and let ns be the dimension of the
space generated by all commutators of the Xj’s of length ≤ s evaluated at the point
xo. We shall say that X1, ..., Xm are free up to step r if for any 1 ≤ s ≤ r we have
nm,s = ns.

Remark 4.3. We observe that if the vector fields X1, ..., Xm are free up to step r in
an open set Ω ⊂ Rn, then commutators of different lengths are linearly independent,
while commutators of the same length may be linearly dependent only because
of antisymmetry, or because of the Jacobi identity. Consequently, any n−tuple
Yi1 , ..., Yin of commutators which is a basis for Rn must have the same cumulative
degree

Q =
n∑
k=1

dik =
r∑
j=1

j(nm,j − nm,j−1) .

From this point on, we will denote by Y1, ..., Ym the generators of the Lie algebra
gm,s.

Consider smooth vector fields X1, ..., Xm in Rn which are free up to step r in
the open set Ω ⊂ Rn, and let ξ ∈ Ω. For each k ∈ N, 1 ≤ k ≤ r, choose
{Xik}, commutators of length k with Xi1 = Xi, such that the system {Xik},
k = 1, ..., r, evaluated at ξ is a basis of Rn. Then we can define a system of
coordinates (canonical coordinates) associated to {Xik}, based at the point ξ, as
follows:

(4.1) (ujk)↔ exp(
∑

ujkXjk) · ξ,

where exp(·) · ξ : TξRn → Rn denotes the exponential map based at ξ.

Remark 4.4. Let us fix a collection of commutators {Xik} generating Rn at a point
ξ. We define the box-like sets which are given in canonical coordinates (uik) by the
expression

(4.2) Box(δ) = {uik ∈ R, k = 1, ..., r, |uik| ≤ δi} .
By virtue of Theorems 1-7 in [31], we know that there exist C,Ro > 0, and one

particular collection {Xik}, for which one has

(4.3) BC(ξ, C−1δ) ⊂ Box(δ) ⊂ BC(ξ, Cδ),

for any 0 < δ < Ro. Since we are considering vector fields which are free up to
step r at ξ, then all choices of the collection of commutators {Xik} give rise to
equivalent sets of coordinates. Consequently we can state that for any compact set
K ⊂⊂ Ω, there exist constants C1, C2 > 0 such that

(4.4) Box(C1δ) ⊂ BC(ξ, δ) ⊂ Box(C2δ) ,

for any ξ ∈ K and 0 < δ < Ro.

Following Rothschild and Stein [32], pg. 273, we want to approximate the free
vector fields X1, ..., Xm with left-invariant vector fields {Yk}, k = 1, ...,m, generat-
ing the free nilpotent Lie algebra gm,r. Let Gm,r denote the Lie group associated



ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS 811

to gm,r. For k = 1, ..., r and i = 1, ...,mk, denote by Yik a basis of the space Vk in
the stratification gm,r = V1 ⊕ · · · ⊕ Vr, and by yi,k the corresponding exponential
coordinates in the group Gm,r. We let Yi1 = Yi, i = 1, ...,m1, denote the algebra
generators. If α denotes the multi-index {i, k}, then its degree is defined to be
|α| = k.

Our argument will depend crucially upon the following fundamental result (see
[32], Theorem 5, page 273)

Theorem 4.5. Let X1, ..., Xm be a system of smooth vector fields in Rn such that
(i) X1, ..., Xm and their commutators up to rank r generate Rn, and
(ii) X1, ..., Xm are free up to rank r at ξ ∈ Rn.
Then there exist a neighborhood V of ξ and a neighborhood U of the identity in

Gm,r such that:
(A) Let η = exp(

∑
ujkXjk) · ξ, denote the canonical coordinate chart η → ujk

for V centered at ξ. The map θ : V × V → U ⊂ Gm,r defined by

(4.5) θξ(η) = θ(ξ, η) = exp(
∑

ujkYjk)

is a diffeomorphism onto its image.
(B) In the coordinate system given by θξ one can write

(4.6) Xi = Yi +Ri, i = 1, ...,m,

where Ri is a vector field of local degree less than or equal to zero, depending
smoothly on ξ, i.e., for any smooth f ,

Xi

(
f(θξ(·))

)
= (Yif +Rif)(θξ(·)).

