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Abstract

In this paper, we prove some conjectures of K. Stolarsky concerning the first and third moments of the
Beatty sequences with the golden section and its square.
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1. Introduction

Nicomachus’ theorem asserts that the sum of the first m cubes is the square of the mth
triangular number,

13 + 23 + · · · + m3 = (1 + 2 + · · · + m)2. (1.1)

(See [2].) With the notation

Q(α,m) :=
∑m

n=1bαnc3

(
∑m

n=1bαnc)2 , (1.2)

where α ∈ R \ {0}, it implies that

lim
m→∞

Q(α,m) = α. (1.3)

Here, bxc is the integer part of the real number x. The limit in (1.3) follows from
bαnc = αn + O(1) and Nicomachus’ theorem (1.1).

Recall that the Fibonacci and Lucas sequences, {Fn}n≥0 and {Ln}n≥0, are given by
F0 = 0, F1 = 1 and L0 = 2, L1 = 1 and the recurrence relations

Fn+2 = Fn+1 + Fn, Ln+2 = Ln+1 + Ln
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for n ≥ 0. In a personal communication to the second author, K. Stolarsky observed
that the limit relation (1.3) can be ‘quantified’ for α = φ and φ2, where φ := 1

2 (1 +
√

5)
is the golden mean, and a specific choice of m along the Fibonacci sequence. The
corresponding result is Theorem 2.1 below. We complement it by a general analysis of
moments of the Beatty sequences and give a solution to a related arithmetic question
in Theorem 2.5.

2. Principal results

Theorem 2.1. For k ≥ 1 an integer, define mk := Fk − 1. Then

Q(φ2,m2k) − Q(φ,m2k) =


1 −

1
(Fk+1)2Lk+2Lk−1

if k is even,

1 −
1

(Lk+1)2Fk+2Fk−1
if k is odd

and

Q(φ2,m2k−1) − Q(φ,m2k−1) =


1 −

Fk−2

Fk+1(Fk)2(Lk−1)2 if k is even,

1 −
Lk−2

Lk+1(Lk)2(Fk−1)2 if k is odd.

The theorem motivates our interest in the numerators and denominators of
Q(φ, Fk − 1) and Q(φ2, Fk − 1), which can be thought of as expressions of the form

A(k, s) :=
Fk−1∑
n=1

bφncs and A′(k, s) :=
Fk−1∑
n=1

bφ2ncs

for k = 1, 2, . . . and s = 1, 3. More generally, our analysis in Section 3 covers the sums

A(k, s, j) :=
Fk−1∑
n=1

n jbφncs where k = 1, 2, . . . and s, j = 0, 1, 2, . . . . (2.1)

Namely, we find a recurrence relation for A(k, j, s) and deduce recursions from it for
A(k, s) = A(k, s, 0) and A′(k, s). The strategy leads to the following expressions for the
numerators and denominators in Theorem 2.1, which are given in Lemmas 2.2–2.4.

Lemma 2.2. Let k ≥ 1 be an integer. Then

A(k, 1) = 1
2 (Fk+1 − 1)(Fk − 1),

A′(k, 1) = 1
2 (Fk+2 − 1)(Fk − 1).

(2.2)

Lemma 2.3. Let k ≥ 1 be an integer. Then

A(2k, 3) = 1
4 (F2k−1 − 1)(F2k+1 − 1)2(F2k+2 − 1),

A(2k − 1, 3) = 1
4 (F2k−1 − 1)(F2k − 1) × 1

5 (L4k − 3L2k+1 − L2k + 3).
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Lemma 2.4. Let k ≥ 1 be an integer. Then

A′(2k, 3) = 1
4 (F2k − 1)(F2k+2 − 1) × 1

5 (L4k+4 − 5L2k+3 + 13),

A′(2k − 1, 3) = 1
4 (F2k−1 − 1)(F2k+1 − 1) × 1

5 (L4k+2 − 5L2k+2 + 7).

Finally, we present an arithmetic formula inspired by Stolarsky’s original question.

Theorem 2.5. For k ≥ 1,

LCM(A(2k, 1), A′(2k, 1)) =

 1
2 Fk+1FkLk+2Lk+1Lk−1 if 2 | k,
1
2 Fk+2Fk+1Fk−1Lk+1Lk if 2 - k.

Remark 2.6. Lemmas 2.2–2.4 indicate that the expression

Q(φ2, Fk − 1) − Q(φ, Fk − 1)

is expressible as a fraction whose numerator and denominator are polynomials in
Fibonacci and Lucas numbers with indices depending linearly on k according to the
parity of k, yet the statement of Theorem 2.1 presents formulas for these quantities
according to the congruence class of k modulo 4 rather than modulo 2. The discrepancy
is related to different factorisations of the factors Fn − 1 that occur in the formulas for
A(k, j) and A′(k, j) for j ∈ {1, 3}, since each of the factors Fn − 1 happens to be a
product of a Fibonacci and a Lucas number according to the congruence class of n
modulo 4 (see formulas (6.1)).

