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ABSTRACT

Over the past decade, the visualization for cybersecurity (VizSec)
research community has adapted many information visualization
techniques to support the critical work of cyber analysts. While
these efforts have yielded many specialized tools and platforms, the
community lacks a unified approach to the design and implementa-
tion of these systems. In this work, we provide a retrospective anal-
ysis of the past decade of VizSec publications, with an eye toward
developing a more cohesive understanding of the emerging patterns
of design at work in our community. We identify common thematic
groupings among existing work, as well as several interesting pat-
terns of design around the utilization of various visual encodings.
We also discuss existing gaps in the adaptation of information visu-
alization techniques to cybersecurity applications, and recommend
avenues for future exploration.

1 INTRODUCTION

Over the past decade, the visualization for cybersecurity (VizSec)
research community has featured over 160 publications through
workshops, symposia, and more recently at an annual conference
sponsored by the Institute of Electrical and Electronics Engineers
(IEEE). Through these works, the community has demonstrated the
development and adaptation of numerous information visualization
techniques to support the critical work of cyber analysts. These ef-
forts have yielded many novel, sometimes highly-specialized tools
and platforms, as well as more theoretical contributions such as task
taxonomies. Despite this rich body of work, the relative youth of
this community means that we lack a unified approach to the design
and implementation of these systems.

In this work, we provide a retrospective survey and analysis of
the past decade of VizSec publications, with an eye toward devel-
oping a more cohesive understanding of the emerging patterns of
design at work in our community. We take a multi-pronged ap-
proach in order to provide a comprehensive reflection on the cur-
rent state of VizSec research, utilizing methods ranging from text
mining to the application of existing task analysis frameworks. We
identify common thematic groupings among existing work, as well
as several interesting patterns of design around the use of various
visual encodings. We also discuss existing gaps in the adaptation of
information visualization technologies for use in cybersecurity ap-
plications, and recommend avenues for the development of future
systems.

2 AUTOMATED ANALYSIS VIA TEXT MINING

In order to get a high-level overview of the state of the practice
within the VizSec community, we wanted to begin with an approach
that would introduce as little of our own assumptions and bias as
possible. We therefore decided to conduct a preliminary analysis
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via automated text mining on the full body of work that has been
published at various venues focusing on visualization for cyberse-
curity. We acknowledge that this is not a comprehensive survey
of all work related to the utilization of visualization in support of
cybersecurity. Indeed, this analysis is not intended to provide an
authoritative digest of the topic. Rather, we hope that through a
close examination of our own peer-reviewed publication practices,
we might have the opportunity to reflect more deeply on our history
and values as a community.

2.1 Dataset

The analysis reported in the remainder of this section was con-
ducted on a collected a corpus of 161 papers published in IEEE
visualization for cybersecurity between 2004 and 2015. We prepro-
cessed each article by first extracting the raw text, and then gather-
ing associated metadata.

2.2 Preprocessing and Computing Pairwise Distance

Because we wish to be able to group similar publications together,
we first need to identify an intuitive distance metric by which we
will define “similarity”. For simplicity we’ll begin by using a sim-
ple bag-of-terms model, in which we simplify each publication
down the number and frequency of unique terms it contains [28].
We consider single words, as well as bigrams (phrases of length
2) and trigrams (phrases of length 3)1 for this analysis. Using this
model, each document can then be represented as as a vector of
length k, where k is the number of unique terms across all publi-
cations in the corpus. We can then readily compare between these
high-dimensional vectors in order to get a rough sense of how sim-
ilar two publications are to one another.

Unfortunately, because some terms naturally appear more fre-
quently than others, the above approach will tend to over-emphasize
frequently-used terms with low information content. For example,
terms such as “see Fig.” or “as seen in” (which appear frequently
across all scientific publications regardless of topic) are not par-
ticularly useful for our purposes. To mitigate this, it is useful to
first eliminate commonly-used English words2, and then to perform
some normalization specific to our publication corpus.

Rather the considering the pure frequency of each term, we uti-
lize a measure known as Term Frequency-Inverse Document Fre-
quency, or tf-idf [26]. This normalization amplifies the weight
of terms that more uniquely distinguish certain documents, and
minimizes the contribution of terms that occur commonly across
the full corpus. We utilized the TfidfVectorizermodule from
the Python scikit − learn toolkit for efficient computation of the
tf-idf vector for each publication. We discarded any terms that
appeared in more than 80% or fewer than 10% of the publications
in the corpus, leaving 2,369 unique terms. We then compute the
cosine similarity of each pair of documents (characterized by their

1We do not consider n-grams of length > 3, as information theoretic
models of the English language suggest that n-grams of greater length do
not generally yield more effective results [24].

