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The Role of Latency and Task Complexity
in Predicting Visual Search Behavior

Leilani Battle, R. Jordan Crouser, Audace Nakeshimana, Ananda Montoly, Remco Chang, and Michael Stonebraker

Abstract— Latency in a visualization system is widely believed to affect user behavior in measurable ways, such as requiring the user
to wait for the visualization system to respond, leading to interruption of the analytic flow. While this effect is frequently observed and
widely accepted, precisely how latency affects different analysis scenarios is less well understood. In this paper, we examine the role of
latency in the context of visual search, an essential task in data foraging and exploration using visualization. We conduct a series of
studies on Amazon Mechanical Turk and find that under certain conditions, latency is a statistically significant predictor of visual search
behavior, which is consistent with previous studies. However, our results also suggest that task type, task complexity, and other factors
can modulate the effect of latency, in some cases rendering latency statistically insignificant in predicting user behavior. This suggests
a more nuanced view of the role of latency than previously reported. Building on these results and the findings of prior studies, we
propose design guidelines for measuring and interpreting the effects of latency when evaluating performance on visual search tasks.

Index Terms—Visual search, latency, system response time, SRT

1 INTRODUCTION

Latency in interactive systems is inevitable. Often referred to as system
response time (SRT), “latency” refers to the elapsed time between
a user’s input to a system and the time when the system produces
a response. In the HCI community, the effect of latency is a well-
studied topic. Dating back to work by Miller in 1968, research in
SRT has long been driven by the need to identify requirements for
responsive software [25]. Although the findings of SRT research are
nuanced, design guidelines have nonetheless begun to emerge. In 1984,
Shneiderman summarized the existing literature [31], and established
100 milliseconds as the maximum SRT for interactive interfaces.

When compared with the HCI community, latency research in the
VIS community is still in its infancy. Although the goal of minimizing
latency is commonly shared by visualization developers, there has
been limited work in measuring the effect of latency to determine a
design guideline similar to that from the HCI community. Notable
exceptions include work by Liu & Heer [23] that found that a 500
millisecond latency in a visualization system can negatively affect an
analyst’s learned insights from exploring data. Zggragen et al. [35]
replicated the experimental design by Liu & Heer, and although the
authors also found a negative effect when latency is high, they observed
no consistent differences between delays of 6 seconds and 12 seconds
when using progressive and regular (blocking) visualizations in data
exploration. Thus, when evaluating the impact of latency on a user’s
analytic flow, the objective threshold of when the latency is “too high”
in a visualization system is still unclear.

While these disparate results might appear puzzling at first, the find-
ings of SRT research from the HCI community might provide an expla-
nation. As noted by Shneiderman [31] and Dabrowski & Munson [9],
the effects of latency can be considered along two dimensions: user
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expectations and task complexity. When previous results are examined
through the lens of task complexity, some of the findings begin to make
sense. For example, the 100ms design guideline in HCI is largely based
on empirical studies on control activations, such as simple tasks like
clicking on a pull-down menu [9]. As task complexity increases, such
as in the cases of solving matrix manipulation [14] and multi-parameter
optimization using computer aided design (CAD) software [13], users
can tolerate a significantly higher SRT to the point where latency no
longer has an effect on user performance [14].

In this paper, we examine the role of task complexity when assessing
the effect of latency in visualization systems. Our research questions
are based on existing HCI and VIS research, but dig deeper into the
influence of specific environmental factors within a controlled visual-
ization environment:

1. How does latency at various scales affect users’ performance?

2. How do changes in task complexity alter the influence of latency
on user performance?

To answer these questions, we conducted a series of controlled
experiments in which participants were asked to complete a visual
search task – a common and well-studied task in the visualization
community [34]. The relative simplicity of visual search makes it an
ideal platform to study and understand the effect of latency. In visual
search, a user’s performance is often influenced by how they choose
to conduct their search [7], or their search strategy. By studying how
latency may influence the way a user performs their search, we can
gain insight into how latency can also impact user performance.

In these experiments, participants were asked to find a target image
in a pannable interface similar to Google Maps. Task complexity was
controlled by providing participants with hints, which were designed to
emulate realistic scenarios, such as prior knowledge of common data
or image characteristics associated with certain visualizations, in much
the same way that people exploit prior knowledge of mountain ranges
and ocean coastlines when searching a geographic map [5].

In our first set of experiments, we treat latency as a binned cate-
gorical variable, consistent with treatments in prior work [23, 35]. In
these experiments, we do find that latency has a statistically significant
effect, but only at lower task complexity. These results suggest that
as task complexity decreases, the effects of latency increase, which
corroborates prior findings in the HCI literature. However, with la-
tency coarsely binned, we are unable to pinpoint the threshold at which
latency becomes a significant factor in user search strategies.

In order to identify this inflection point, we repeated the experiments
for which latency had a significant effect, but this time treated latency
as a continuous variable. Surprisingly, we find that latency actually has
a more gradual effect than previously reported, which suggests that by



treating latency as a coarsely binned categorical variable we may be
oversimplifying the relationship of latency and task performance.

Finally, we aim to put these controlled experiment outcomes into a
visualization context where visual search is often used. Specifically,
in visual search interfaces, users are often presented with an overview
(small-world view) or with similar items clustered together (e.g. MDS
overview). In our final experiment, we cluster the data to be searched
and provide a cluster map to participants, to mimic scenarios observed
in prior work where users leverage prior dataset knowledge and experi-
ence as “hints” for where to search [5]. Our results show that in a more
realistic scenario, latency still has a statistically significant relationship
with user search strategies, but this effect builds up gradually as latency
increases rather than imposing a sudden shift. Furthermore, we see that
in some situations, even when the effects of latency are significant, it
may not be the most influential variable in predicting search behavior.

These results demonstrate that much like in broader HCI contexts,
the effects of latency in visualization contexts can be subtle and interact
with other environmental factors in complicated ways. For example, we
find that decreasing task complexity can amplify the effects of latency.
Furthermore, by considering latency as a continuous variable, we find
a more nuanced relationship between latency and user search strategies
that is not predicted by existing latency models for visualization.

2 RELATED WORK

2.1 Latency in HCI Research
Research into the effect of latency / SRT in the HCI community can
be categorized into two groups: (1) identifying the limits of SRT in
the context of tasks and task complexity, and (2) psychological and
cognitive factors that influence the perception of latency [9, 31].

Task and Maximum SRT
The notion that task type / complexity is an important factor when
considering latency was first introduced by Miller in 1968 [25]. In
this work, the author proposed 17 tasks along with corresponding de-
sign guidelines for SRT. Over the next 20 years, numerous studies
examined these tasks in more detail. For example, Jota et al. investi-
gated the effects of latency for touch interfaces [18], Tolia et al. for
thin-clients [33], and Allison et al. for virtual reality environments [2].

