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LIPSCHITZ REGULARITY FOR SOLUTIONS OF THE PARABOLIC

p-LAPLACIAN IN THE HEISENBERG GROUP

L. CAPOGNA, G. CITTI, AND XIAO ZHONG

Abstract. We prove local Lipschitz regularity for weak solutions to a class of degenerate parabolic
PDEs modeled on the parabolic p-Laplacian

∂tu =

2n∑

i=1

Xi(|∇0u|
p−2

Xiu),

in a cylinder Ω × R
+, where Ω is domain in the Heisenberg group H

n, and 2 ≤ p ≤ 4. The result
continues to hold in the more general setting of contact sub-Riemannian manifolds.

1. Introduction

In this paper we establish the local Lipschitz regularity of weak solutions of a certain class of
quasilinear, degenerate parabolic equations in the Heisenberg group H

n, or more in general in
contact subRiemannian manifolds. In particular we extend to the non-stationary setting the early
work [11, 12], by introducing a new, more elegant approach to the regularity problem.

In a cylinder Q = Ω× (0, T ), where Ω ⊂ H
n is an open set and T > 0, we consider the equation

(1.1) ∂tu =

2n
∑

i=1

XiAi(x,∇0u) in Q = Ω× (0, T ),

modeled on the parabolic p-Laplacian

(1.2) ∂tu =

2n
∑

i=1

Xi

(

|∇0u|
p−2Xiu

)

,

where 2 ≤ p ≤ 4 and X1, ...,X2n denote the horizontal left invariant frame in H
n. In a previous

study [3], Garofalo and the first two listed authors have extended techniques originally introduced
by the third listed author [18] to establish C∞ smoothness for weak solutions to (2.7) in the range
2 ≤ p < ∞ under some additional non-degeneracy hypothesis. In the present paper we show that
in the restricted range of the nonlinearity 2 ≤ p ≤ 4, and without the additional non-degeneracy
assumptions, one can obtain Lipschitz regularity of weak solutions.

We indicate with x = (x1, ..., x2n, x2n+1) the variable point in H
n. We will occasionally denote

the variable x2n+1 in the center of the group with the letter z. Consequently, we will indicate with

Key words and phrases. sub elliptic p-Laplacian, parabolic gradient estimates, Heisenberg group.
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2 PARABOLIC p-LAPLACIAN IN THE HEISENBERG GROUP

∂i partial differentiation with respect to the variable xi, i = 1, ..., 2n, and use the notation Z = ∂z
for the partial derivative ∂x2n+1 . The notation ∇0u =

∑2n
i=1XiuXi

∼= (X1u, ...,X2nu) denotes the
so-called horizontal gradient of the function u, where

Xi = ∂i −
xn+i

2
∂z, Xn+i = ∂n+i +

xi
2
∂z, i = 1, ..., n.

As it is well-known, the 2n + 1 vector fields X1, ...,X2n, Z are connected by the following commu-
tation relation: for every couple of index i, j, if j = i+n, then [Xi,Xj ] = Z; all other commutators
being trivial.
Structural assumptions. The relevant assumptions on the vector-valued function

(x, ξ) → A(x, ξ) = (A1(x, ξ), ..., A2n(x, ξ))

are that there exist 2 ≤ p ≤ 4, and 0 < λ′ ≤ Λ′ < ∞ such that for a.e. x ∈ Ω, ξ ∈ R
2n and for all

η ∈ R
2n, one has

(1.3)

{

λ′|ξ|p−2|η|2 ≤ ∂ξjAi(x, ξ)ηiηj ≤ Λ′|ξ|p−2|η|2,

|Ai(x, ξ)| + |∂xj
Ai(x, ξ)| ≤ Λ′|ξ|p−1.

Given an open set Ω ⊂ H
n, we indicate with W 1,p(Ω) the Sobolev space associated with the p-

energy EΩ,p(u) =
1
p

´

Ω |∇0u|
p, i.e., the space of all functions u ∈ Lp(Ω) such that their distributional

derivatives Xiu, i = 1, ..., 2n, are also in Lp(Ω). The corresponding norm is ||u||p
W 1,p(Ω)

= ||u||Lp(Ω)+

||∇0u||Lp(Ω). We will add the subscript loc for the local versions of such spaces, and denote by

W 1,p
0 (Ω) the completion of C∞

0 (Ω) with respect to such norm. A function u ∈ Lp((0, T ),W 1,p
loc (Ω))

is a weak solution of (2.7) in the cylinder Ω× (0, T ) if

(1.4)

ˆ T

0

ˆ

Ω
uφt −

2n
∑

i=1

Ai(x,∇0u)Xiφ = 0,

for every φ ∈ C∞

0 (Q). Our main result is a Lipschitz regularity estimate for weak solutions, on
parabolic cylinders Qµ,r (see Definition 5.1).

Theorem 1.1. Let Ai satisfy the structure conditions (1.3) and let u ∈ Lp((0, T ),W 1,p
loc (Ω)) be a

weak solution of (1.1) in Q = Ω× (0, T ). If 2 ≤ p ≤ 4 then |∇0u| ∈ L∞

loc(Q) and ∂tu,Zu ∈ Lq
loc(Q)

for every 1 ≤ q < ∞. Moreover, one has that for any Qµ,2r ⊂ Q,

(1.5) sup
Qµ,r

|∇0u| ≤ Cmax
(( 1

µrN+2

ˆ ˆ

Qµ,2r

(δ + |∇0u|
2)

p
2

)
1
2
, µ

p
2(2−p)

)

,

where C = C(n, p, λ,Λ, r, µ) > 0. In the special case where there is no direct dependence on

the space variable, i.e. Ai(x, ξ) = Ai(ξ), the parameters dependence is more explicit, with C =

C(n, p, λ,Λ)µ
1
2 > 0.