Let us recall that a differential operator on a Carnot group G has local degree
less than or equal to zero if, after taking the Taylor expansion at the origin of
its coefficients, each term so obtained is an homogeneous operator of degree less
than or equal to zero. More explicitly, denote by {yα}, α = (ik), the exponential
coordinates in Gm,r associated to the vector fields Yik. We say that the vector field
Ri has degree less than or equal to zero if for any N ∈ N and any multi-index α =
(ik) one can find a function gα,i,N ∈ C∞(G), with growth gα,i,N (y) = O(||y||N ),
such that

(4.7) Ri =
r∑
l=1

∑
|α|=l

(
pα,i,N (y)∂yα + gα,i,N (y)∂yα

)
in a neighborhood of the origin. In (4.6), the functions pα,i,N (y) depend on N
and are homogeneous group polynomials (see [17]) of degree less than or equal
to N and greater than or equal to |α|. The notation ∂yα indicates a first order
derivative along one of the group coordinates whose formal degree is |α|. In other
words, modulo lower order terms, the operator Ri has order less than or equal to
|α| − deg(pα,i,N) ≤ |α| − |α| = 0.

In order to simplify the notation, we will write g instead of gm,r, and G instead
of Gm,r. We will assume X1, ..., Xm satisfy the hypothesis of Theorem 4.5, and
consider canonical coordinates {xi,k} given by θx0 in a neighborhood U of a point
x0 ∈ Ω ⊂ Rn. We will denote by {xi,k} both the coordinates in U and the coordi-
nates in θx0(U) ⊂ G. Since the exponential map exp : g→ G is a diffeomorphism,
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we will not distinguish between points in G and in g. When we write that a cer-
tain function f is Cl, for some l ∈ N, we intend that the Euclidean derivatives
∂xj1,k1

∂xj2,k2
· · · ∂xjs,ks f , 1 ≤ s ≤ l, are continuous in a neighborhood of x0. Equiv-

alently, the lift of f to the free Lie algebra g, given by f ′(x) = f(θ−1
x0

(x)), must have
the same property with respect to differentiation along the exponential coordinates
xi,k in a neighborhood of the origin.

The reason why we assume that the vector fields are free is that since we do not
have Taylor polynomials in Rn for f with respect to the vector fields Xi, we want
to use the Taylor polynomials for the lift f ′. To do this we need to compare the
derivatives Xif and XiXjf at x0 with the expressions Yif and YiYjf at the origin
in g.

Regarding the first Taylor polynomial, Theorem 4.5 yields immediately

(4.8) ∇0f = (X1f, ..., Xmf)(x0) = (Y1f
′, ..., Ymf

′)(0).

In the following we will use the notation Y f ′ := (Y1f
′, ..., Ymf

′)(0). To study the
relation between the second Taylor polynomial of f ′ and f we need Theorem 4.5.
Since the Ri are of order less than or equal to zero, we expect that

(4.9) XiXjf(x0) = YiYjf
′(0) + Bijf ′(0),

where

Bijf ′(0) =
(
RiYj +RiRj + YiRj

)
f ′(0)

is an operator of order less than or equal to one. The expressions (4.8) and (4.9)
lead us to the following lemma.

Lemma 4.6. If f, g ∈ C2(U) with ∇0f(x0) = ∇0g(x0), then Bijf ′(0) = Bijg′(0),
and:

(i) If YiYjg′(0) = YiYjf
′(0), then XiXjg(x0) = XiXjf(x0).

(ii) If XiXjg
′(x0) = XiXjf

′(x0), then YiYjg(0) = YiYjf(0).

Proof. Since we are interested in the value of YiYjf ′ at the origin, we may ignore
the higher order terms gα,i,N . In fact, provided we choose N > 2r in (4.7), such
higher order terms will vanish at the origin together with all their derivatives up
to order 2r.