Taken together, these studies resulted in the design guideline wherein
100ms is generally considered the upper limit of SRT in interactive
systems. However, with few exceptions, the tasks examined in these
studies are typically control activations of basic user interactions such
as mouse clicks, keystrokes, or interactions with other graphical user
interface (GUI) elements such as buttons, pull-down menus. Unfortu-
nately, it is not clear how findings related to these simple actions would
generalize to the more complex tasks inherent in the use of visualization
systems such as search and data exploration.

In Chapter 11: Quality of Service of Shneiderman & Plaisant’s book
on Designing the User Interface, the authors note that “response time
should be appropriate to the task,” and suggest that typing, cursor
motion, and mouse selections should have SRTs in the range of 50-
150ms [32]. For “simple, frequent tasks, common tasks, and complex
tasks” the SRTs should be 1 second, 2-4 seconds, and 8-12 seconds,
respectively. However, the authors do not provide definitions of what
precisely constitutes a simple, common, or complex task. To the best of
our knowledge, there does not exist a taxonomy of these complex tasks
and their appropriate maximum SRTs. We provide our own definition
for task complexity in Section 4.

Psychological and Cognitive Factors
Card, Robertson & Mackinlay investigated human perception thresh-
olds for creating the illusion that a system runs instantaneously [8].
They determined that a maximum SRT of 100ms has to be maintained,
otherwise the user will notice the delay. This 100 ms threshold of per-
ceptual processing was later made popular by Nielsen [28, 29]. Seow
further emphasized the importance of user expectations for establishing
latency guidelines [30]. Users have certain expectations regarding the
responsiveness of the system if a certain task is conducted. For in-
stance, tasks that mimic events in the physical world with instantaneous

responses (e.g., pressing a virtual button which mimics pressing a physi-
cal button) should yield instantaneous responses (e.g., an audible click).
Doherty and Sorenson study how latency disrupts users’ perception of
immersive experiences (or flow) [10].

Previous work has also investigated how users’ perceptions of la-
tency may vary under different conditions. For example, according
to Seow [30], tactile feedback after a virtual button press is very sim-
ilar to the press of a real physical button, therefore the user expects
an instantaneous response and might be more sensitive to interaction
delays. When considering cognitive Load, previous work has observed
that higher load may lead to lowered perception of latency [19, 27].
Other works also consider how users’ perception of time can be
manipulated [1, 15, 16, 20]. In some cases, the perception of latency
is manipulated to ease the unpleasantness of waiting, referred to as
benevolent deception by Adar et al. [1].

2.2 Latency in Visualization and Data Systems
Related to the research in HCI and operations research, researchers
in the field of visualization have recently began to study the effect of
latency in interactive data systems. Liu and Heer studied the effect
of latency on user behavior and analysis outcomes in an exploratory
data analysis task [23]. The primary finding of this study is that par-
ticipants’ behavior when latency exceeds 500ms differed from their
behavior performing an identical task using a system with lower la-
tency. However, consistent with HCI research that find task to be a
factor in latency, Liu and Heer note that participants’ tolerance for
latency differed depending on the interaction type. In interactions such
as brushing-and-linking, a delay higher than 100ms became noticeable.
On the other hand, panning and zooming tasks were more robust to
latency, with participants being tolerant to delays up to 1.5 seconds.

In contrast to traditional batch-based blocking systems where the
user waits for a continuous period of time and receives the complete re-
sult from the system at once, progressive visualization systems provide
immediate (but less accurate) information upon receiving a command
from a user. In this domain, Fisher et al. [12] and Zgraggen et al. [35]
independently observed that analysts preferred and performed with
higher efficiency when using systems that provided immediate (and
incremental) feedback [12]. Using these progressive systems, analysts
can explore data faster and more efficiently when compared to using
traditional blocking systems [35].

Many systems have also been developed to support exploratory vi-
sual analysis of large datasets, where reducing latency is a key concern
in optimizing these systems. For example, imMens employs a special-
ized data structure called data tiles to support exploration of millions
of data points in the browser [24]. ForeCache combines data tiles with
predictive data pre-fetching techniques to further reduce latency [5].
Nanocubes are an alternative to data tiles designed to reduce latency
when exploring large spatiotemporal datasets [22]. Rather than using
specialized data structures or indexes, VizDom uses progressive sam-
pling to produce fast results with low latency, and increasingly accurate
results over time [35]. Falcon utilizes predictive aggregation techniques
to reduce latency when performing specialized filtering operations over
large datasets [26], where cross-filtering is a special case of dynamic
query filters over a range of connected histograms.

3 MOTIVATION AND RESEARCH QUESTIONS

The diverse research in latency and wait-time mitigation in the HCI and
visualization communities serves as the motivation to our work. These
existing works suggest a complex relationship between a system’s
latency and its effects on the user. Unlike the simple “Powers of 10”
model, the negative effects of latency do not appear to follow a simple
logarithmic function, but are determined in part by the context of the
task and the goals of the user. Our work adds to this growing body of
literature by examining the effect of latency in a visual search task. We
incorporate notions of task complexity in the design of a visualization
interface to study how a user’s search behavior can be predicted under
controlled latency conditions.

A natural research question extending the observations of previous
studies of latency in visualization tools [23, 35] is to expect that partici-
pants will react negatively to latency in visual search tasks. In particular,



we believe that participants will shift their behavior to avoid latency,
which leads us to our first research question:

Research Question 1 (Q1): How does latency at various scales affect
users’ search strategies?

In particular, we aim to investigate whether users’ visual search strate-
gies change in the presence of latency, and to characterize any changes
observed, providing insight into the effects of latency on user per-
formance. We will evaluate user strategies both in terms of task
outcomes (i.e., whether the visual search was successful), as well as
behavioral patterns (e.g., whether users experiencing higher latencies
exhibit different search behaviors).

Furthermore, extrapolating from prior HCI research on latency sug-
gests that we could see stronger effects from latency in visual search
tasks with lower task complexity. We formulate the following research
question regarding how differences in task complexity interact with
latency in the visual search process:

Research Question 2 (Q2): How do changes in task complexity alter
the influence of latency on user strategy selection?

Visual search is rarely done in a vacuum; it is generally part of a larger
visualization process. As a user continues to search and navigate a
given dataset, they become more experienced with this dataset, gaining
an intuition for how the data is organized. The complexity of searching
this dataset will presumably decrease as more experience is gained,
which could alter how latency is perceived over time. We seek to study
these effects in a controlled visual search environment.