The boundedness of the gradient of solutions to equation (1.1) in the setting of Euclidean spaces
is well-known [8, 5, 7]. The above theorem shows that this is also the case in the setting of
Heisenberg group for the range 2 ≤ p ≤ 4. We believe that it is true for all range 1 < p < ∞ if the
solution is bounded as in the Euclidean setting. The proof of the main theorem is based on the
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Caccioppoli type estimate in Proposition 4.4, which is new in the subelliptic context. The Lipschitz
regularity follows then through a Moser type iteration, which we present in detail in Section 5. The
Caccioppoli estimate in Proposition 4.4 is derived using two main ingredients: The first of these is
an approximation scheme, that allows us to invoke the regularity results from [3], thus dealing with
smooth approximants that can be differentiated directly, without recurring to fractional difference
quotients. One of the original contributions of the present paper is that we can avoid the extra
assumption of Riemannian approximation which is needed in [3] (hypotheses (1.6) and (1.7) in
[3]), and in fact we prove that our structure hypotheses (1.3) imply that such approximation
always exists. The second ingredient is a Poincaré-type inequality for smooth functions, which was
originally established in [6]. This latter estimate, in Lemma 4.1, is the only point in the paper
where we are forced to impose the limited range 2 ≤ p ≤ 4. In fact, we believe that such constraint
is not needed for the Caccioppoli inequality in Proposition 4.4 and we plan to return to this point
in future work.

To the best of our knowledge, the present paper and [3] are the first instances in the literature
of the study of higher regularity for weak solutions of the non stationary p-Laplacian PDE in the
sub-Riemannian setting. Both are based on techniques introduced by Zhong in [18]. By contrast,
the stationary case has been far more developed, mostly in the Heisenberg group case. We mention
here the contributions of Domokos [9], Manfredi, Mingione [11], Mingione, Zatorska-Goldstein and
Zhong [12], Ricciotti [17], [16] and eventually those in [18, 15], where the horizontal C1,α regularity
in the full range 1 < p < ∞ is proved. Regularity in more general contact sub-Riemannian
manifolds, including the rototraslation group, has been recently established by two of the authors
and coauthors [4] and independently by Mukherjee [14] based on an extension of the techniques in
[18]. More recently Domokos and Manfredi [10] have studied regularity in higher steps groups and
in some special non-group structures.

The structure of the paper is as follows: In Section 2 we review some preliminary definitions
and results from [3] and lay out the approximation scheme, thus reducing the problem to finding
estimates for smooth solutions uδ of approximating regularized equations, which are stable as δ → 0.
From that point on, we will simplify the notation by dropping the script δ and by focusing on the
case Ai(x, ξ) = Ai(x), thus highlighting how in this case we can obtain more explicit constants in
the right hand side of our estimates. In Section 3 we recall some energy type estimates from [3].
In Section 4 we show that derivatives of weak solutions along the center are in every Lq

loc space,
q ≥ 2, uniformly in δ > 0 and establish the key Caccioppoli type inequality in Proposition 4.4. In
this section we need to use the limitation 2 ≤ p ≤ 4 in the proof of a Sobolev type estimate. We
conjecture that with the exception of Lemma 4.1, all other estimates continue to hold in the range
2 ≤ p < ∞. Using Proposition 4.4, in Section 5 we prove that the solutions are locally Lipschitz
continuous in the subRiemannian metric (i.e. the horizontal gradient is in L∞

loc) uniformly in δ. We
note explicitly that the Moser iteration in Section 5 involves a Sobolev type estimate, which is also
stable as δ → 0, in view of the results in [2]. Section 6 addresses the higher integrability of the
time derivatives ∂tu of weak solutions.
Acknowledgements The authors are grateful to Nicola Garofalo for conversations around the topics
of this paper. Indeed, the results presented here are a development of some initial work that the
authors did jointly with him.
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2. Approximating weak solutions via regularizations

As mentioned in the introduction, our strategy for the proof of the Lipschitz regularity is to
locally approximate the weak solutions of (1.1) with smooth solutions uδ of less degenerate PDE
such as (2.7) and prove estimates on such approximate solutions that are uniform as δ → 0. This
approximation is built using both the regularity results in [3], recalled below in Theorem 2.1, and
a Riemannian approximation scheme (see [13, 2] and references therein). We start by recalling
the main points of the latter. First, we will use interchangeably the notation Z and X2n+1 for
the generator of the center of the Lie algebra. The left invariant sub-Riemannian metric (Hn, g0)
defined by 〈Xi,Xj〉0 = δij , for i, j = 1, ..., 2n, can be approximated in the Gromov-Hausdorff sense
through a sequence of Riemannian metrics gε, for ε → 0+, defined by imposing that X1, ...,X2n, εZ
is an orthonormal gε−frame for all ε > 0. In the terminology of [13], the metrics gε tame the metric
g0. We relabel the vectors in this frame as Xε

1 , ...,X
ε
2n+1. The corresponding gradient

∇εu =
2n
∑

i=1

XiuXi + ε2ZuZ =
2n+1
∑

i=1

Xε
i uX

ε
i

has the obvious property that ∇εu → (∇0u, 0) as ε → 0. We note explicitly that

|∇εu|
2
ε := |∇εu|

2
gε =

2n
∑

i=1

(Xiu)
2 + ε2(Zu)2 → |∇0u|0,

as ε → 0. For δ > 0, the δ−regularized Riemannian p−Laplacian, i.e. the operator related to the
Euler-Lagrange equations for the p-energy

´

|∇εu|
p
εdx, is

(2.1) Lε
pu :=

2n+1
∑

i=1

Xε
i ([δ + |∇εu|

2
ε]

p−2
2 Xε

i u),

and provides a natural (quasilinear) elliptic regularization of the subelliptic p-Laplacian.
Next, we recall the regularity theorem proved in [3].