Modulo higher order terms we may write5 Ri =
∑

α pα,i∂xα , where the pα,i are
homogeneous polynomials of order α and α runs over all multi-indices α = (i, k)
with k = 1, ..., r and i = 1, ...,mk. Since we are interested in the value of YiYjf ′ at
the origin, we may ignore the higher order terms (they will vanish at the origin).
Since f, g ∈ C2 (recall, this is the Euclidean C2), then all their derivatives are in
L∞. Let us compute

Bijf ′(0) =
(
RiYj +RiRj + YiRj

)
f ′(0)

=
∑
α,β

(
pβ,i∂xβ (Yjf ′) + Yi(pα,j∂xαf

′) + pβ,i∂xβ (pα,j∂xαf
′)(0)

)
.(4.10)

5We drop the index N > 2r, which is fixed from now on.
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This is a sum of terms of order β, α − 1 and α + β − 1 respectively. So when
evaluated at the origin we are left with

(4.11) Bijf ′(0) =
m∑
l=1

(
Yip(1,l) ,j

)
Ylf
′(0) =

m∑
l=1

bijl∂xl,1f
′(0).

Since the remainder Bijf ′(0) is determined by the horizontal gradient of f ′ at
the origin, the same argument applied to g yields the conclusion of the lemma. �

Because of the presence of the remainder terms Ri in Theorem 4.5, we need to
strengthen our definition of viscosity solution.

Consider the ∞-Laplacian homogeneous equation

(4.12) L∞ u :=
m∑

i,j=1

XiXju Xiu Xju = 0.

This is a fully non-linear, degenerate elliptic equation.

Definition 4.7. Let Ω ⊂ Rn be an open set, and X1, ..., Xm free Hörmander vector
fields in Ω. A function u ∈ C(Ω) is a viscosity subsolution of (4.12) in Ω if for every
x0 ∈ Ω and every C2 function φ defined in a neighborhood U of x0 such that
u(x0) = φ(x0) and u(x) ≤ φ(x) for x ∈ U , we have L∞ φ(0) ≥ 0. We say that u is
a viscosity supersolution at x0 if −u is a viscosity subsolution at x0, and finally, u
is a viscosity solution if it is both a subsolution and a supersolution in the viscosity
sense.

Remark 4.8. The main difference between Definitions 1.2 and 4.7 is that in the latter
the test function φ needs to be in C2 (the Euclidean space C2) in a neighborhood
of x0 ∈ Rn, and not only in Γ2. The reason for this choice is that we will need to
apply a second order differential operator (in the definition of Bij , below) to the
lift of φ to the Lie group.

We are now ready to state the main theorem of this section

Theorem 4.9 (Aronsson Euler equation in the free vector fields setting). Let Ω ⊂
Rn be an open set, and let X1, ..., Xm be a system of smooth vector fields in Rn
which are free up to step r ∈ N and satisfy Hörmander’s finite rank condition in
a neighborhood of Ω. If u ∈ Γ1(Ω) is an absolutely minimizing Lipschitz extension
with respect to the Carnot-Carathéodory metric associated to X1, ..., Xm, then u is
a viscosity solution of the ∞−Laplacian equation (4.12) in Ω.

Remark 4.10. The proof of Theorem 4.9 follows closely the argument used in prov-
ing Theorem 1.4. In particular, the final step is given by Lemma 3.1, which still
holds for general systems of smooth vector fields, and for sufficiently smooth abso-
lute minimizers u. The extra regularity hypothesis u ∈ Γ1 is used only at this latter
point, at the end of the proof of Lemma 3.1, where in this more general setting we
will not be able to use group mollifiers. At this stage, it is not clear to us whether
the results in [21], [18] and [8] make it possible to mollify our minimizer so that
the L∞ norm of the horizontal gradient of the mollification is bounded by the L∞

norm of the horizontal gradient of the minimizer.

Proof of Theorem 4.9. The proof follows closely that of the main theorem, so we
will only give a sketch of the main steps, indicating the points where a substantially
different argument is required.
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Step 1: We argue by contradiction and assume that there exists φ ∈ C2 in a
neighborhood of the point x0 such that

u(x0) = φ(x0), and u < φ in a neighborhood of x0,
m∑

i,j=1

Xi Xjφ(x0) Xiφ(x0) Xjφ(x0) < 0.