4 METHODOLOGY: PILOT STUDIES

In pursuit of our research questions, we designed our experiments to
allow us to explore the effects of latency in a simple visual search task
when portions of the data incur substantial latency (i.e. 2500ms or
greater), as well as to vary the latency incurred over a wider set of
possible values than were observed in previous studies. We also seek to
better understand the relationship between latency with task complexity
in visualization contexts. Unfortunately, experimental variation of
“task complexity” is highly subjective, and any findings would therefore
be difficult to generalize. In order to minimize some of the variance
introduced by this subjectivity, we elected to vary task complexity
by observing the effects of latency not only at the beginning of the
interaction, but at various points in the maturation of the visual search:

• Phase 1 (Baseline): at the very beginning (when the user is
orienting herself to the interface and data, and the visual search
task is consequently most complex)

• Phase 2 (Search Space Reduction): after the initial narrowing
of the search space (when the user has gained her bearings, and
task complexity has diminished somewhat)

• Phase 3 (Proposed Locations) and toward the end where the
user is zeroing in on their target of interest (when completing the
task is most straightforward)

We define (perceived) task complexity as the degree to which a user
can rely on intuition gained through prior knowledge and experience to
complete a given task. From this perspective, tasks for which users have
no prior knowledge will have higher perceived task complexity. We
conducted a series of three related experiments on Amazon Mechanical
Turk. Workers with an HIT approval rate of 70+% and at least 50
approved HITs were recruited to participate. Each worker could only
participate in one experiment, and exactly once. All experiments
use a between-subjects design, and workers were paid up to $2.27 for
completing any one of the three studies. The high-level design of these
experiments are described in the following section, and additional detail
is provided under the heading of each individual experiment.

Task Design The search tasks in our experiments were designed
primarily to match existing tasks used to study visual search, while
also incorporating elements from latency studies in exploratory visual
analysis (or EVA) contexts. However, visual search and EVA behav-
iors are studied very differently, leading to the merging of disparate
methodologies in our experiment design, as described below.

Liu and Heer [23] study the effects of latency by analyzing both unit-
tasks (i.e., individual interactions) and interaction sequences (e.g., full
sequences, transitions). Battle and Heer [6] observe that exploratory
tasks vary significantly in open-ended-ness and level of abstraction,
and argue that both low-level and high-level tasks should be consid-
ered when analyzing visual exploration contexts. Battle and Heer
also analyze participant performance using both unit-task analysis and
longer interaction sequences. Furthermore, realistic, high-level EVA
tasks were an important component of the study designs for Liu and
Heer [23] and Battle and Heer [6]; we consider the equivalent for
visual search in this work. Given our focus on analyzing user strategies,
we focus on sequence analysis rather than unit-tasks in our evaluation.

We sought representative visual search tasks known to be effec-
tive for evaluating user strategies and performance. Brown et al. [7]
designed an effective abstraction for visual search tasks by having
Amazon Mechanical Turk workers play the “Where’s Waldo” game. In
similar spirit, we seek to study abstract visual search tasks, where the
larger image should be easy to partition and re-organize to modulate
latency across tiles. Battle et al. [5] study how to reduce latency in
real-world exploratory search contexts, combining experiment design
elements from prior studies, including those by Brown et al. [7] and Liu
and Heer [23]. Battle et al. asked participants to search for geographic
regions matching specific visual characteristics (e.g., significant snow
cover) within satellite imagery, which we simulate in our experiment
design by asking participants to identify particular images within the
collage. Furthermore, Battle et al. observe that many participants utilize
prior knowledge of satellite imagery data to more quickly navigate and
complete the tasks (e.g., searching for specific mountain ranges, and
avoiding the oceans). We incorporate these insights into our experiment
design through our modulation of task complexity.

Implementation Real-world visualization interfaces often contain
components that could obscure or otherwise confound the effects of
latency, such as formatting and interface configuration widgets. In
order to isolate the effects of latency in a visual search task, our initial
studies employ a simplified, browser-based visualization interface to
reduce distractions. In each of the three experiments, the participant
was asked to locate a target image within a 20-by-20 grid of images.
Each image within the grid is represented as a distinct tile, simulating
visualization tiles from existing visualization systems [5, 24].

To ensure that participants’ behavior would not be biased by prior
visualization experience, the visual stimuli consisted of benign images:
the background consisted of images of birds, and the target was an
image of a dinosaur that was roughly equivalent to the background
with respect to visual salience (Fig. 1). Approximately 1% of the
grid is visible through the experiment viewport at a time, and the user
is permitted to pan left, right, up, and down. Zooming would have
made it trivial in this case to identify the provided visual search targets,
hindering our ability to control the complexity of the visual search tasks.
As such, zooming was not enabled for these experiments. Targets
were positioned such that at least 9 interactions were required to find
them. Participants who performed too few interactions (e.g., only 2
interactions) were filtered out.

Applying Latency As the user pans around the grid in search of
the target, individual tiles are made to incur a pre-specified amount of
latency. The latency a participant experiences when a specific tile loads
in the interface is defined as the time delay between when the participant
finishes performing their panning interaction (i.e., releases the mouse
drag), and when the image subsequently appears on the screen. For
example, if a tile incurs a latency of 1,000ms, then the interface will
wait until 1,000ms has elapsed before rendering the image on the screen.
In these experiments, we expand the “binning” methodology similar
to previous work [23], with maximum latency levels at 0ms, 2500ms,
7000ms, 10000ms, and 14000ms. We tested smaller latency measures
in initial pilot studies (e.g., 500 milliseconds), but found no effects of
latency for these cases. Thus we omit them from our analysis.

We aim to assess whether latency at various thresholds results in
predictable differences in how users search the grid of images. In
order to investigate this, we employ a small amount of benevolent



Fig. 1: A snapshot of the visual search interface implemented for our
Amazon Mechanical Turk experiments. Participants explored a 20-by-
20 grid of images (or tiles). Here, the target tile that participants are
searching for (a dinosaur) is featured in the center of the viewport.

Fig. 2: Diagram showing how latency is assigned to tiles, denoted as
individual squares. The purple square is the user’s current location
U. Tiles along a straight path from the user’s current location to the
low-latency (“fast”) target F are assigned 0ms of latency. Tiles along
a straight path to the high-latency (“slow”) target S are assigned the
maximum latency value (denoted here as n). Of the remaining tiles,
those on the same side of the grid as the high-latency target, or that
intersect with the halfway point, are assigned a latency of 1500ms; the
remaining tiles are assigned a latency of 750ms.

deception in our experimental design: although the participant was only
asked to locate a single target, two target images were actually present
within the grid. To modulate latency, the participant is first randomly
assigned to one of the five latency conditions described above. Next, the
two target images are randomly partitioned into a “low-latency” target
and a “high-latency” target, which dictates the latency incurred when
rendering each target and its surrounding tiles. In this way, we can
assess whether people avoid higher latency areas by observing whether
they locate the “low-latency” or “high-latency” target first. Having
two targets allows us to observe how participants’ search strategies
influence which target they find. Search strategies are more difficult to
reason about with only a single target, because all participants would
then be forced to reach the exact same goal states, regardless of latency.

The intuition behind the latency modulation in this experimental
design is that tiles along a straight path from the current viewport to
the low-latency target appear faster (i.e., incur lower latency) than
tiles along a straight path from the current viewport to the slow target.
Figure 2 shows an example of how latency is applied to tiles in the
interface. After each panning interaction, we draw an invisible line
from the participant’s current location in the grid to the location of
the fast target, and a second line from this location to the slow target.

