
Smith ScholarWorks Smith ScholarWorks 

Computer Science: Faculty Publications Computer Science 

2020 

Towards a General Solution for Layout of Visual Goal Models with Towards a General Solution for Layout of Visual Goal Models with 

Actors: Supplemental Material Actors: Supplemental Material 

Yilin Lucy Wang 
Smith College 

Alicia M. Grubb 
Smith College, amgrubb@smith.edu 

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Yilin Lucy Wang and Alicia M. Grubb. Towards a General Solution for Layout of Visual Goal Models with 
Actors. In Proceedings of the IEEE 28th International Requirements Engineering Conference, 2020. 

This Conference Proceeding has been accepted for inclusion in Computer Science: Faculty Publications by an 
authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Towards a General Solution for Layout of Visual
Goal Models with Actors: Supplemental Material

Yilin Lucy Wang, Alicia M. Grubb
Department of Computer Science

Smith College, Northampton, MA, USA
{lwang, amgrubb}@smith.edu

APPENDIX

This document is the supplemental information for our
RE’20 paper, which may be cited as

Yilin Lucy Wang and Alicia M. Grubb. Towards a
General Solution for Layout of Visual Goal Mod-
els with Actors. In Proceedings of the IEEE 28th
International Requirements Engineering Conference,
2020.

This document contains an excerpt of the FLAAG algorithm
presented in the paper, as well as the helper functions not
presented in the paper.

Algorithm 1 Excerpt of FLAAG: Actor-based Goal Model
Layout
Require:

Goal Model M = 〈A,G,R〉
Constants CA,CN ,CM . Constants for Actors, Nodes, and Moves.
Maximum Layout Iterations maxItr . Optional Timeout
Initial Layout Information initLay . Optional coord. for elements in M .

Ensure:
Final Graph Layout Information

1: (actorSet, nodeSet) ← INITIALIZATION(M , initLay)
2: curCtr = 0 . Initializes iteration counter.
3: while CHECKCOND(curCtr, actorSet, nodeSet, maxItr) do
4: for node ∈ nodeSet do
5: ADJUST(node, actorSet, nodeSet,False,CA,CN ,CM )
6: for actor ∈ actorSet do
7: ADJUST(actor, actorSet, nodeSet, True,CA,CN ,CM )
8: curCtr++
9: SETCOORDINATEPOSITIVE(nodeSet)

10: GETSIZEOFACTOR(actorSet, nodeSet)
11: CALCULATEACTORPOSWITHREC(actorSet)
12: MOVENODESTOABSPOS(actorSet, nodeSet)
13: return (actorSet, nodeSet)

Here we describe the helper functions listed on Lines 9–12
of Algo. 1. We use these helper functions after the relative
positions are established for each actor and intention (i.e.,
nodes). Some of the relative coordinates that are generated
by the force-directed algorithm are negative numbers. Since
we calculate positions of intentions within actors from the
upper left corner, Algo. 2 sets the relative coordinates to
positive numbers. Algo. 2 takes in the nodeSet and assigns
the coordinates of each node to positive numbers by adding
the largest absolute value of the coordinates.

Last updated August 10, 2020.

Next, Algo. 3 calculates the width and height of each
actor by determining the differences between the largest and
smallest values for the node coordinates that belong to the
actor. Algo. 3 takes in the actor and the coordinates of the
intentions in each of the actors. Using this information, Algo. 4
finds the final positions for the actors by first sorting the x
coordinate and then sort the y coordinate of each actor. The
arrangement of the actors is completed from the upper left to
the bottom right, where subsequent actors are placed at the
bottom right of the previous actor. Finally, Algo. 5 finds the
final position for the nodes by adding the x coordinate and
y coordinate of the actor, to which the node belongs, to the
relative coordinates of each node.

Algorithm 2 SETCOORDINATEPOSITIVE Helper Function

1: function SETCOORDINATEPOSITIVE(nodeSet)
2: maxNXDict ← new dictionary
3: maxNYDict ← new dictionary
4: for node ∈ nodeSet do
5: curActor ← node.actorId
6: if typeof curActor = undefined then
7: maxNXDict.curActor = 0
8: if typeof curActor = undefined then
9: maxNYDict.curActor = 0

10: if curX < 0 then
11: if maxNXDict.curActor > curX then
12: maxNXDict.curActor = curX
13: if curY < 0 then
14: if maxNYDict.curActor > curY then
15: maxNYDict.curActor = curY
16: for node ∈ nodeSet do
17: curId = node.actorId
18: node.nodeX = node.nodeX − maxNXDict.curId
19: node.nodeY = node.nodeY − maxNYDict′curId



Algorithm 3 GETSIZEOFACTOR Helper Function

1: function GETSIZEOFACTOR(actorSet, nodeSet)
2: maxPXDict ← new dictionary
3: maxPYDict ← new dictionary
4: minPXDict ← new dictionary
5: minPYDict ← new dictionary
6: for node ∈ nodeSet do
7: curX = node.nodeX
8: curY = node.nodeY
9: curActor = node.parent

10: if typeof maxPXDict.curActor = undefined then
11: maxPXDict.curActor = 150
12: if typeof maxPYDict.curActor = undefined then
13: maxPYDict.curActor = 100
14: if typeof minPXDict.curActor = undefined then
15: minPXDict.curActor = 150
16: if typeof minPYDict.curActor = undefined then
17: minPYDict.curActor = 100
18: if maxPXDict.curActor < curX then
19: maxPXDict.curActor = curX
20: if maxPYDict.curActor < curX then
21: maxPYDict.curActor = curX
22: if minPXDict.curActor > curX then
23: minPXDict.curActor = curX
24: if minPYDict.curActor > curX then
25: minPYDict.curActor = curX
26: for actor ∈ actorSet do
27: actorId = actor.nodeId
28: if typeof maxPXDict.actorId = undefined then
29: maxPXDict.curActor = 150
30: if typeof maxPYDict.actorId = undefined then
31: maxPYDict.curActor = 100
32: if typeof minPXDict.actorId = undefined then
33: minPXDict.curActor = 0
34: if typeof minPYDict.actorId = undefined then
35: minPYDict.curActor = 0
36: x = maxPXDict.actorId − minPXDict.actorId + 300
37: x = maxPYDict.actorId − minPYDict.actorId + 200
38: actor.sizeX = x
39: actor.sizeY = y

Algorithm 4 CALCULATEACTORPOSWITHREC Helper Func-
tion

1: function CALCULATEACTORPOSWITHREC(actorSet)
2: actorsXSorted = sortActorX(actorSet)
3: actorsYSorted = sortActorY(actorSet)
4: curX = 0
5: curY = 0
6: for actor ∈ actorsXSorted do
7: actor.nodeX = actor.nodeX + curX
8: curX+ = curNode.sizeX
9: for actor ∈ actorsYSorted do

10: actor.nodeY = actor.nodeY + curY
11: curY+ = curNode.sizeY

Algorithm 5 MOVENODESTOABSPOS Helper Function

1: function MOVENODESTOABSPOS(actorSet, nodeSet)
2: for node ∈ nodeSet do
3: actorId = node.parent
4: for actor ∈ actorSet do
5: if actor.nodeId = actorId then
6: curX = node.nodeX
7: curY = node.nodeY
8: node.nodeX = curX + actor.nodeX + 150
9: node.nodeY = curY + actor.nodeY + 100


	Towards a General Solution for Layout of Visual Goal Models with Actors: Supplemental Material
	Recommended Citation

	tmp.1597080160.pdf.56k39