3. Recurrence relations for auxiliary sums

Here, we show how to compute the integer-part sums (2.1). This clearly covers the
cases A(k, s) = A(k, s, 0). On using

φ2 = 1 + φ,

which upon multiplication by the integer n and taking integer parts becomes

bφ2nc = n + bφnc,

one also gets the explicit formulas

A′(k, s) =

s∑
i=0

(
s
i

)
A(k, s − i, i).

Using the Binet formula

Fk =
φk − (−φ−1)k

√
5

for all k ≥ 0,

one easily proves that

bφFkc = Fk+1 − εk where εk =
1 + (−1)k

2
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and
bφ(Fk + n)c = Fk+1 + bφnc for 1 ≤ n ≤ Fk−1 − 1

(see, for example, [1]). Thus,

A(k + 1, s, j) =

Fk−1∑
n=1

n jbφncs + F j
kbφFkc

s +

Fk+1−1∑
n=Fk+1

n jbφncs

= A(k, s, j) + F j
k(Fk+1 − εk)s +

Fk+1−Fk−1∑
n=1

(Fk + n) jbφ(Fk + n)cs

= A(k, s, j) + F j
k(Fk+1 − εk)s +

Fk−1−1∑
n=1

(Fk + n) j(Fk+1 + bφnc)s

= A(k, s, j) + F j
k

s∑
i=0

(
s
i

)
F i

k+1(−εk)s−i

+

Fk−1−1∑
n=1

j∑
`=0

(
j
`

)
F`

kn j−`
s∑

i=0

(
s
i

)
F i

k+1bφncs−i

= A(k, s, j) +

s∑
i=0

(
s
i

)
(−εk)s−iF j

kF i
k+1

+

j∑
`=0

s∑
i=0

(
j
`

)(
s
i

)
F`

kF i
k+1A(k − 1, s − i, j − `).

The above reduction, the identity A(k, 0, 0) = Fk − 1 and induction on k + j + s imply
that

A(k, s, j) ∈ span{(φi)k, (−φi)k : |i| ≤ j + s + 1};

in particular, for a fixed choice of s and j, the sequence {A(k, s, j)}k≥1 is linearly
recurrent of order at most 4(s + j) + 6. In the following section, we will use this
observation about linear recurrency together with the following facts.

• If u = {un}n≥0 is a linearly recurrent sequence whose roots are all simple in some
set U, then, for fixed integers p and q, the sequence {upn+q}n≥0 is linearly recurrent
with simple roots in {αp : α ∈ U}.

• If u = {un}n≥0 and v = {vn}n≥0 are linearly recurrent and their roots are all simple
in some sets U and V , respectively, then uv = {unvn}n≥0 is linearly recurrent and
its roots are all simple in UV = {αβ : α ∈ U, β ∈ V}.

In this context, the roots of a linearly recurrent sequence are defined as the zeros of its
characteristic polynomial, counted with their multiplicities. It then follows that, for a
fixed s, each of the sequences {A(k, s)}k≥1 and {A′(k, s)}k≥1 is linearly recurrent of order
at most 4s + 6.
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4. The proofs of the lemmas

We first establish Lemma 2.2. By the argument in Section 3, both A(k, 1) and
A′(k, 1) are linearly recurrent with simple roots in the set {±φl : |l| ≤ 2}. The same
is true for the right-hand sides in (2.2). Since the set of roots is contained in a set
with 10 elements, it follows that the validity of (2.2) for k = 1, . . . , 10 implies that the
relations hold for all k ≥ 1.

Lemmas 2.3 and 2.4 are similar. The argument in Section 3 shows that the left-
hand sides, {A(k, 3)}k≥1 and {A′(k, 3)}k≥1, are linearly recurrent with simple roots in
{±φl : |l| ≤ 4}. Splitting according to the parity of k, we deduce that {A(2k, 3)}k≥1,
{A(2k − 1,3)}k≥1, {A′(2k,3)}k≥1 and {A′(2k − 1,3)}k≥1 are linearly recurrent with simple
roots in {φ2l : |l| ≤ 4}, a set with nine elements. The same is true about the right-hand
sides in the lemmas. Thus, if the relations hold for k = 1, . . . , 9, then they hold for all
k ≥ 1.