Any tiles that intersect with the line to the fast target incur zero latency,
appearing immediately after the user completes the panning interaction.
Conversely, any tiles that intersect with the line to the slow target incur
the maximum latency for the trial. In order to obscure the sharp contrast
between the rendering of tiles along the low-latency trajectory and those
along the high-latency trajectory, we also apply smaller amounts of
latency to other tiles as follows. If a tile does not intersect with either
of these lines, we instead look at whether they lie on the portion of the
grid closer to the low-latency or high-latency target. If they are on the
same side as the high-latency target, they incur a latency of 1500ms.
Otherwise, they are assigned a latency value of 750ms.

However, as observed in relevant visual search systems like
ForeCache [5] and Google Maps, individual tiles may appear at dif-
ferent times within the viewport of a visual search interface, due to
latency. To mimic this uneven latency behavior, the latency in these
experiments is distributed and non-blocking, in contrast to previous
studies [23, 35]. Latency is applied to tiles individually, meaning that
different tiles can have different latency values, and these tiles will
appear at different times in the viewport. Participants can still perform
their desired interactions, even when all tiles are not yet displayed in
the viewport. In this case, participants may not see anything in certain
parts of the viewport as they continue to explore.

In the following subsections, we will briefly describe the distinguish-
ing characteristics of the three experiments and discuss the findings. In
all cases, participants provided consent through a digital consent form,
completed a demographics questionnaire, read the instructions for the
visual search task, completed said search task using a browser-based
visual exploration tool, and filled out a feedback survey.

4.1 Experiment 1: Baseline
This experiment aims to simulate the earliest stages of a visual search
task. The participant is given no information regarding the target
location, and they are left to orient themselves to the dataset. 103 of
111 participants successfully completed the task in this experiment, and
they were distributed at random across the five latency conditions.

Results of Experiment 1: Baseline
We use Pearson’s Chi-Squared test to assess whether users in different
latency conditions tend to find the low-latency target first. We ob-
served no statistically-significant relationship between these variables,
χ2(4,N = 101) = 2.373, p = 0.6675. We therefore conclude that the
incidence of finding the low-latency target first does not vary with
latency in Experiment 1. See Table 1 for observed and expected values.

Table 1: Baseline Experiment
Observed Values

0ms 2500ms 7000ms 10000ms 14000ms
Low-First 11 12 14 13 16
High-First 8 9 6 7 5

Expected Values
Low-First 12.42 13.72 13.07 13.07 13.72
High-First 6.584 7.277 6.931 6.931 7.227

4.2 Experiment 2: Search Space Reduction
In our second experiment, we repeat the same general design as Experi-
ment 1. However, in this case, we aim to simulate the scenario where
the user gleaned a small amount of information on where to search
next (i.e., the middle of a visual search process, where the search task
becomes somewhat easier). As such, we make one small change to
the experiment design for this experiment: we give the participants
hints about the general location of the targets. Specifically, we tell the
participants that the target is on the left half of the grid. In this case, the
targets are positioned near the top left and bottom left corners of the
grid, and we randomize which target is labeled as the fast target. 109
of 120 participants successfully completed the task in this experiment.

Results of Experiment 2
We again observed no statistically-significant relationship between
these variables, χ2(4,N = 104) = 3.055, p = 0.5487. Therefore, we



conclude that the incidence of finding the low-latency target first does
not vary with latency in Experiment 2 (see Table 2 for details).

Table 2: Search Space Reduction Experiment

Observed Values
0ms 2500ms 7000ms 10000ms 14000ms

Low-First 10 16 15 14 12
High-First 10 6 7 6 8

Expected Values
Low-First 12.88 14.17 14.17 12.88 12.88
High-First 7.115 7.827 7.827 7.115 7.115

4.3 Experiment 3: Proposed Locations
In our third experiment, we again re-use the design of Experiment 1.
However in this case, we aim to simulate the end of a visual search
process, where the user now has sufficient knowledge of the dataset
to be able to zero in quickly on the location of a particular visual
search target. This effect was observed by Battle et al. [5], where
participants (earth science researchers) had prior knowledge of the
data being searched (satellite imagery), and exploited this knowledge
to hone their searches of the underlying data (e.g., targeting specific
mountain ranges). Note that this part of the visual search process is
expected to be relatively easy, compared to Experiments 1 and 2. We
make a small modification to the experiment design: we give users
exact knowledge of two possible locations to find a target, but tell
participants they are searching for a single target: the target can either
be found along a direct line to their left, or else in a direct line to their
right. In this way, the participant only makes a single decision: whether
to pan to the left or to the right. Since either choice will end in success,
this design enables us to gauge whether latency can influence their
decision. 109 of 118 participants successfully completed the task in
this experiment.

Results of Experiment 3
In contrast to the previous two conditions, we did observe a statistically-
significant relationship between latency and the incidence of finding the
low-latency target first, χ2(4,N = 106) = 15.63, p = 0.003554. See
Table 3 for observed and expected values. Even though both choices
(panning left or right) lead to success, more participants chose to search
for the lower-latency target, suggesting that latency does indeed play a
role in modulating search strategy when the task itself is less complex.

Table 3: Proposed Locations Experiment

Observed Values
0ms 2500ms 7000ms 10000ms 14000ms

Low-First 10 12 19 18 19
High-First 11 8 4 4 1

Expected Values
Low-First 15.45 14.72 16.92 16.19 14.72
High-First 5.547 5.283 6.075 5.811 5.283

4.4 Results Summary
In Experiment 1: Baseline, we found no statistically significant ef-
fect from latency, leading to our answer to research question Q1: la-
tency alone does not predict search strategy. Similarly, we found no
statistically significant effect from latency in Experiment 2: Search
Space Reduction. However, we did find a statistically significant effect
(p < 0.01) from latency in our third Proposed Locations experiment.
When considering these experiments together, the results suggest that
latency becomes more prominent in lower complexity visual search
tasks, leading us to a tentative answer for Q2: decreasing task com-
plexity seems to amplify the effect of latency to the point of influencing
users’ search strategies and ultimately their performance.

These results suggest that latency can influence search behavior in
low complexity tasks, but do not tell us where latency shifts from being
an insignificant effect to a significant one. In the case of prior work,
latency is treated as coarse categorical variable, which does not allow
one to determine empirically where latency appears to start having an

sides = "t",
color = "blue") +

# Add rug plot below to denote observed low-latency-first cases
geom_rug(aes(y = success, x = latency),

data = proposed_locations_continuous_high_first,
sides = "b") +

xlab("Latency (ms)") +
ylab("Pr ( low-latency target found first )") +
xlim(0,14000) +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(expand=c(0,0))+
theme(panel.border = element_rect(colour = "black", fill=NA, size=1))+
annotate("text", x = 0, y = 0.02,

label = " High-latency target found first",
hjust = 0, size = 3) +

annotate("text", x = 0, y = 0.98,
label = " Low-latency target found first",
hjust = 0, size = 3, color = "blue")

## Scale for 'x' is already present. Adding another scale for 'x', which
## will replace the existing scale.
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In the absence of additional latency, there is nothing to differentiate the nominal high-latency'' target
from the nominallow-latency” target, and so they appear as the first target found with roughly equal
probability. As latency increases, we observe an increase in the probability of finding the low-latency target
first. However, the standard error bands remind us that this effect is somewhat weak, suggesting that latency
may not be the only factor at play. Let’s consider an alternative modelling approach.