We fix a basis of Rn given by commutators of order up to r ∈ N of the vector fields
X1, ..., Xm at the point x0. Let us denote by {Xik} such a basis, with Xi1 = Xi,
i = 1, ...,m. We use the exponential coordinates xi,k associated to this basis by

{x} := exp(xi,kXik).

By the Rothschild-Stein Theorem 4.5 we can associate to the system X1, ..., Xm a
free nilpotent Lie algebra g with m generators and step r ∈ N, and its corresponding
Lie group G. Let us denote by Yik a basis of the Lie algebra. The same set of
coordinates {x} used in a neighborhood of x0 ∈ Rn can be used in a neighborhood
of the origin on the Lie algebra g and on the group G, by means of the osculating
map

θx0(x) = expG(xi,kYik).

As we did previously, we will again denote by x1 = {x1,1, ..., xm,1} and x2 =
{x1,2, ..., xm2,2} the first two layers of the canonical coordinates.

Let φ′(x) = φ(θ−1
x0

(x)), and set

D′ = D = Y φ′(0),

T ′i = Yi,2φ
′(0) and Ti = Xi,2φ(x0) for i = 1, ...,m2,

H ′ij =
1
2

(
YiYjφ

′(0) + YjYiφ
′(0)
)
,

Hij =
1
2

(
XiXjφ(x0) +XjXiφ(x0)

)
,

Bij =
1
2

(
Bijφ′(0) + Bjiφ′(0)

)
.

Notice that by virtue of (4.10) we have

(4.13) H ′ +B = H.

We will be interested in the second Taylor polynomial of φ′, which is given by

P2(x) = 〈D, y1〉+ 〈T ′, y2〉+
1
2
〈H ′y1, y1〉.

Step 2: Arguing as in the proof of Theorem 1.4, we find a symmetric m ×m
matrix M such that

(4.14) M > H ′ and MD = (C −B)D,

where C is an m×m antisymmetric matrix given by

Cji =
1
2

[Xi, Xj ]φ(x0).



ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS 815

In order to construct M we will let M = P +H ′, where P is a m×m symmetric
matrix defined by the formula

(4.15) Pz = z +
〈(C −B −H ′)D, z〉
〈(C −B −H)D,D〉 (C −B −H)D − 〈D, z〉〈D,D〉 D,

for any z ∈ Rm. Since by (4.13) we have〈(
C −B −H ′

)
D,D

〉
=
〈(
−B −H ′

)
D,D

〉
=
〈
−HD,D

〉
> 0,(4.16)

then it is easy to verify the following properties of P : for every z, z′ ∈ Rm,

〈Pz, z〉 > 0,
〈Pz, z′〉 = 〈Pz′, z〉,
PD = (C −H ′ −B)D, hence 〈PD,D〉 = −〈HD,D〉 > 0.

Step 3: Define a new m ×m symmetric matrix A given by A = M + B, and
a plane L = {〈HD,x1〉 = 0}. Set h(x) = 〈D,x1〉+ 〈T, x2〉 + 1

2 〈Mx1, x1〉. Observe
that

(4.17)
1
2

(
Bijh′(0) + Bjih′(0)

)
= Bij .

Use the method of characteristics to find a smooth solution of the Cauchy prob-
lem for the horizontal eikonal equation

(4.18)

{
|∇0V | = |∇0φ(x0)| in a neighborhood O of x0,

V (x) = h(x) in L ∩O,

subject to the condition

(4.19) ∇V (x0) = ∇φ(x0) (the full Euclidean gradient)

Note that here we are using the fact that φ ∈ C1, since we are prescribing not only
the horizontal derivatives, but also all the commutators evaluated at x0.

If we let ψ(x) = 〈HD,x1〉, then Xiψ(x0) =
∑m
j=1 HijDj. The condition that x0

is not characteristic for (4.18) is given by the inequality

(4.20)
m∑
i=1

(XiV )Xiψ(x0) =
〈
HD,D

〉
< 0.

Step 4: We prove that

(4.21)
1
2

(
XiXjV (x0) +XjXiV (x0)

)
= Aij .