2We eliminate all terms contained in nltk’s English stopwords library,
available at: http://www.nltk.org
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Figure 1: MDS projection of k-means clustering (k = 4) of 161 VizSec papers spanning the years 2004-2015. Distance between publications
is calculated using TF-IDF vectors constructed from single words, bigrams, and trigrams.

respective tf-idf vectors), and use this to construct a complete
pairwise distance matrix over all 161 publications.

2.3 Results
We can now use this pairwise distance matrix to explore how the
past decade of VizSec publications has unfolded. If we perform k-
means clustering with k = 4, we see clear separation between the-
matic groups (see Fig. 1):

• In the blue cluster (85 papers), we find tools for cyber sit-
uational awareness such as VisFlowConnect [38, 41], NVi-
sionIP [18, 19, 40], and NVisionCC [42] alongside work by
Conti et al. [5, 6, 7] in using visualization low-level features
to identify malicious activity.

• In the green cluster (51 papers), we find many higher-level
frameworks to organize the space and process of designing
visualization systems for cybersecurity applications, includ-
ing work by Jankun-Kelly et al. [17], Staheli et. al [22, 30],
and Suo et al. [31, 32].

• In the purple cluster (16 papers) we find systems which ex-
ploit hierarchical or graph-theoretic structure in order to iden-
tify vulnerabilities within a network, such as work by Harri-
son et al. [14, 15] and Williams et al. [36, 37].

• And finally, the red cluster (9 papers) consists of work in the
area of malware analysis [11, 21, 23, 25, 27, 33, 34, 39, 43].

Upon closer inspection of the MDS projection in Fig. 1, we notice
that the malware analysis cluster appears to be somewhat scattered.
If we inspect the metadata associated with each paper (such as the
date of publication), the reason becomes clear: the rapidly evolv-
ing landscape of malware analysis and the persistent threat of novel
software exploits introduces significant differences in the terminol-
ogy used in publications on this topic year-over-year.

This observation begs the question: does this analysis capture
other interesting trends over time? When we further subdivide each
cluster into bins for each publication year, an even richer story be-
gins to unfold (see Fig. 2). In this view, we can see the gradual

shift away from low-level forensic analysis, which was a primary
focus in the early years of utilizing visualization in support of cy-
bersecurity. After a 6-year heyday averaging 10 papers per year
under this umbrella, we see a slow taper as the community begins
to turn its attention toward providing higher-level support in areas
such as situational awareness and network defense. We observe an
increased interest in the use of models, both in the context of bet-
ter understanding the analysts’ tasks as well as developing a clearer
picture of the connectivity of the network through the use of graph
theory.

3 APPLICATION OF EXISTING TAXONOMIES

We next explored whether there were any interesting patterns in the
kinds of visualizations or visual metaphors the community was us-
ing across these categories. We first distilled the corpus down to a
subset of 87 systems papers published at VizSec in the most recent
8 years. Because automated classification is a fallible process, the
authors of this paper conducted a manual evaluation of the assigned

Figure 2: Distribution of the 4 automatically-generated clusters of
VizSec publications (forensic analysis, situational awareness, net-
work defense, and malware analysis) from 2004 to 2015.
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(a) Utilization of various classes of visual metaphor. (b) Utilization of multiple visual metaphors in a single interface.

Figure 3: Temporal trends in the utilization of visualization types in VizSec publications from 2008 to 2015. Note not only the change in
utilization of visual metaphors such as parallel coordinates and treemaps (left panel), but also the increasing tendency to utilize multiple
complimentary metaphors in a single interface (right panel).

labels and manually corrected any obvious misclassifications, per-
forming partial cross-validation on a random subsample to ensure
internal validity. From this, we further restricted our in-depth anal-
ysis to the 78 papers categorized as forensic analysis (30), situa-
tional awareness (27) or network defense (23).