6

Dependent variable:
Low-Latency Target found first

(Intercept) 0.092 (−0.644, 0.827)
latency 0.0001∗ (0.00001, 0.0002)

Observations 88

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Fig. 3: Results for a logistic regression analysis of the results for Exper-
iment 3.2, with latency as the independent variable and the probability
of finding the low-latency target first as the dependent variable. This
relationship is significant only at the level of p = 0.1. When we view
these results graphically, we observe the same weak relationship. In
this diagram, blue tickmarks along the top of the figure represent trials
in which the low-latency target was located first, and black tickmarks
along the bottom of the figure represent trials in which the high-latency
target was located first. The grey band around the logistic regression
line represents the 95% confidence interval.

effect. Therefore, to identify the inflection point for latency, we need to
modify how latency is treated from categorical to continuous.

5 DEEPER ANALYSIS OF PROPOSED LOCATIONS

In order to further investigate the relationship between latency and
search behavior, we re-ran Experiment 3: Proposed Locations, but
in version 3.2 treated latency as a continuous variable, rather than
an ordered factor. Specifically, rather than randomly assigning each
participant to one of five latency conditions (0ms, 2500ms, etc.), we
instead sample a maximum latency value uniformly from the range
[0ms,14,000ms] for each participant, and re-calculate intermediate la-
tencies to be evenly spread between 0ms and the maximum. By drawing
uniformly from a continuous range, we are then able to investigate how
the probability of finding the low-latency target first varies with latency
using logistic regression. 88 of 105 participants successfully completed
the visual search task for this experiment.

5.1 Results: Logistic Regression Analysis
We find that roughly 30.7% of trials ended in participants finding the
high-latency target first, and the remaining 69.3% ended in participants
finding the low-latency target first. Thus, without factoring in latency
effects, we observe that participants are roughly twice as likely to find
the low-latency target first. Next, we built a logistic regression model
with latency as the independent variable and the probability of finding
the low-latency target first as the dependent variable. The results of this
analysis are presented in Figure 3. We see that the relationship between
latency and finding the low-latency target first is significant only at
the level of p < 0.1. Moreover, we do not observe the characteristic
S-shaped curve associated with logistic regression models. Instead,
we observe at most a very gradual increase in the probability that
participants will find the low-latency target first as latency increases.

We see that when latency is set to 0ms (i.e., no latency is applied
to any of the tiles), the probability of finding the low-latency target
first is roughly 50%. These results are consistent with our intuition: in



Table 4: Independent variables analyzed in Experiments 3.2 and 4.

Variable Description
age Age: 18-25, 26-35, 36-45, 46-55, or 56+

cmpexperience Level of computer experience:
novice, beginner, intermediate, or expert

cmphours Hours spent on the computer daily
1-3, 3-5, 5-8, or 8+

cmptype Type of computer: desktop or laptop
pubcmp Whether a public / private computer was used

screen Screen dimensions
totalInteractions Total interactions performed during the study

latency Maximum latency

the absence of additional latency, there is nothing to differentiate the
nominal high-latency target from the nominal low-latency target, and
so they appear as the first target found with roughly equal probability.
As latency increases, we observe a modest increase in the probability
of finding the low-latency target first, with a maximum probability of
roughly 85%. However, the standard error bands remind us that this
effect is weak, indicating that latency may not be the only factor at play.
These results suggest that latency may have a gradual effect, rather than
the binary effect observed in previous work (i.e., either latency had an
effect, or not). We believe that the treatment of latency as a continuous
rather than categorical variable may contribute to the differences in our
results when compared to prior work: when only a small number of
latency categories are evaluated, then latency may appear to be binary.

5.2 Results: Recursive Partitioning Analysis

Rather than trying to measure the effect of latency explicitly, we can
also consider all factors measured in our experiment, and assess whether
latency ranks highly compared to other variables in predicting the visual
search behavior (i.e., whether the low-latency target is located first).
To compute this ranking, we construct a decision tree using a simple
recursive partitioning, where finding the low-latency target first is used
as the class label. Table 4 describes the independent variables.

Each node within the decision tree represents a splitting of the
remaining data into two sub-populations, based on a dichotomous
variable, such as “latency ≥ 3103ms”. The recursive partitioning
analysis selects these splits to maximize correct classification of the
dependent variable (i.e., whether the low-latency target was locatedRecursive Partitioning of Experiment 3.2 to Predict First Target Located

latency < 3103

screen = ,17_21,23_25

targetPosition = East

latency >= 3103

screen = 10_12,13_15,25plus

targetPosition = West

Low−Latency Target
43 / 62
100%

High−Latency Target
8 / 15
24%

Low−Latency Target
36 / 47
76%

Low−Latency Target
16 / 26
42%

High−Latency Target
8 / 13
21%

Low−Latency Target
11 / 13
21%

Low−Latency Target
20 / 21
34%

Predicted Class

High-First Low-First

High-First 6 2
True Class Low-First 4 14

Fig. 4: The resulting decision tree for Experiment 3.2. An initial split
on latency > 3103ms indicates that latency below this threshold had
no discernible effect, classifying just 8 of 15 observations correctly. At
higher levels of latency, additional factors such as screen size and target
location provide greater predictive capacity. The confusion matrix
indicates that this model achieves 76.9% accuracy on the test set.

first). Thus, the most influential variables are generally selected first
when constructing the tree. The closer a node is to the root, the more
influential the corresponding independent variable is in predicting the
outcome of the dependent variable. The model was trained on a random
subset containing 70% of the data, and we performed 10-fold cross
validation to select the optimal tuning parameter (cp = 0.05263158).

The result of our recursive partitioning analysis is provided in Fig-
ure 4. Here, we see that the root node represents a split on the la-
tency variable, where participants are divided into two groups based on
whether the maximum latency is ≥ 3103ms. We see that other indepen-
dent variables also seem to influence participant search behavior, such
as screen size or the position of the target tiles within the grid (east or
west). However, given that latency is the first node in the decision tree,
latency appears to be the most influential variable in terms of predicting
whether participants will find the low-latency target first. This model
achieves 76.9% accuracy across the reserved test set.