Theorem 2.1 ([3]). For Ω ⊂ H
n, 2 ≤ p < ∞, and δ > 0, assume that the the functions Ai,δ :

Ω× R
2n → R, i = 1, ..., 2n satisfy the following structure conditions:

(i) For some λ,Λ > 0 depending only on λ′,Λ′, one has

(2.2)

{

λ(δ + |ξ|2)
p−2
2 |η|2 ≤ ∂ξjAi,δ(x, ξ)ηiηj ≤ Λ(δ + |ξ|2)

p−2
2 |η|2,

|Ai(x, ξ)| + |∂xj
Ai,δ(x, ξ)| ≤ Λ(δ + |ξ|2)

p−1
2 .

(ii) We assume that one can approximate Ai,δ by a 1-parameter family of regularized approximants

Aε
δ(x, ξ) = (Aε

1,δ(x, ξ), ..., A
ε
2n+1,δ(x, ξ)) defined for a.e. x ∈ Ω and every ξ ∈ R

2n+1, and such that

for a.e. x ∈ Ω, for all ξ =
∑2n

i=1 ξiX
ε
i + ξ2n+1X

ε
2n+1 , and ξε =

∑2n
i=1 ξiX

ε
i + εξ2n+1X

ε
2n+1 one has

uniformly on compact subsets of Ω,

(2.3) (Aε
1,δ(x, ξ

ε), ..., Aε
2n+1,,δ(x, ξ

ε)) −→
ε→0+

(A1,,δ(x, ξ1, ..., ξ2n), ..., A2n,δ(x, ξ1, ..., ξ2n), 0),
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and furthermore

(2.4)

{

λ(δ + |ξ|2)
p−2
2 |η|2 ≤ ∂ξjA

ε
i,δ(x, ξ)ηiηj ≤ Λ(δ + |ξ|2)

p−2
2 |η|2,

|Aε
i,δ(x, ξ)|+ |∂xj

Aε
i,δ(x, ξ)| ≤ Λ(δ + |ξ|2)

p−1
2 ,

for all η ∈ R
2n+1, and for some 0 < λ ≤ Λ < ∞ independent of ε. Let uδ ∈ Lp((0, T ),W 1,p

loc (Ω)) be
a weak solution of

(2.5) ∂tuδ =

2n
∑

i=1

XiAi,δ(x,∇0uδ).

in Q = Ω× (0, T ). If δ > 0 then uδ is C∞ smooth in Q.

One of our main contributions in the present paper is that one can avoid the assumptions (2.3),
and (2.4), and build the Riemannian approximation using solely the structure condition (2.2). Our
result is stated in the following proposition

Proposition 2.2. Let Ai be as in (1.3). For every δ > 0 there exists Ai,δ such that

(2.6) Aδ(x, ξ) −→
δ→0+

A(x, ξ),

satisfying the hypothesis (2.2), (2.3), and (2.4) with constants depending only on the original λ′,Λ′.

Moreover, if a function Ai,δ satisfies (2.2), then it also satisfies (2.3), and (2.4) with constants

depending only on the original λ′,Λ′.

In view of Theorem [3], the latter yields immediately the following

Corollary 2.3. Let u be a weak solution of (1.1) in Q = Ω× (0, T ), with the structure conditions

(1.3). For any sub-cylinder Q1 = Ω1×(t1, t2) ⊂⊂ Ω×(0, T ), there exists a sequence {uδ} of smooth

solutions of the regularized problem

(2.7) ∂tuδ =

2n
∑

i=1

XiAi,δ(x,∇0uδ) in Q1, and uδ = u on ∂p Q1

converging to u, as δ → 0+, uniformly on compacts subsets of Q1 and weakly in the W 1,p-norm.

Here we have denoted by ∂pQ1 = Ω1 × {t = t1} ∪ ∂Ω1 × (t1, t2) the parabolic boundary of Q1. The

functions Aδ satisfy (2.11), (2.2), (2.3), and (2.4) with constants depending only on the original

λ′,Λ′.

Proof. Let u be a weak solution of (1.1) in Q. In view of the results in [1] we know that the solution
is Hölder continuous in compact subsets. For δ > 0, let Ai,δ be as in the statement of Proposition
2.2, and consider the unique weak solution uδ of (2.7). In view of the comparison principle, the
uniform continuity and Caccioppoli inequalities for {uδ} proved in [1] and of (2.11), (2.2) one can
easily see that uδ → u uniformly on compact subsets of Q1 and weakly in the W 1,p-norm. In order
to conclude the proof, we only need to observe that uδ are smooth (with the regularity possibly
depending on δ > 0 of course) thanks to Theorem 2.2 and Theorem 2.1. In fact, one can apply the
results from [3], to derive regularity estimates that are uniform in the parameter ε, thus yielding
that the family uδ,ε has a subsequence converging to a solution of the problem (2.7) as ε → 0, which
coincides with uδ in view the comparison principle. �
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We are left with the task of proving Proposition 2.2. To better illustrate the argument of the
proof we present the special, simpler, case of the p-Laplacian (1.2), i.e. for ξ =

∑2n
i=1 ξiXi ∈ R

2n,
and x ∈ H

n,
Ai(x, ξ) = |ξ|p−2ξi, i = 1, ..., 2n.

In this case, we consider for each δ > 0, the following functions

(2.8) Ai,δ(x, ξ) = (δ + |ξ|2)
p−2
2 ξi, i = 1, ..., 2n,

and for each ε > 0, and ξ =
∑2n+1

i=1 ξiX
ε
i ∈ R

2n+1,

(2.9) Aε
i,δ(x, ξ) = (δ + ‖ξ‖2gε(x))

p−2
2 ξi, i = 1, ..., 2n + 1.

While the quantity || · ||gε(x) a priori depends on x ∈ H
n, we remark that when ξ is a left invariant

vector field, since gε is left invariant as well, the dependence of ||ξ||gε(x) on the point x vanishes.

Proof of Proposition 2.2. Following the intuition from the example above, we construct the approx-
imates through a two steps process. For 0 < δ < 1, let us define

(2.10) Aδ(x, ξ) = A(x, ξ) + λδ
p−2
2 ξ

It is clear that

(2.11) Aδ(x, ξ) −→
δ→0+

A(x, ξ)

and furthermore, for some λ,Λ > 0 depending only on λ′,Λ′, one has the estimate (2.2).