A few words about the computation. For the identities presented in Lemmas 2.2–
2.4, one can use brute force to compute A(k, s) and A′(k, s) for s = 1, 3 and k = 2` + i,
where i ∈ {0, 1} and ` is reasonably small (we dealt with ` ≤ 9), with any computer
algebra system. To check them up to larger values of k (around 100, say), the brute
force strategy no longer works since the summation range up to Fk − 1 becomes too
large. Instead one can use the recursion from Section 3 together with A(k,0,0) = Fk − 1
to find A(k, 1, 0), A(k, 2, 0) and A(k, 3, 0) for all desired k and, similarly, A(k, s, j) for
small j, to evaluate A′(k, s).

5. The proof of Theorem 2.1

Let us now address Theorem 2.1. When k = 4`, this can be rewritten as

F2
2`+1L2`+2L2`−1(A′(4`, 3)A(4`, 1)2 − A(4`, 3)A′(4`, 1)2)

= A(4`, 1)2A′(4`, 1)2(F2
2`+1L2`+2L2`−1 − 1). (5.1)

Since A(4`, s) and A′(4`, s) are linearly recurrent (in `) with roots contained in
{φ4l : |l| ≤ s + 1}, and both the left-most factor in the left-hand side and the right-most
factor in the right-hand side each have simple roots in {φ4l : |l| ≤ 2}, it follows that
both the left-hand side and the right-hand side are linearly recurrent with simple roots
contained in {φ4l : |l| ≤ 10}, a set with 21 elements. Thus, if the above formula holds
for ` = 1, . . . , 21, then it holds for all ` ≥ 1. A similar argument applies to the case
when k = 4` + i for i ∈ {1, 2, 3}. Hence, all claimed formulas hold provided they hold
for all k ≤ 100, say.

Now we use the lemmas. For k = 4`, Lemmas 2.2–2.4 tell us that (5.1), after
eliminating the common factor (F4` − 1)2(F4`+1 − 1)2(F4`+2 − 1)/16, is equivalent to

F2
2`+1L2`+2L2`−1 × ( 1

5 (F4` − 1)(L8`+4 − 5L4`+3 + 13)
− (F4`+2 − 1)(F4`−1 − 1)(F4`+2 − 1))

= (F4` − 1)2(F2
2`+1L2`+2L2`−1 − 1)
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(and one can perform further reduction using (6.1)). It is sufficient to verify the
resulting equality for ` = 1, . . . , 15 and we have checked it for all ` = 1, . . . , 100. The
remaining cases for k modulo 4 are similar. We do not give further details here.

6. The proof of Theorem 2.5

This follows from Lemma 2.2, the classical formulas

F4` − 1 = F2`+1L2`−1, F4`+1 − 1 = F2`L2`+1,

F4`+2 − 1 = F2`L2`+2, F4`+3 − 1 = F2`+2L2`+1
(6.1)

as well as known facts about the greatest common divisor of Fibonacci and Lucas
numbers with close arguments. For example, for k = 2`,

LCM(2A(4`, 1), 2A′(4`, 1)) = LCM((F4`+1 − 1)(F4` − 1), (F4`+2 − 1)(F4` − 1))
= LCM(F2`L2`+1, F2`L2`+2)F2`+1L2`−1

= F2`L2`+1L2`+2F2`+1L2`−1

= Fk+1FkLk+2Lk+1Lk−1,

where we used the fact that gcd(L2`+1, L2`+2) = 1. The case k = 2` + 1 is similar.

7. Further variations

First, we give an informal account of a more general result lurking, perhaps,
behind the formulas in Theorem 2.1. Consider a homogeneous (rational) function
r(x) = r(x1, . . . , xm) of degree 1, that is, satisfying

r(tx) = tr(x) for t ∈ Q,

and an algebraic number α solving the equation
m∑

k=0

ckα
k = 0, (7.1)

where the ck are integers. If r(x) vanishes at a vector x∗ = (x∗1, . . . , x∗m), then
automatically

m∑
k=0

ckr(αkx∗) = 0 (7.2)

in view of the homogeneity of the function. We can then enquire whether equation
(7.2) is ‘approximately’ true if r(x∗) = 0 is ‘approximately’ true. In this note, we
merely examined the golden ratio case in which (7.1) is α2 − α − 1 = 0, while the
choice

r(x1, . . . , xm) =

∑m
n=1 x3

n

(
∑m

n=1 xn)2

for the rational function and x∗ = (1, 2, . . . ,m) for its exact solution originated from the
Nicomachus identity.
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Notice that Nicomachus’ theorem (1.1) is the first entry in the chain of identities

12r−1 + 22r−1 + · · · + m2r−1 = Pr(1 + 2 + · · · + m) for r = 2, 3, . . . ,

where Pr(x) are known as the Faulhaber polynomials. Our approach in this note gives
a clear strategy to deal with the quantities that replace (1.2) in these settings.

Some further variations on the topic can be investigated in the q-direction, based on
q-analogues of (1.1) (see [3]).
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