In order to prove (4.21) we need to differentiate the equation (4.18) along the
directions Xi and evaluate the result at x0, obtaining

m∑
j=1

XiXjV (x0)XjV (x0) = 0.
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Consequently, we have
m∑
j=1

VijDj :=
m∑
j=1

1
2

(
XiXjV (x0) +XjXiV (x0)

)
Dj =

m∑
j=1

1
2

[Xj , Xi]V (x0)Dj

(from (4.19)) =
m∑
j=1

1
2

[Xj , Xi]φ(x0)Dj

=
m∑
j=1

CijDj(4.22)

(from (4.14)) =
m∑
j=1

AijDj.

The latter gives us a control over the directions not in L. Now we turn our
attention to the vectors in L. We observe that if x ∈ L, then the vector field∑
i xi,1Xi is tangent to L at the point x0. In fact,

d

ds
〈HD, exp(s

∑
i

xi,1Xi)〉 =
d

ds
〈HD, sx〉 = 0.

Consider x, y ∈ L, and observe that since h = V along L, then∑
i

xi,1Xi(
∑
j

yj,1Xj V )(x0) =
∑
i

xi,1Xi(
∑
j

yj,1Xj h)(x0).

We now use (4.9) and compute〈
Vx1, y1

〉
=
〈

1
2

(
YiYjh

′(0) + YjYih
′(0)
)
x1, y1

〉
+
〈

1
2

(
Bijh′(0) + Bjih′(0)

)
x1, y1

〉
from (4.17) =

〈
Mx1, y1

〉
+
〈
Bx1, y1

〉
=
〈
A x1, y1

〉
.

The rest of the proof follows along the lines of (3.24)-(3.26).
Step 5: We want to compare the second order Taylor polynomials P2 and PV

′

2

of (respectively) φ′ and V ′(x) = V (θ−1
x0

(x)).
First of all, note that we have P1 = PV

′

1 , by virtue of Theorem 4.5. In view of
Lemma 4.6 we also obtain

1
2

(
YiYjV

′(0) + YjYiV
′(0)
)

=
1
2

(
XiXjV (x0) +XjXiV (x0)

)
− 1

2

(
BijV ′(0) + BjiV ′(0)

)
=

1
2

(
XiXjV (x0) +XjXiV (x0)

)
− 1

2

(
Bijφ′(0) + Bjiφ′(0)

)
= Aij −Bij(4.23)
= Mij

Since by (4.14) we have M > H ′, it follows that

(4.24) PV
′

2 (x) > P2(x)
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for x 6= 0 and x in a neighborhood of the origin (the two polynomials are equal at
the origin).

The stratified Taylor inequality of Theorem 2.3 immediately yields

(4.25) V ′ > φ′

in O \ {0}, where O is a neighborhood of the origin.
Arguing as in Theorem 1.4, we have

(4.26) u′(x) < V ′e (x) := V ′(x)− ε,

for R ≥
√

ε
µ and x ∈ ∂B(0, R).

At this point we want to rephrase the latter inequality in terms of the functions
u and V near x0. To do this, we need to understand what is the image of B(0, R)
under the action of the map θ−1

x0
.

We recall that by Remark 4.4 there exist C, r0 > 0 such that for 0 < δ < r0,

Box(C−1δ) ⊂ BC(x0, δ) ⊂ Box(Cδ).

On the other hand, the box sets

{x ∈ G such that
mk∑
i=1

x2
i,k < R2k, for k = 1, ..., r} ⊂ G

are equivalent to the pseudo-balls B(0, R) in the group (this can be verified through
elementary computations, for a reference see [31]). Hence, there exist constants
C1, r1 such that for 0 < δ < r1 one has

(4.27) θ−1
x0

(B(0, C−1δ)) ⊂ BC(x0, δ) ⊂ θ−1
x0

(B(0, Cδ)).