For each ξ =
∑2n+1

i=1 ξiX
ε
i ∈ R

2n+1, and ε, δ > 0 we set

(2.12) Ai,δ,ε(x, ξ) = Ãi(x, ξH) + λ(δ + |ξ|2ε)
p−2
2 ξi,

for i = 1, ..., 2N + 1. Here we have denoted ξH = (ξ1, ..., ξ2n), Ã = (A, 0) ∈ R
2n+1, and |ξ|2ε =

∑2n+1
i=1 ξ2i .

Clearly for a.e. x ∈ Ω, and for all ξε =
∑2n

i=1 ξiX
ε
i + εξ2n+1X

ε
2n+1 one has uniformly on compact

subsets of Ω× (0, T ),

(A1,δ,ε(x, ξ
ε), ..., A2n+1,δ,ε(x, ξ

ε)) −→
ε→0+

(A1,δ(x, ξ1, ..., ξ2n), ..., A2n,δ(x, ξ1, ..., ξ2n), 0),

where Aδ is defined as in (2.10). In addition one can see that there exist constants λ,Λ > 0
depending on λ′,Λ′ such that

{

λ(δ + |ξ|2ε)
p−2
2 |η|2ε ≤ ∂ξjAi,δ,ε(x, ξ)ηiηj ≤ Λ(δ + |ξ|2ε)

p−2
2 |η|2ε,

|Ai(x, ξ)|+ |∂xj
Ai,δ,ε(x, ξ)| ≤ Λ(δ + |ξ|2ε)

p−1
2 ,

for all η =
∑2n+1

i=1 ηiX
ε
i ∈ R

2n+1. �

Remark 2.4. For the rest of the paper we will always consider solutions uδ of the Dirichlet problem
(2.7) with δ > 0, in a cylinder D × (τ1, τ2) ⊂⊂ Q1, with D ⊂⊂ Ω1 and [τ1, τ2] ⊂ (t1, t2). For the
sake of notation we will drop the subscript δ from uδ and Ai,δ, and with a slight abuse of notation
write Q = Ω× (0, T ) instead of D × (τ1, τ2). To further simplify the formulation of the estimates,
we will assume that Ai(x, ξ) = Ai(ξ), as in this case we can obtain sharper constants, and so we
highlight these more involved aspects of the proofs. The more general case is handled in a similar
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fashion, and does not lead to explicit constants on the right hand side of the estimates. We note
explicitly that all constants are independent of the parameter δ > 0.

3. Preliminary energy estimates

We recall the basic Caccioppoli inequalities proved in [3]. These inequalities apply to a smooth
solution u of the approximating equation (2.7) with δ > 0, in a cylinder Q ⊂⊂ Q1. In what follows
we will implicitly assume that all constants on the right hand side of the inequalities depend on
n, p, on the structure constants, λ,Λ but not on δ.

Lemma 3.1. Let u be a solution of (2.7) in Q, with δ > 0. If we set vl = Xlu, with l = 1, 2, ..., 2n,

and sl = (−1)[l/n] then the function vl is a solution of

(3.1) ∂tvl =
2n
∑

i,j=1

Xi

(

Ai,ξj (∇0u)XlXju
)

+ slZ(Al+sln(∇0u)).

Lemma 3.2. Let u be a solution of (2.7) in Q, with δ > 0. The function Zu is then a solution of

the equation

∂tZu =

2n
∑

i,j=1

Xi(Ai,ξj (∇0u)XjZu).

First we recall a Caccioppoli estimates for derivatives of the solution along the center of the
group.

Lemma 3.3 (Lemma 3.4 [3]). Let u be a solution of (2.7) in Q with δ > 0. For every β ≥ 0 and

non-negative η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the parabolic boundary of Q, one has
ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−2
2 |Zu|β|∇0Zu|2η4+β ≤C

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−2
2 |Zu|β+2|∇0η|

2η2+β

+ C

ˆ t2

t1

ˆ

Ω
|Zu|β+2|∂tη|η

3+β ,

where C = C(λ,Λ) > 0.

Second, we recall a Caccioppoli estimate for the horizontal derivatives.

Lemma 3.4 (Lemma 3.5 [3]). Let u be a weak solution of (2.7) in Q, with δ > 0. For every β ≥ 0
and non-negative η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the parabolic boundary of Q, we have

1

β + 2
sup

t1<t<t2

ˆ

Ω
(δ + |∇0u|

2)
β+2
2 η2 +

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)(p−2+β)/2|∇2
0u|

2η2

≤C

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p+β
2 (|∇0η|

2 + |Zη|η) +
C

β + 2

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
β+2
2 |∂tη|η

+ C(β + 1)4
ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−2+β

2 |Zu|2η2,

where C = C(n, p, λ,Λ) > 0, independent of δ.
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4. Main Caccioppoli inequality

The main result of this section is a Caccioppoli inequality, Proposition 4.4, for the horizontal
derivatives of the weak solutions of (2.7), with δ > 0. To do this, we first need to prove an estimate
for the derivative along the center Zu in Lemma 4.1 and Lemma 4.2. All estimates are uniform in
δ > 0, and the constants are stable as δ → 0.

We begin by recalling a Poincaré-like interpolation inequality from [6]. In the proof, we will need
the restriction 2 ≤ p ≤ 4 and this is the only use we make of this hypothesis in the paper.

Lemma 4.1. Assume that 2 ≤ p ≤ 4 and let u ∈ C2(Q). There exists a constant C > 0 depending

only on n, p such that for every β ≥ 0 and non-negative η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the

parabolic boundary of Q, we have

(4.1)

ˆ t2

t1

ˆ

Ω
|Zu|p+βηp+β ≤ C(p+ β)||∇0η||L∞

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

+ C(p+ β)

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)(p−2)/2|Zu|β|∇0Zu|2η4+β

Proof. We denote

(4.2) L =

ˆ t2

t1

ˆ

Ω
|Zu|p+βηp+β, R =

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2 .