3.1 Visualization Type(s)

Drawing on taxonomies by Shneiderman [29], Chi [4], and Duke
University [44], we identified 11 high-level types of visual map-
ping techniques commonly employed by the VizSec community:
node link diagrams (46), tables (26), timelines (19), matrix views
(17), parallel coordinates (17), bar charts / histograms (17), line
graphs (17), treemaps (13), geographic maps (9), scatterplots (8),
and word clouds (4). For each published system, we identified
which of these high-level classes of visualization were utilized (see
Fig. 5 for selected examples). When more than one visual type of
visualization was used, we also noted whether the views were coor-
dinated or independent. In the event that a view could not be readily
classified into one of the above 11 groupings, it was labeled Other
Visualization Type (29).

We again begin by first examining how the VizSec community
has made use of various visual metaphors over time (see Fig. 3). In

Figure 4: Utilization of visual metaphors across 3 analytic goals.
Note the difference in use of matrix views versus node link dia-
grams in forensic analysis and network defense.

the left hand panel of Fig. 3, note the change in utilization of vi-
sual metaphors such as parallel coordinates (increasing beginning
in 2012) and treemaps (slowly decreasing after 2010). Addition-
ally, we observe in the right hand panel of Fig. 3 an increasing
tendency to utilize multiple complimentary metaphors in a sin-
gle interface.

If we then examine the distribution of these various visual
metaphors across the forensic analysis, situational awareness or
network defense classes, some interesting patterns of design be-
gin to emerge (see Fig. 4). For example, we notice that the use of
geographic views and tables is relatively consistent across all cat-
egories. Intuitively, geographic maps are also employed relatively
infrequently due to the fact that logical topology is often more in-
formative than physical topology. We also observe a dramatic dif-
ference in the utilization of matrix views versus node link diagrams
between the forensic analysis and network defense classes. This
suggests that these views may provide different affordances [8],
providing opportunities for further exploration.

4 FUTURE OPPORTUNITIES: STREAMING DATA

In their 2014 paper of the same name [2], Best et al. identi-
fied “7 Key Challenges for Visualization in Cyber Network De-
fense” (paraphrased): increasing data volume, heterogeneity of
data sources, isolated / non-linked data sources, poor data qual-
ity, cadence / temporal scale, progression of threat escalation, and
balancing risk vs. reward. Through the increasing trend toward
coordinated views we are beginning to address issues of heteroge-
neous data, and to a lesser extent issues of isolated data by facili-
tating cognitive linking. Issues of balancing risk / reward and poor
data quality are fundamental to the process of developing human-
machine analytical systems, though we are making strong progress
in expanding our cannon of design [22] and evaluation [30] tools.

The remaining 3 challenges (increasing data volume, cadence
/ temporal scale, and progression of threat escalation) all touch
on the unique issues raised in applying visualization techniques to
streaming data. As noted by many, blind application of estab-
lished strategies for visualizing static data often falls apart when
applied to streaming data, even when the systems were designed
for similar tasks in similar domains [2, 9, 10]. Such challenges
are not restricted to the cybersecurity domain; in the wake of ever-
evolving data landscapes and human intelligence that proves diffi-
cult to scale, they are pressing issues facing the visualization com-
munity as a whole.

In 2016, Pacific Northwest National Laboratory in collaboration
with the Laboratory for Analytic Sciences and various academic
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(a) Bar Chart / Histogram
[16]

(b) Line Graph
[12]

(c) Scatterplot
[20]

(d) Timeline
[3]

(e) Treemap
[15]

(f) Node Link Diagram
[1]

(g) Matrix View
[13]

(h) Geographic Map
[22]

(i) Parallel Coordinates
[35]

Figure 5: 11 high-level classes of visualization types.

collaborators organized a Workshop on Streaming Visual Analyt-
ics. The goal of this workshop was to develop a guiding vision for
streaming visual analytics, and to identify important research di-
rections needed to achieve this vision. Many of the more than 50
workshop attendees have ties to the VizSec community, either as re-
searchers or as analysts working in the trenches. We believe that by
continuing to engage with the larger VA community on these issues,
we will develop novel approaches that enable users to understand
complex emerging events and make appropriate assessments from
streaming data.

5 CONCLUSION

This paper provides a retrospective analysis of the past decade of
VizSec, with the goal of engaging the community in developing a
more cohesive understanding of emerging patterns of design. Uti-
lizing text-mining approaches, we have identified common thematic
groupings among existing work. From this base, we have manually
analyzed a collection of recent systems publications in order to ex-
tract interesting trends around the use of visual encodings in various
applications. We highlighted existing gaps in the adaptation of vi-
sualization techniques to cybersecurity applications, and hope this
will provide avenues for the development of future systems.
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