5.3 Experiment 3.2: Summary
When revisiting our Proposed Locations experiment with maximum
latency treated as a continuous variable, we still find an effect of latency
on search behavior for low complexity tasks, however this effect has
weak statistical significance (p < 0.1) when considered in isolation.
In conjunction with additional factors, such as the total number of
interactions or the location of the target, this predictive capacity is
strengthened. Furthermore, the effects of latency appear to be more
gradual, compared to the more binary effect of latency observed in
other work, such as observed by Liu and Heer [23].

6 A MORE REALISTIC TASK: COLOR CLUSTERS

To better understand the effects of latency in more realistic visual
search conditions, we updated the design of our Proposed Locations
experiment, where we again treat latency as a continuous variable.
We want to understand if this effect still exists in a more realistic
visualization environment. In other words, we introduced a fourth
condition in which each participant is presented with an interface that
more closely resembles a real-world visual search environment.

Similar to Experiment 2: Search Space Reduction and Experiment
3: Proposed Locations, Experiment 4: Color Clusters provides hints
to participants on where to search, thereby reducing the complexity
of the visual search task, compared to Experiment 1: Baseline. The
visual search interface remains the same as in previous experiments,
but in Experiment 4 we organized the background images into four
different color clusters based on the dominant color of the background
of each bird image: greengreen (e.g., forest, grass), blueblue (e.g., sky, water),
greygrey background (e.g., rocks), or brownbrown (e.g., soil). We then laid out
these images in the grid such that images from the same color cluster
were also positioned together in the grid (Fig. 5).

As mentioned in our task methodology, this data organization was
designed to mimic well-known visual search scenarios, where certain
regions are associated with specific color patterns that are frequently
searched (e.g., targeting mountains when searching satellite imagery
for snow cover [5]). One target was then embedded within each green
region in this map. Participants were provided with this color map, and
given a hint that they could find the target in one of the greengreen zones.
103 of 121 participants successfully completed the experiment.

Fig. 5: The organization of background images for Experiment 4.



6.1 Results: Logistic Regression Analysis
We repeat our logistic regression analysis from Section 5.1 to evaluate
the results of our Color Clusters experiment. We find that latency again
has no statistically significant influence (p = 0.0863) in predicting
whether a participant will find the low-latency target first. We visualize
this relationship in Figure 6, where again we see a steady increase in
the proportion of participants who find the low-latency target first as
latency increases, but that the confidence interval surrounding this trend
is quite wide. These results support the findings in Section 5.

6.2 Results: Recursive Partitioning Analysis
We also repeat our recursive partitioning analysis for Experiment 4,
where we evaluate the same set of independent variables described in
Section 5.2 (see Table 4). The model was again trained on a random
training set containing 80% of the data, and we performed 10-fold cross
validation to select the tuning parameter (cp = 0.1414141). In this
analysis, we aim to assess the relative importance of latency compared
to other variables when predicting whether participants will find the
low-latency target first. Our results are provided in Figure 7.

We find that the root node does not involve latency, and instead
reflects the total interactions performed: “totalInteractions≥ 50”.
However, the child of this node (i.e., the next immediate node), does
involve latency: “latency ≥ 9420”. In this case, we see that latency
does play a role, but the total interactions a participant performs appear
to have a stronger predictive capacity. Interestingly, we observed only
a weak negative correlation between these two measures (Pearson’s
r =−0.145), and so it is unlikely that the total number of interactions is
simply a proxy for latency. Furthermore, we find that latency seems to
matter mainly at extremely high values, in this case over nine seconds
of latency. These results differ greatly from that of prior work, for
example Liu and Heer observe statistically significant effects at 500ms.
The confusion matrix for this model appears at the bottom of Figure 7.
6.3 Experiment 4: Summary
We find that for a more realistic visual search scenario, latency in
isolation again seems to have no statistically significant relationship to
the outcome of a visual search task, even at very high levels. However,
it does appear useful in predicting outcomes in conjunction with other
factors, as illustrated by the recursive partitioning model.

7 SEARCH STRATEGY

The results of the previous experiment suggest that when considered as
a continuous variable, latency has limited predictive capacity regarding

theme(panel.border = element_rect(colour = "black", fill=NA, size=1))+
annotate("text", x = 0, y = 0.02,

label = " High-latency target found first",
hjust = 0, size = 3) +

annotate("text", x = 0, y = 0.98,
label = " Low-latency target found first",
hjust = 0, size = 3, color = "blue")

## Scale for 'x' is already present. Adding another scale for 'x', which
## will replace the existing scale.
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As latency increases, we observe an increase in the probability of finding the low-latency target first.

Recursive Partitioning (10-fold cross validatiion to select best cp)

library(caret)
library(party)

set.seed(1)
inTrain <- createDataPartition(

y = color_clusters$success,
## the outcome data are needed
p = .7,
## The percentage of data in the
## training set
list = FALSE
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Dependent variable:
Low-Latency Target found first

(Intercept) −0.270 (−0.930, 0.389)
latency 0.0001∗ (0.00000, 0.0002)

Observations: 103 ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Fig. 6: Logistic regression analysis for Experiment 4, with latency as
the independent variable and the probability of finding the low-latency
target first as the dependent variable.

Recursive Partitioning of Experiment 4.1 to Predict First Target Located

totalInteractions >= 50

latency < 9420

totalInteractions < 50

latency >= 9420

Low−Latency Target
40 / 73
100%

High−Latency Target
33 / 63
86%

High−Latency Target
26 / 40
55%

Low−Latency Target
16 / 23
32%

Low−Latency Target
10 / 10
14%

#Prediction accuracy on test data:
predictions <- predict(tree_model_color_clusters, newdata = color_clusters_test, type="class")
table(color_clusters_test$success, predictions)

## predictions
## High-Latency Target Low-Latency Target
## 0 7 3
## 1 9 11
#(7+11)/30 = 60%: ever-so-slightly better than guessing success=1 for all trials

Search Strategy Analysis

One challenge to performing this kind of analysis is the relance on a binary outcome to codify the entirety of
an interactive process. As demonstrated above, latency is just one of many factors that may influence a user’s
behavior on a visual search task, and the ultimate outcome is a relatively blunt instrument for measuring
effect. In this section, we dig deeper into various elements of search strategy.

Experiments 1.1-3.1: Pilot (revisited)

search_strategies_pilot <- read.csv("search_strategies.csv") %>%
filter(categorical == TRUE, condition != "cclusters") %>%
mutate(latency = as.factor(latency),

strategySwitch = if_else(strategy == "strategy_switch", TRUE, FALSE)) %>%
rename(latencyCondition = latency)

Sanity check that we’re not talking about “rare events”:

14

Predicted Class

High-First Low-First

High-First 7 3
True Class Low-First 9 11

Fig. 7: The resulting decision tree for Experiment 4, with maximum
latencies sampled uniformly from the range [0ms, 14,000ms). An
initial split on totalInteractions >= 50 indicates that in this modified
experimental setup, latency was not the most important predictor of
which target was located first. However, the confusion matrix indicates
that this model achieves just 60% accuracy on the reserved test set.

the ultimate outcome of a visual search task (i.e. the likelihood that
users navigate toward low-latency targets first). However, as has been
discussed at length within both the VIS and CHI communities, the
ultimate (binary) outcome of a task is a relatively blunt instrument
for measuring the effects of a stimulus on human behavior within an
interactive system. As such, we also wish to investigate the role of
latency during the visual search task. For example, is latency useful
in predicting the kinds of strategies people employ? One intuitive
hypothesis could be that latency may have no clear effect on task
outcome because users are able to quickly adapt to it, and to adjust their
search strategy to circumvent the occurrence of high latency. If that is
the case, are we able to observe these strategy switches?