We estimate L from above as follows. Fix l = 1, 2, ..., n. Note that

Zu = XlXn+lu−Xn+lXlu.

We can write

|Zu|p+β = |Zu|p−2+βZu(XlXn+lu−Xn+lXlu).

Then integration by parts gives us

(4.3)

L =

ˆ t2

t1

ˆ

Ω
|Zu|p−2+βZu(XlXn+lu−Xn+lXlu)η

p+β

=− (p− 1 + β)

ˆ t2

t1

ˆ

Ω
|Zu|p−2+β(XlZuXn+lu−Xn+lZuXlu)η

p+β

− (p+ β)

ˆ t2

t1

ˆ

Ω
|Zu|p−2+βZu(Xn+luXlη −XluXn+lη)η

p−1+β

≤ 2(p + β)

ˆ t2

t1

ˆ

Ω
|∇0u||Zu|p−2+β|∇0Zu|ηp+β

+ 2(p + β)

ˆ t2

t1

ˆ

Ω
|∇0u||Zu|p−1+β|∇0η|η

p−1+β = I1 + I2

We will estimate the integrals I1, I2 on the right hand side of (4.3) by Hölder’s inequality. First for
I2, we have

(4.4) I2 ≤ 2(p + β)||∇0η||L∞R
1

p+βL
p−1+β
p+β ,
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where L and R are as in (4.2).
Second, for I1, we have

(4.5) I1 ≤ 2(p + β)M
1
2R

4−p
2(p+β)L

2p−4+β
2(p+β) ,

where

M =

ˆ t2

t1

ˆ

Ω
|∇0u|

p−2|Zu|β|∇0Zu|2η4+β.

This yields

(4.6) L ≤ C(p+ β)||∇0η||L∞R
1

p+βL
p−1+β
p+β + C(p+ β)M

1
2R

4−p
2(p+β)L

2p−4+β
2(p+β) ,

from which the conclusion follows immediately through Young’s inequality. �

The previous Poincaré-like inequality can be applied to solutions of (2.7) and through invoking
Lemma 3.3 lead us to the following key estimate.

Lemma 4.2. Let u be a solution of (2.7) in Q, with δ > 0 and 2 ≤ p ≤ 4. Then for every β ≥ 0
and non-negative η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the parabolic boundary of Q, we have

(4.7)

(

ˆ t2

t1

ˆ

Ω
|Zu|p+βηp+β

)
1

p+β
≤ C(p+ β)||∇0η||L∞

(

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

)
1

p+β

+C(p+ β)||η∂tη||
1
2
L∞ |spt(η)|

p−2
2(p+β)

(

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

)
4−p

2(p+β)

Remark 4.3. Suspending temporarily the notation established in Remark 2.4, we denote by uδ the
solutions of the approximating equation (2.7). In particular, Lemma 4.2 establishes the local Lq

integrability of Zuδ, the derivative along the center of the approximating solutions, with uniform
Lq bounds as δ → 0, for all 1 ≤ q < ∞. This implies that one can find a subsequence, Zuδk
converging to a Lq

loc function, which in view of the definition of weak derivative, is also a derivative
along the center of the uniform limit of the uδ. Since such limit is the original solution of (1.1),
this proves the local integrability of Zu in every Lq class as stated in Theorem 1.1.

Proof. We apply the inequality (4.6) in the previous lemma to the solution u and invoke Lemma
3.3 to estimate the integral

M =

ˆ t2

t1

ˆ

Ω
|∇0u|

p−2|Zu|β|∇0Zu|2η4+β,

obtaining

(4.8)
M ≤ C

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−2
2 |Zu|β+2|∇0η|

2η2+β + C

ˆ t2

t1

ˆ

Ω
|Zu|β+2|∂tη|η

3+β

≤ C||∇0η||
2
L∞R

p−2
p+βL

β+2
p+β + C||η∂tη||L∞ |spt(η)|

p−2
p+βL

β+2
p+β ,

where C = C(λ,Λ) > 0, and L is as in (4.3). In the second inequality of (4.8), we used Hölder’s
inequality. Combining (4.5), (4.6) and (4.8), we obtain the estimate for I1,

(4.9) I1 ≤ C(p+ β)||∇0η||L∞R
1

p+βL
p−1+β
p+β + C(p+ β)||η∂tη||

1
2
L∞ |spt(η)|

p−2
2(p+β)R

4−p
2(p+β)L

p−1+β
2(p+β) .
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Next, we substitute the latter in the estimate (4.5) for I1 and the estimate (4.4) for I2 to (4.3), and
conclude

L ≤ C(p+ β)||∇0η||L∞R
1

p+βL
p−1+β
p+β + C(p+ β)||η∂tη||

1
2
L∞ |spt(η)|

p−2
2(p+β)R

4−p
2(p+β)L

p−1+β
2(p+β) ,

which yields immediately (4.7). �

The following result follows from Lemma 4.2, and the energy estimate in Lemma 3.4. It yields
a Caccippoli inequality for the horizontal derivatives of weak solutions, which extends to the sub-
Riemannian setting the analogue Euclidean estimate proved in [7, Proposition 3.2 (3.7), page 225].

Proposition 4.4. Let u be a weak solution of (2.7) in Q, with δ > 0 and 2 ≤ p ≤ 4. Then for

every β ≥ 0 and non-negative η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on the parabolic boundary of Q, we

have

(4.10)

sup
t1<t<t2

ˆ

Ω
(δ + |∇0u|

2)
β+2
2 η2 +

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)(p−2+β)/2|∇2
0u|

2η2

≤C(p+ β)7
(

||∇0η||
2
L∞ + ||ηZη||L∞

)

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

+ C(p+ β)7||η∂tη||L∞ |spt(η)|
p−2
p+β

(

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

)
β+2
p+β

,

where C = C(n, p, λ,Λ) > 0.