By (4.26) and (4.27) we can find a neighborhood W of x0 such that for R >
√

ε
µ ,

ε small enough, and x ∈ ∂BC(x0, CR) ∩W , one has

(4.28) u(x) < Vε(x) := V (x) − ε.
On the other hand,

u(0) = 0 > −ε = Vε(0).
At this point we argue as in (3.28) and (3.29), and use Lemma 3.1 to reach a

contradiction and conclude the proof of the theorem. �

5. A class of vector field example

In this section, we examine certain vector fields without a group structure and
use the explicitly computed Taylor series to show that absolute minimizers are
infinite harmonic. We begin by constructing the tangent space. Consider R3 with
coordinates (x1, x2, x3) spanned by the vector fields

X1 = cos(x3 + α)
∂

∂x1
+ sin(x3 + α)

∂

∂x2
,

X2 =
∂

∂x3
,

X3 = sin(x3 + α)
∂

∂x1
− cos(x3 + α)

∂

∂x2
,

where α is an arbitrary real number. Observe that since

cos2(x3 + α) + sin2(x3 + α) = 1,
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these vectors do indeed span R3; and since [X1, X2] = X3, X1 and X2 satisfy
Hörmander’s condition. Note, though, that X3 is therefore a second order deriva-
tive. We endow R3 with an inner product 〈, 〉 so that the vectors X1, X2 and X3 are
orthonormal, and we call the resulting manifold g, which will be the tangent space
to a space denoted G, also using coordinates x = (x1, x2, x3) for points x ∈ G. We
denote fixed points by x0 = (x0

1, x
0
2, x

0
3).

To assist in showing that G is not a group, we state Proposition 4.10 from [4].

Proposition 5.1. Let s be a non-negative integer and let p ∈ G. For a smooth
function f defined near p, the following are equivalent:

(1) f(q) = O(dC(p, q)s) for q near p.
(2) The [subelliptic] derivatives of order ≤ s− 1 of f vanish at p.

The order of f at p is then the number s0, so either of these conditions hold with
s0 but not with s0 + 1. In particular, it is easy to see using the second condition
that x1 has order 1 unless cos(x3 +α) = 0, in which case x1 has order 2. Similarly,
x2 has order 1, unless sin(x3 + α) = 0, in which case x2 has order 2. Because
group invariance implies all points have the same order, G cannot be a group.
Using the first condition, one then concludes that the Carnot-Carathéodory metric
has different local estimates when based at different points. Fixing a point x0, we
obtain the local estimate at x0:

(5.1) dC(x0, x) ∼ |x1 − x0
1|a(x0

3+α) + |x2 − x0
2|b(x

0
3+α) + |x3 − x0

3|,

where the function a(θ) is defined by

a(θ) =
{

1
2 if cos(θ) = 0,
1 if cos(θ) 6= 0,

and b(θ) is defined analogously using sin. Using the language of [4], one sees that
our coordinates (x1, x2, x3) form a system of privileged coordinates (see p. 42 in
[4]), and so equation (5.1) is merely a restatement of Theorem 7.34 in [4].

The change in order at various points not only reiterates that G is not a group,
but it also must be reflected in the Taylor polynomial. The surprising fact is that
the Taylor polynomial based at an arbitrary point, given by the proposition below,
can be expressed in a form independent of the order of x1 and x2. This fact is
a consequence of the previous paragraph. In particular, we have the following
proposition.

Proposition 5.2. Given a point x0 = (x0
1, x

0
2, x

0
3) and a Γ2 function u : G 7→ R,

for points x near x0 the second order Taylor polynomial is given by

u(x) = u(x0) + (x1 − x0
1)
(

cos(x3 + α)X1u(x0) + sin(x3 + α)X3u(x0)
)

+ (x2 − x0
2)
(

sin(x3 + α)X1u(x0)− cos(x3 + α)X3u(x0)
)

+ (x3 − x0
3)X2u(x0) +

1
2

(x1 − x0
1)2X1X1u(x0) +

1
2

(x2 − x0
2)2X1X1u(x0)

+
1
2

(x3 − x0
3)2X2X2u(x0) + cos(x3 + α)(x1 − x0

1)(x3 − x0
3)X1X2u(x0)

+ sin(x3 + α)(x2 − x0
2)(x3 − x0

3)X1X2u(x0) +O(dC(x, x0)3).
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Note that this Taylor formula is valid for all points, including those at which
cos(x3 + α) or sin(x3 + α) is 0.