7.1 Methodology
In order to answer these questions, we first needed to identify the kinds
of search strategies our participants employed when engaged in our
visual search tasks. To do this, we first created a simple visualization
of the user’s trajectory through the collection of images. Our research
team performed an initial clustering of these images, and identified
four high-level groups of strategies: structured, unstructured, strategy
switch and direct (see Fig. 8). To validate these groupings, we had
three different raters independently re-classify the original images
under those headings. This achieved an inter-rater agreement of 94.2%
(n = 191), with discrepancies resolved by simple majority. We then
added these strategy labels to the dataset as an additional variable.

7.2 Search Strategies in Experiments 1 through 3
We begin by returning to the data collected in our preliminary ex-
periments, treating latency as an ordinal variable. We combined
the data from these three experiments, and determined using Pear-
son’s Chi-Squared test that there is no relationship between strat-
egy and whether or not the participant locates the fast target first,
χ2(3,N = 311) = 0.7287, p = 0.8664, nor does there appear to be
any significant relationship between strategy and latency, χ2(12,N =
311)= 19.17, p= 0.08448. However, further analysis suggests a strong
relationship between strategy and the experimental condition to which
the participant was assigned, χ2(6,N = 311) = 129.5, p < 0.001. An
exploration of how the distribution of strategies varies among all of our
experiments reveals some striking differences (Fig. 11).

For example, we notice that nearly all examples of the direct strategy
were observed in Experiment 3. This is somewhat intuitive: when given
proposed coordinates for the locations of the target images, participants
are able to navigate directly to them. In contrast, participants in Experi-
ment 1 had the highest incidence of strategy switching. This is again



(a) structured (b) unstructured (c) strategy switch (d) direct

Fig. 8: Four high-level search strategies emerged during initial clustering of search path diagrams. The red dot in each diagram represents
the participant’s starting location in the collage. The yellowyellow dot denotes the position of the fast (low-latency) target; the black dot the slow
(high-latency) target. Arrows indicate the direction and length of each panning interaction.
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Recursive Partitioning (10-fold cross validation to select best cp)

set.seed(1)
inTrainStrategy <- createDataPartition(

y = proposed_locations_continuous$strategy,
## the outcome data are needed
p = .7,
## The percentage of data in the
## training set
list = FALSE

)

proposed_locations_continuous_strategy_train = proposed_locations_continuous[inTrain,] %>%
drop_na() # Don't know why I'm getting NAs, but sure...

proposed_locations_continuous_strategy_test = proposed_locations_continuous[-inTrain,]

set.seed(1)
model <- train(strategy ~ . ,

data = proposed_locations_continuous_strategy_train,
method='rpart',
tuneLength=10,
trControl=trainControl(method = 'cv',

number = 10,
classProbs = TRUE,
summaryFunction = multiClassSummary))
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Dependent variable:
Strategy Switch observed

(Intercept) −1.227∗∗ (−2.149, −0.305)
latency −0.0001 (−0.0002, 0.00004)

Observations: 88 ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Fig. 9: Logistic regression analysis for Experiment 3.2, with latency as
the independent variable and the probability of strategy switching as the
dependent variable. Because the incidence is small (12 out of 88 cases),
we employ Firth’s method [11] rather than maximum likelihood.

intuitive: absent any guidance about the location of the target, many
participants began with an inefficient, unstructured search and later
switched to a more methodical, structured search.
7.3 Strategy Switching and Latency
Given the initial evidence that the effects of latency appear to be mod-
erated at least in part by task difficulty, and the implication above that
task difficulty has a strong relationship with strategy, we next explore
the relationship between strategy and latency in Experiments 3.2 and 4,
wherein latency was treated as a continuous variable. In particular, we
focus on determining if there is an amount of latency that is sufficiently
large such that strategy switching becomes more likely. If so, this might
lend weight to the commonly-held belief that users do in fact alter their
approach to solving a problem in order to avoid latency.

However, logistic regression indicates that this is not the case in ei-
ther experiment (see Figs. 9 and 10). Contrary to our previous intuition,
we observe no statistically significant interaction between latency and
the incidence of strategy switching. Moreover, there is only minimal
correlation between strategy switching and finding the fast target first
(Pearson’s r =−0.09464851), further suggesting that strategy switch-
ing is motivated by factors other than avoiding latency.

7.4 Summary of Search Strategy Analysis
We classified the strategies exhibited by participants into four differ-
ent classes, and found no relationship between choice of strategy and
participant performance. In cases where participants switched from
one strategy to another, we evaluated whether this behavior may be
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summary(color_clusters)

## age cmpexperience cmphours cmptype education
## : 2 : 2 : 2 desktop:56 : 2
## 18_25 :14 beginner : 9 1_to_3 : 7 laptop :47 Associates:11
## 26_35 :47 expert :36 3_to_5 :23 Bachelors :55
## 36_45 :26 intermediate:55 5_to_8 :30 HighSchool:28
## 46_55 : 8 novice : 1 8_above:41 Masters : 6
## 56plus: 6 PhD : 1
## success inthours latency targetPosition
## Min. :0.0000 daily :37 Min. : 198.3 NorthWest:49
## 1st Qu.:0.0000 hourly :65 1st Qu.: 3590.5 SouthEast:54
## Median :1.0000 monthly: 1 Median : 7120.2
## Mean :0.5825 Mean : 6960.5
## 3rd Qu.:1.0000 3rd Qu.:10333.6
## Max. :1.0000 Max. :13755.7
## pubcmp screen sex totalInteractions
## : 4 10_12 : 4 Female:44 Min. : 10.0
## personal:95 13_15 :33 Male :59 1st Qu.: 73.0
## public : 4 17_21 :29 Median :124.0
## 23_25 :23 Mean :174.2
## 25plus:13 3rd Qu.:211.5
## not_sp: 1 Max. :810.0
## strategy strategySwitch
## direct : 9 Mode :logical
## opportunistic_random:37 FALSE:67
## strategy_switch :36 TRUE :36
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Dependent variable:
Strategy Switch observed

(Intercept) −0.703∗ (−1.391, −0.016)
latency 0.00001 (−0.0001, 0.0001)

Observations: 103 ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Fig. 10: Logistic regression analysis for Experiment 4, with latency as
the independent variable and the probability of strategy switching as
the dependent variable. This model was fit using maximum likelihood.

influenced by latency, and found no statistically significant relation-
ship. Finally, we observed notable shifts across experiments in the
occurrence of each strategy. When evaluated empirically, we did find a
statistically significant relationship between experiment condition and
choice of search strategy (p < 0.01), suggesting that task complexity
may influence a user’s choice of visual search strategy. These findings
are intuitive in relation to task complexity: the more information a user
has about the dataset, the more efficient their search.

direct
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Fig. 11: Distribution of strategies across Experiments 1-4. The ob-
served instances of each strategy appear in the corresponding bubble
beneath each experiment. Bubbles are scaled by total observations, and
color encodes how latency was treated (categorical or continuous).