Remark 4.5. Although the statement addresses the approximate solution uδ, in view of arguments
analogue to those in Remark 4.3, the same estimate holds for weak solutions of (1.1).

Proof. Lemma 3.4 gives us the following estimate for the left hand side of (4.10)

(4.11)

sup
t1<t<t2

ˆ

Ω
(δ + |∇0u|

2)
β+2
2 η2 +

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)(p−2+β)/2|∇2
0u|

2η2

≤C(p+ β)

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p+β
2 (|∇0η|

2 + |Zη|η) + C

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
β+2
2 |∂tη|η

+ C(p+ β)5
ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−2+β

2 |Zu|2η2.

To obtain the desired estimate (4.11), we will show that each integral on the right hand side of
(4.11) can be bounded from above by the right hand side of (4.10). For the first integral on the
right hand of (4.11), it is obviously bounded from above by the first item on the right hand side of
(4.10). For the second integral, Hölder’s inequality gives us

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
β+2
2 |∂tη|η ≤ ||η∂tη||L∞ |spt(η)|

p−2
p+β

(

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

)
β+2
p+β

,

which shows that it is bounded from above by the second item on the right hand side of (4.10).
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For the third integral on the right hand side of (4.11), we use Hölder’s inequality and our main
lemma, Lemma 4.2, and we have
ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−2+β

2 |Zu|2η2 ≤
(

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

)
p−2+β
p+β

(

ˆ t2

t1

ˆ

Ω
|Zu|p+βηp+β

)
2

p+β

≤ C(p+ β)2||∇0η||
2
L∞

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

+ C(p+ β)2||η∂tη||L∞ |spt(η)|
p−2
p+β

(

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p+β
2

)
β+2
p+β

,

which concludes the proof of the lemma. �

5. Boundedness of the horizontal gradient

In this section we conclude the proof of Theorem 1.1, i.e. we establish that weak solutions of
the approximating equation (2.7) with δ > 0 are Lipschitz continuous with respect to the subRie-
mannian distance, uniformly in the parameter δ. The proof follows immediately from Proposition
4.4 and from the Moser type iteration in Theorem 5.2 below. The proof of Theorem 5.2 should
be known, but we can not find the precise reference in the literature. It is similar to the proof of
Theorem 4 in [5] for the case 1 < p < 2. The proof is included for the reader’s convenience.

First, we recall a few definitions needed in the proof. We will denote by d0(x, y) = ||y−1x|| the
subRiemannian distance, where

||x||4 = (

2n
∑

i=1

x2i )
2 + 16x22n+1,

is the Koranyi gauge. The corresponding parabolic metric is d0((x, t), (y, s)) = d0(x, y) + |t− s|2.

Definition 5.1. A parabolic cylinder Qr(x0, t0) ⊂ Q is a set of the form Qr(x0, t0) = B(x0, r) ×
(t0− r2, t0). where r > 0, B(x0, r) = {y| ||yx−1

0 || < r} ⊂ Ω denotes the gauge ball of center x0. The
parabolic boundary of the cylinder Qr(x0, t0) ⊂ Q is the set B(x0, r)×{t0− r2}∪ ∂B(x0, r)× [t0−
r2, t0). For r, µ > 0 we also define the cylinders

Qµ,r := B(x,R)× [t0 − µR, t0]

Theorem 5.2. Let u ∈ C∞(Q), with Q = Ω× (0, T ). If u satisfies the Caccioppoli type inequality

(4.10), then for every p ≥ 2, and for any Qµ,2r ⊂ Q, we have

(5.1) sup
Qµ,r

|∇0u| ≤ Cµ
1
2 max

(( 1

µrN+2

ˆ ˆ

Qµ,2r

(δ + |∇0u|
2)

p
2

)
1
2
, µ

p
2(2−p)

)

,

where C = C(n, p, λ,Λ) > 0.

Remark 5.3. Suspending temporarily the notation established in Remark 2.4, we denote by uδ the
solutions of the approximating equation (2.7). As mentioned earlier, there is a subsequence uδ → u
converging uniformly in compact subsets of Q to the weak solution u of (1.1). In view of the
uniform bound on the Lipschitz constant of uδ in (5.1), then the Lipschitz regularity of u follows
immediately.
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Proof. Let η ∈ C1([0, T ], C∞

0 (Ω)) be a non-negative cut-off function vanishing on the parabolic
boundary of Q such that |η| ≤ 1 in Q. For β ≥ 0, we set

v = (δ + |∇0u|
2)

p+β
4 η2.

Then the Caccioppoli inequality (4.10) gives us

(5.2)

sup
t1<t<t2

ˆ

Ω
vm +

ˆ t2

t1

ˆ

Ω
|∇v|2 ≤C(p+ β)7

(

||∇0η||
2
L∞ + ||ηZη||L∞

)

ˆ ˆ

spt(η)
v2

+ C(p+ β)7||η∂tη||L∞ |spt(η)|
p−2
p+β

(

ˆ ˆ

spt(η)
v2
)

β+2
p+β

,

where C = C(n, p, λ,Λ) > 0. Here m = 2(β + 2)/(p + β). Note that 4/p < m ≤ 2. Now let
q = 2(m+N)/N . We have

ˆ t2

t1

ˆ

Ω
vq ≤

ˆ t2

t1

(

ˆ

Ω
vm

)
2
N
(

ˆ

Ω
v

2N
N−2

)
N−2
N

≤ C
(

sup
t1<t<t2

ˆ

Ω
vm

)
2
N
(

ˆ t2

t1

ˆ

Ω
|∇v|2

)

,

where C = C(n) > 0. Here in the second inequality, we used the Sobolev inequality in the space
variables. Now we plug the estimate (5.2) into the above inequality and we obtain that

(5.3)

(

ˆ t2

t1

ˆ

Ω
vq
)

N
N+2

≤C(p+ β)7
(

||∇0η||
2
L∞ + ||ηZη||L∞

)

ˆ ˆ

spt(η)
v2

+ C(p+ β)7||η∂tη||L∞ |spt(η)|
p−2
p+β

(

ˆ ˆ

spt(η)
v2
)

β+2
p+β

,

where C = C(n, p, λ,Λ) > 0. Here q = 2 + 4(β + 2)/(N(p + β)). This is the inequality on which
our iteration is based.