Proof. Denote the right hand side (without the error term) by P (x). We then have

X1P (x) = cos(x3 + α)
(

cos(x3 + α)X1u(x0) + sin(x3 + α)X3u(x0)

+(x1 − x0
1)X1X1u(x0) + cos(x3 + α)(x3 − x0

3)X1X2u(x0)
)

+ sin(x3 + α)
(

sin(x3 + α)X1u(x0)− cos(x3 + α)X3u(x0)

+(x2 − x0
2)X1X1u(x0) + sin(x3 + α)(x3 − x0

3)X1X2u(x0)
)

= X1u(x0) + cos(x3 + α)(x1 − x0
1)X1X1u(x0)

+ sin(x3 + α)(x2 − x0
2)X1X1u(x0) + (x3 − x0

3)X1X2u(x0)

and

X2P (x) = X2u(x0)− sin(x3 + α)(x1 − x0
1)(x3 − x0

3)X1X2u(x0)
+(x3 − x0

3)X2X2u(x0) + cos(x3 + α)(x2 − x0
2)(x3 − x0

3)X1X2u(x0)
+ cos(x3 + α)(x1 − x0

1)X1X2u(x0)
+ sin(x3 + α)(x2 − x0

2)X1X2u(x0)

The second order derivatives can then be computed, producing

X3P (x) = sin(x3 + α)
(

cos(x3 + α)X1u(x0) + sin(x3 + α)X3u(x0)

+(x1 − x0
1)X1X1u(x0) + cos(x3 + α)(x3 − x0

3)X1X2u(x0)
)

− cos(x3 + α)
(

sin(x3 + α)X1u(x0)− cos(x3 + α)X3u(x0)

+(x2 − x0
2)X1X1u(x0) + sin(x3 + α)(x3 − x0

3)X1X2u(x0)
)

= X3u(x0)− cos(x3 + α)(x2 − x0
2)X1X1u(x0)

+ sin(x3 + α)(x1 − x0
1)X1X1u(x0),

X1X1P (x) = cos2(x3 + α)X1X1u(x0) + sin2(x3 + α)X1X1u(x0),

X2X2P (x) = X2X2u(x0)− sin(x3 + α)(x1 − x0
1)X1X2u(x0)

+ cos(x3 + α)(x2 − x0
2)X1X2u(x0)

− sin(x3 + α)(x1 − x0
1)X1X2u(x0)

− cos(x3 + α)(x1 − x0
1)(x3 − x0

3)X1X2u(x0)
+ cos(x3 + α)(x2 − x0

2)X1X2u(x0)
− sin(x3 + α)(x2 − x0

2)(x3 − x0
3)X1X2u(x0),

X1X2P (x) = cos2(x3 + α)X1X2u(x0) + sin2(x3 + α)X1X2u(x0).

Evaluation at x = x0 and the fact that [X1, X2] = X3 produce

XiP (x0) = Xiu(x0)
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and also
XiXjP (x0) = XiXju(x0).

Note that this calculation is independent of the value of sin(x3 +α) and cos(x3 +α).
Whenever sin(x3 + α) = 0, x2 is of order 2, so that the term

sin(x3 + α)(x2 − x0
2)(x3 − x0

3)X1X2u(x0)

is zero and does not appear in the Taylor polynomial, reflecting the fact that

(x2 − x0
2)(x3 − x0

3) = O(dC(x, x0)3).

A similar statement holds for cos(x3 + α) and (x1 − x0
1)(x3 − x0

3).
The error term follows from applying Proposition 5.1 to P (x)− f(x). �

Having established the second order Taylor polynomial, we wish to prove an
analogue of Theorem 4.9 for the space G. We shall proceed with the proof, using
the same five-step procedure to obtain a contradiction to Lemma 3.1.

We first assume that we have a function u ∈ Lip(Ω) that is an absolute minimizer
but fails to be infinite harmonic at the origin. We will treat the general case later.
Without loss of generality, we may assume that there is a Γ2 function φ so that
equations (3.13) hold. As in the previous proofs, we establish the following notation
for matrices H and C and vectors B and D:

Hij =
1
2

(XiXjφ(0) +XjXiφ(0)),

D = ∇0φ(0),
B = −HD,

Cij =
1
2

[Xj, Xi]φ(0).

Step 1. We use equation (3.16) to define a matrix P and the matrix M = P +H
with the properties of equation (3.17).