8 DISCUSSION

In this section, we highlight key takeaways from our results, discuss
limitations to our experiments, and identify avenues for future work.

8.1 The Complicated Effects of Latency
As evidenced by our results, latency does not appear to be a clear-
cut predictor for visual search outcomes; the effects of latency seem
more subtle and complex than previously understood, at least for visual
search. When we treat latency as categorical, and use existing methods
to bin latency into a few factors, we do observe a statistically significant
effect. However, latency is not well represented as a categorical variable,
and is often one of several factors that can affect user strategy and thus
user performance. When we augment our experiments to take these
factors into account, latency’s measured effect is significantly weaker.
Thus, our ability to accurately assess latency’s effect on users may
be highly dependent on how the latency is modeled (e.g., categorical
or continuous), as well as whether other environmental factors are
considered (e.g., data layout, task complexity).

To further investigate whether latency may affect a user’s visual
search strategy, we visualize and analyze user sessions to identify the
different ways in which people approach a simple visual search task.
We identify three general search strategies, and some cases where users
switch between different strategies. We do find that in the case of
lower task complexity, participants tend to favor search paths with low
latency. However, participants’ overall strategy (i.e., panning directly to
the target) does not change, regardless of latency. Furthermore, we find
this behavior reflected across all of our experiments: latency appears
to be less important when choosing a search strategy (i.e., selecting
among the categories observed in Section 7). Moreover, choice of
strategy does not seem to affect visual search performance.

Takeaway # 1: Latency may not have a strong influence on visual
search outcomes, even when the latency is several seconds long. This
challenges the notion that latency is universally detrimental. It may
therefore be beneficial to focus on additional factors when optimizing
visual search tools [6, 23].

8.2 Comparing with Prior Studies
Our findings are consistent with prior HCI research on

latency [9, 31], which find that other factors like task complexity [31]
can alter a users’ perception of latency. However, our results dif-
fer significantly from observations made in recent visualization stud-
ies, where latency as low as 500ms can significantly affect user
performance [23, 35]. This discrepancy is due in part to differences
in study methodology. For example, our work integrates methodology
from prior studies in two disparate sub-areas, discussed in Section 4:
performance in visual search (e.g., [5, 7]), and latency in exploratory vi-
sual analysis (e.g., [6, 23]). Thus, some of our results may not translate
directly to prior latency studies, which focus on exploratory contexts
and not visual search. However, we also believe these differences
occur because of how latency was modulated in past experiments. By
treating latency as continuous instead of categorical, we are able to
model more nuanced relationships between latency and visual search
strategy that cannot not be predicted by these existing latency models.

Takeaway # 2: Models of system performance (e.g., latency models)
should strive for realism over simplicity. In similar spirit to the findings
of Battle and Heer [6], we find that understanding the context is criti-
cal when making assumptions about the performance of visualization
systems, otherwise critical details may be missed.

8.3 Limitations and Future Work
While the experiment design and analysis methods were informed by
prior studies [5, 7, 23, 35], one limitation of this work is the use of a
highly simplified interface. For example, our study only considered
panning interactions, and did not include zooming interactions. This
choice could affect the generalization of our results to other visualiza-
tion tools used frequently in the real world. However, the interactions
between latency and different UI operations (e.g., panning, zooming,

brushing and linking) are known to be complex [23], likely warranting
a separate study of their own. We see our experiments as a useful
starting point, providing a baseline for more complex studies of latency,
interaction and visual search in the future.

Another limitation is that participants’ mental models of latency were
not modulated. As such, participants may have thought the latency
was random, and therefore ignored it. Despite this limitation, we still
observe participants avoiding latency in cases of low task complexity
(Experiment 3, Section 4.3), suggesting that even without prompting,
users do notice latency under certain conditions, and may alter their
behavior in response. Conducting a study where users are explicitly
made aware of latency would be an interesting direction for future work.

A possible limitation is the use of a fully abstracted dataset. Though
we chose this design to mitigate variance in participants’ dataset exper-
tise, Experiments 1-3 may be difficult to reason about with respect to
real-world visualization environments. However, real-world visualiza-
tion tools have many features and interaction widgets that can confound
the results of a controlled study, such as formatting and configuration.

Furthermore, though some aspects may be considered less realistic
for visual search, we carefully preserved specific environmental factors
in our experiments that are very common in large-scale visual search
interfaces. For example, the grid succinctly captures the tile structure
and mechanics of existing large-scale visual search systems like Google
maps, imMens [24] and ForeCache [5]. We also aimed to address these
issues through Experiment 4, where we organize the image data to
approximate existing visual search scenarios (e.g., [5]). In the future,
we plan to apply our experimental design to relevant tools for visual
search, and compare the resulting performance with our current results.

Takeaway # 3: How to best decompose high-level visualization tasks
for precise, rigorous study warrants further investigation. As observed
in this work and others [5–7, 23], paring down complex tasks like
visual search and exploratory visual analysis is notoriously difficult.
More fundamental and rigorous characterizations of these tasks are
needed to effectively decompose them for in-depth study.

9 CONCLUSION

It is widely believed that latency in user interfaces can have a significant
effect on user performance. In the case of visualization systems, when
the result of an interaction is delayed due to high latencies, the user’s
analytic flow may be interrupted as a result. Though recent studies cor-
roborate such an effect (e.g., [23]), the degree to which latency affects
user performance in relation to other factors is less well understood. In
this paper, we investigate the relationship between latency, task com-
plexity and user performance. We focus our analysis on the context of
visual search, a core sub-task for visual exploration use cases. Through
a series of studies on Amazon Mechanical Turk, we find that latency
does impact user performance, but only in certain situations: latency
appears to only have a statistically significant effect in low-complexity
visual search tasks, and does not always seem to affect users’ choice
of search strategy. Furthermore, other factors may be stronger predic-
tors of users’ visual search outcomes, such as the total interactions
performed. Our results provide a more nuanced view of the role that
latency plays in visual search contexts, which was not predicted by
existing visualization latency models. Using the results of both our
experiments and prior work, we propose new guidelines for assessing
and inferring the role of latency in evaluating visual search systems.
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