Let Qµ,2r ⊂ Q. We define, for i = 0, 1, 2, ..., a sequence of radius ri = (1 + 2−i)r and a sequence
of exponent βi such that β0 = 0 and

p+ βi+1 = (p+ βi)
(

1 +
2(βi + 2)

N(p+ βi)

)

,

that is,

βi = 2(κi − 1), κ =
N + 2

N
.

We denote Qi = Qµ,ri . Note that Q0 = Qµ,2r and Q∞ = Qµ,r. The we choose a standard parabolic
cut-off function ηi ∈ C∞(Qi) such that ηi = 1 in Qi+1 with

|∇0ηi| ≤
2i+8

r
, |Zηi| ≤

22i+8

r2
, |∂tηi| ≤

22i+8

µr2
in Qi.

Now we let η = ηi and β = βi in (5.3) and we obtain that for i = 0, 1, ...

(5.4)

(

ˆ ˆ

Qi+1

(δ + |∇0u|
2)

αi+1
2

)
N

N+2
≤C22iα7

i r
−2

[(

ˆ ˆ

Qi

(δ + |∇0u|
2)

αi
2

)
p−2
αi +

+ µ−1
(

µrN+2
)

p−2
αi

](

ˆ ˆ

Qi

(δ + |∇0u|
2)

αi
2

)

αi−p+2

αi ,
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where C = C(n, p, λ,Λ) > 0 and αi = p+ βi = p− 2 + 2κi. We denote

Mi =
( 1

µrN+2

ˆ ˆ

Qi

(δ + |∇0u|
2)

αi
2

)
1
αi .

Then we can write (5.4) as

M
αi+1

κ

i+1 ≤ Cµ
2

N+2 22iα7
i

(

Mp−2
i + µ−1

)

Mαi−p+2
i .

We set

M i = max
(

Mi, µ
1

2−p
)

.

Then it follows from the above inequality that

(5.5) M
αi+1

κ

i+1 ≤ Cµ
2

N+2 22iα7
iM

αi

i ,

since we may assume that C = C(n, p, λ,Λ) ≥ 1. Iterating (5.5), we obtain that

M i+1 ≤
(

i
∏

j=0

K
κi+1−j

αi+1

j

)

M

α0κ
i+1

αi+1

0 ,

where

Ki = Cµ
2

N+2 22iα7
i .

Recall that αi = p− 2 + 2κi and κ = (N + 2)/N . Let i go to infinity. We obtain that

(5.6) M∞ = lim sup
i→∞

M i ≤ Cµ
1
2M

p
2
0 ,

where C = (n, p, λ,Λ) > 0. Note that

M∞ ≥ sup
Qµ,r

|∇0u|, M0 = max
(( 1

µrN+2

ˆ ˆ

Qµ,2r

(δ + |∇0u|
2)

p
2

)
1
p
, µ

1
2−p

)

.

Thus (5.6) gives us the desired inequality (5.1), completing the proof. �

6. Higher integrability of ∂tu

In this section, we prove that the time derivative ∂tu of weak solutions of (2.7) in the range
2 ≤ p ≤ 4 belongs to Lq

loc(Ω×(0, T )) for every q ≥ 1. As observed before, once we establish uniform
estimates for ∂tuδ, then arguing as in Remark 4.3, one can readily conclude the integrability of ∂tu.

Lemma 6.1. Let u be a solution of equation (2.7) in Q = Ω× (0, T ). Then we have

∂tu ∈ Lq
loc(Ω× (0, T ))

for every q ≥ 1. Moreover, for every β ≥ 0, and non-negative η ∈ C1([0, T ], C∞

0 (Ω)) vanishing on

the parabolic boundary, we have

(6.1)

ˆ t2

t1

ˆ

Ω
|∂tu|

β+2ηβ+2 ≤ C
(

M2p−2||∇0η||
2
L∞ +Mp||η∂tη||L∞

)
β+2
2 |spt(η)|,

where C = C(p, λ,Λ, β) > 0 and M = supspt(η)(δ + |∇0u|
2)

1
2 .
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Proof. Let β ≥ 0. Since u is a solution of (2.7), we can write

|∂tu|
β+2 = |∂tu|

β∂tuXi(Ai,δ(x,∇0u)).

We denote by L the integral on the left hand side of (6.1), which is the object we will estimate.
Let η ∈ C1([0, T ], C∞

0 (Ω)) be a non-negative cut-off function, vanishing on the parabolic boundary.
Since η(·, t) ∈ C∞

0 (Ω) for every t ∈ [0, T ], integration by parts gives us that

(6.2)

L =

ˆ t2

t1

ˆ

Ω
|∂tu|

β+2ηβ+2 =

ˆ t2

t1

ˆ

Ω
|∂tu|

β∂tuXi(Ai,δ(x,∇0u))η
β+2

=− (β + 2)

ˆ t2

t1

ˆ

Ω
|∂tu|

β∂tuAi,δ(x,∇0u)η
β+1Xiη

− (β + 1)

ˆ t2

t1

ˆ

Ω
|∂tu|

βXi(∂tu)Ai,δ(x,∇0u)η
β+2 = I1 + I2.

We will estimate the integrals I1, I2 in the right hand side of the above equality as follows. First,
we use the structure condition and Hölder’s inequality to estimate I1. We have

(6.3)

|I1| ≤(β + 2)Λ

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−1
2 |∂tu|

β+1ηβ+1|∇0η|

≤(β + 2)Λ
(

ˆ t2

t1

ˆ

Ω
|∂tu|

β+2ηβ+2
)

β+1
β+2

×

×
(

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−1
2

(β+2)|∇0η|
β+2

)
1

β+2

=(β + 2)Λ||∇0η||L∞ |spt(η)|
1

β+2Mp−1L
β+1
β+2 ,

where M = supspt(η)(δ + |∇0u|
2)

1
2 .