Step 2. We define the hyperplane L by

L ={x1X1(0) + x2X2(0) + x3X3(0),

with (x1, x2, x3) ∈ R3 such that B1x1 +B2x2 = 0}

and note that (D,x3) /∈ L but 0 ∈ L. We also define the Γ2 function h(x) by

h(x) = P (x),

where P (x) is the polynomial from the proof of Proposition 5.2.
Step 3. We want to solve equation (3.18) (see also (4.18)) subject to the con-

straint ∇V (0) = ∇φ(0). Here ∇ denotes the Euclidean gradient, i.e.,

∂

∂x1
V (0) =

∂

∂x1
φ(0),

∂

∂x2
V (0) =

∂

∂x2
φ(0),

∂

∂x3
V (0) =

∂

∂x3
φ(0).

We also define the functions

f(x, p) =
1
2

(
(cos(x3 + α)p1 + sin(x3 + α)p2)2 + (p3)2

)
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and

ψ(x) =
〈
B, x

〉
.

A simple computation shows that

∇f(0,∇φ(0)) = (X1φ(0), X2φ(0)),

and consequently 〈
∇pf(0,∇φ(0)),∇xψ

〉
=
〈
B,D

〉
6= 0.

Interpreting the last inequality as the non-characteristic condition (compare with
equation (3.20)), we can argue as before and conclude the existence of V .

Step 4. Using calculations as in the Carnot group case, we obtain equation
(3.21). We recall that the derivatives of h(x) are computed in Proposition 5.2, so
equation (3.25) is obtained by a straightforward computation.

Step 5. We replace ‖x‖ in equation (3.27) by the norm

‖x‖ = |x1 − x0
1|a(x0

3+α) + |x2 − x0
2|b(x

0
3+α) + |x3 − x0

3|,

with a and b defined as in equation (5.1). We then proceed as in the Carnot group
case to reach a contradiction using Lemma 3.1.

Having completed the case when u fails to be infinite harmonic at the origin, we
next tackle the case when u fails to be infinite harmonic at an arbitrary point x0.
Because G is not a group, we do not have left translation, and in fact, the vector
fields are not invariant. We cannot move from a point at which x1 has order 1 to
a point where it has order 2. However, we can adjust the parameter α so that x1

and x2 have the same order at the origin as they do at x0. In particular, at x0 the
vector fields X1, X2 and X3 are given by

X1 = cos(x0
3 + α)

∂

∂x1
+ sin(x0

3 + α)
∂

∂x2
,

X2 =
∂

∂x3
,

X3 = sin(x0
3 + α)

∂

∂x1
− cos(x0

3 + α)
∂

∂x2
,

and so at the origin we define the vector fields

Y1 = cosβ
∂

∂x1
+ sinβ

∂

∂x2
,

Y2 =
∂

∂x3
,

Y3 = sinβ
∂

∂x1
− cosβ

∂

∂x2
,

choosing the parameter β so that x1 and x2 have the same order at the origin
with respect to the Y vector fields as they do at x0 with respect to the X vector
fields. We consider the function ũ(x) = u(x + x0), which is not infinite harmonic
at the origin. In addition, elementary calculations show that Lip ũ = Lipu and ũ
is an absolute minimizer on Ω̃ ≡ Ω − x0. We then use the above proof to obtain
a contradiction with Lemma 3.1 and conclude that u is infinite harmonic at x0.
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At this point, we note that upon completion of the case when u is Γ1, we observe
that the lack of dilations in this setting does not allow us to remove the regularity
assumption.
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[4] A. Belläıche, The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry,

Progr. Math., 144 (1996), Birkhäuser, 1–78. MR 98a:53108
[5] T. Bieske, On ∞−harmonic functions on the Heisenberg group, Comm. in PDE., 27, 3 and

4 (2002) 727-761. MR 2003g:35033
[6] T. Bieske, Viscosity solutions on Grushin-type planes, Illinois J. Math. 46 (2002), no. 3,

893–911. MR 2003k:35037
[7] T. Bieske, Lipschitz extensions on generalized Grushin-type spaces., preprint available at

www.math.lsa.umich.edu/˜tbieske.
[8] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a characterization of
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PDE’s, Birkhäuser, book in preparation.

[20] N. Garofalo & D.M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory
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