Second, we also use the structure condition and Hölder’s inequality to estimate I2. We have

(6.4)

|I2| ≤(β + 1)Λ

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−1
2 |∂tu|

β|∇0∂tu|η
β+2

≤(β + 1)Λ
(

ˆ t2

t1

ˆ

Ω
|∂tu|

β+2ηβ+2
)

β
2(β+2)

(

ˆ ˆ

spt(η)
(δ + |∇0u|

2)
p
4
(β+2)

)
1

β+2
J

1
2

≤(β + 1)Λ|spt(η)|
1

β+2M
p
2L

β
2(β+2)J

1
2 ,

where

J =

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−2
2 |∂tu|

β |∇0∂tu|
2ηβ+4.

To estimate the integral J , we differentiate equation (2.7) with respect to t and we obtain that

∂t(∂tu) = Xi(∂ξjAi,δ(x,∇0u)Xj(∂tu)).
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Then we use ϕ = |∂tu|
β∂tuη

β+4 as a test function to the above equation and we obtain the following
Caccioppoli inequality by the structure condition and the Cauchy-Schwarz inequality

(6.5)
J ≤C

ˆ t2

t1

ˆ

Ω
(δ + |∇0u|

2)
p−2
2 |∂tu|

β+2ηβ+2|∇0η|
2 + C

ˆ t2

t1

ˆ

Ω
|∂tu|

β+2ηβ+3|∂tη|

≤C(Mp−2||∇0η||
2
L∞ + ||η∂tη||L∞)L,

where C = C(p, λ,Λ, β) > 0. Here we used the fact that η vanishes on the parabolic boundary.
Combining (6.4) and (6.5), we obtain the following estimate for I2.

(6.6) |I2| ≤ C|spt(η)|
1

β+2M
p
2L

β+1
β+2 (Mp−2||∇0η||

2
L∞ + ||η∂tη||L∞)

1
2 .

Now we combine (6.2) with the estimates (6.3) and (6.6) and we end up with

L ≤ CMp−1||∇0η||L∞ |spt(η)|
1

β+2L
β+1
β+2 + C|spt(η)|

1
β+2M

p
2L

β+1
β+2 (Mp−2||∇0η||

2
L∞ + ||η∂tη||L∞)

1
2 ,

from which (6.1) follows. This completes the proof. �

7. Concluding remarks and some open problems

There are a number of immediate extensions which we want to highlight, as well as some more
involved, plausible extensions which we listen as open problems.

First of all, the prototype for the class of operators in (1.1) is the regularized p-Laplacian operator

Lpu = divg0,µ0((δ + |∇0u|
2
g0)

p−2
2 ∇0u)

in a sub-Riemannian contact manifold (M,ω, g0), whereM is the underlying differentiable manifold,
ω is the contact form and g0 is a Riemannian metric on the contact distribution. The measure
µ0 is the corresponding Popp measure. Since the structure conditions (1.3) and equation (1.1)
are invariant by contact diffeomorphisms, then invoking Darboux coordinates one can pull-back
the PDE from the setting of contact subRiemannian manifolds to that of the Heisenberg group.
Consequently all our results extends to the more general contact subRiemannian setting. For a
more detailed description, see [4, Section 6.1]. As an immediate corollary of Theorem 1.1 one has
the following.

Theorem 7.1. Let (M,ω, g0) be a contact, sub-Riemannian manifold and let Ω ⊂ M be an open

set. For 2 ≤ p ≤ 4, δ ≥ 0, consider u ∈ Lp((0, T ),W 1,p
0 (Ω)) be a weak solution of

∂tu = divg0,µ0((δ + |∇0u|
2
g0)

p−2
2 ∇0u),

in Q = Ω× (0, T ). For any open ball B ⊂⊂ Ω and T > t2 ≥ t1 ≥ 0, and q ≥ 1, there exist constants

C = C(n, p, d(B, ∂Ω), T − t2, δ) > 0 and Cq = C(n, p, q, d(B, ∂Ω), T − t2, δ) > 0 such that

||∇0u||L∞(B×(t1 ,t2)) ≤ C and ||∂tu||Lq(B×(t1 ,t2)) + ||Zu||Lq(B×(t1,t2)) ≤ Cq.

Of course, if δ > 0 then in view of the results in [3], the solutions are smooth in Q.
Some of the following extensions seem challenging, and we list them as open problems in increas-

ing order of their perceived difficulty.
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(1) Standard, but technically involved, modifications should allow to extend our work to the
case of equations of the type

∂tu−XiAi(x, t, u,∇0u) = B(x, t, u,∇0u)

with structure conditions similar to those in [7, Section 1, Chapter VIII].
(2) We feel it should possible to weaken the bounds in the structure conditions for ∂xk

Ai and
request instead only horizontal derivatives bounds, bounds on XkAi, although this would
require some additional work in the proof of Lemma 4.1.

(3) This paper only deals with scalar equations, however in the Euclidean case the results
continue to hold also for systems of equations with additional structure (see [7]). The
extension in the subelliptic setting would involve first extending the results of [3], and all
the regularity theory literature that is used there.

(4) Because our argument rests in a crucial way on Lemma 4.1, the Lipschitz regularity for the
range 4 < p < ∞ is currently beyond our reach. We conjecture that our main Caccioppoli
inequality (4.10) still holds with exactly the same statement in this extended range.

(5) Proof of the Hölder regularity of horizontal derivatives, in any range of p 6= 2.
(6) Just as in the Euclidean case, the regularity problem in the range 1 < p < 2 is more

challenging, and would require completely different arguments. In the stationary case this
has been solved by Mukherjee and Zhong in [15].

(7) Our work extends easily to any step two Carnot group. Although there is promising work
by Domokos and Manfredi [10] in the stationary case, the extension of our result to the
higher step setting seems quite challenging.
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