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ABSTRACT

Structural segmentation is the task of partitioning a record-
ing into non-overlapping time intervals, and labeling each
segment with an identifying marker such as A, B, or verse.
Hierarchical structure annotation expands this idea to al-
low an annotator to segment a song with multiple levels
of granularity. While there has been recent progress in de-
veloping evaluation criteria for comparing two hierarchical
annotations of the same recording, the existing methods
have known deficiencies when dealing with inexact label
matchings and sequential label repetition.

In this article, we investigate methods for automati-
cally enhancing structural annotations by inferring (and
expanding) hierarchical information from the segment la-
bels. The proposed method complements existing tech-
niques for comparing hierarchical structural annotations by
coarsening or refining labels with variation markers to ei-
ther collapse similarly labeled segments together, or sep-
arate identically labeled segments from each other. Us-
ing the multi-level structure annotations provided in the
SALAMI dataset, we demonstrate that automatic hierarchy
expansion allows structure comparison methods to more
accurately assess similarity between annotations.

1. INTRODUCTION

In the music information retrieval (MIR) literature, the
problem of musical structure analysis broadly concerns
methods for automatically inferring relationships between
moments in time within a piece [1, 10]. Substantial effort
has been expended to develop computational techniques
to infer various structures in recorded music, and the ex-
istence of reliable reference data and evaluation method-
ology is critical to accurately assess the efficacy of these
methods. More broadly, reliable methods for comparing
interpretations of musical structure can be informative for
understanding human perception of music [13, 14].

c© Brian McFee, Katherine M. Kinnaird. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Brian McFee, Katherine M. Kinnaird. “Improving struc-
ture evaluation through automatic hierarchy expansion”, 20th Interna-
tional Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

Musical structure can be represented in a variety of
ways, depending on the intended use case, ranging from
(symbolic) staff notation, to chord annotations, lead sheets,
etc. MIR research typically focuses on the segmentation
problem, where the time extent of a recording is parti-
tioned, and each partition is labeled with a descriptor that
can be used to indicate repetitions, such as A,B,A,C or
verse, chorus, verse, bridge. Much of the computational
work in this area models musical structure as flat, meaning
that there is exactly one partitioning of the piece, and the
elements of the partition (segments) cannot be merged or
subdivided to form larger or smaller structures.

In contrast, there is a long tradition in music the-
ory of modeling music with hierarchies that simultane-
ously represent structure at multiple levels of granular-
ity [2, 3]. Indeed, even when instructed to produce a
flat segmentation of a piece, expert annotators will often
encode latent hierarchical information by using variation
markers in their segment labels, e.g., A, . . . , A′ or verse,
. . . , verse_(instrumental) [9, 12]. Although an annotator’s
choice of segment label may clearly be informative in these
cases, this information is ignored by standard segmentation
comparison methods. This owes, primarily, to an inability
to directly support multi-level segmentations, which could
be used to simultaneously represent both the original and
simplified annotation as a coherent structure.

In recent years, there has been increasing interest and
progress in developing datasets [8, 12], computational
methods [16], representations [7], and evaluation crite-
ria [6] for hierarchically structured music segmentations.
However, little attention has been paid to exposing latent
hierarchical structure encoded by segment labels for use in
conjunction with these methods.

1.1 Our contributions

In this work, we develop a method for automatically expos-
ing latent multi-level structure encoded by label similar-
ity in music segmentations. The proposed automatic hier-
archy expansion method operates by simultaneously con-
tracting similar (but distinct) segment labels, and refining
identically labeled (but distinct) segments. The contraction
and refinement are combined with the original annotation
into a hierarchical annotation, which can then be compared
to other hierarchies using existing techniques.
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Using the SALAMI dataset as a test case, we demon-
strate that the proposed method is effective at identifying
similarities across annotations that are not captured by pre-
vious methods. Finally, we leverage insights gained in de-
veloping the method to explore issues of internal consis-
tency within multi-level structure annotations.

1.2 Preliminaries

For a signal of duration T , we define a (flat) segmentation
as a function S : [0, T ] → V where V denotes a set of
segment labels, e.g., V = {A,B, . . .}. We define a multi-
level segmentation (or hierarchy) as a sequence of segmen-
tations H = (S0, S1, . . .), where S0 maps to a single label,
and subsequent segmentations Si are ordered from coarse
to fine. We assume that each segmentation Si maps to a
distinct vocabulary. Finally, we say that a hierarchy H is
monotonic if for every level k, we have that

Sk(u) = Sk(v) ⇒ Sk−1(u) = Sk−1(v). (1)

2. RELATED WORK

Methods for evaluating musical structure analysis algo-
rithms, or more generally comparing two different (flat)
structural annotations, broadly fall into two categories:
boundary detection and label agreement. Boundary de-
tection metrics capture the agreement between annotations
in localizing moments of time when the piece transitions
from one coherent segment to another [15]. Segment
boundaries are entirely local phenomena, and the metrics
do not attempt to encode any sense of long-term structure
in the annotations.

Label agreement metrics, on the other hand, are glob-
ally informed, and derive from comparisons between the
segment labels applied to short samples, typically 0.1s in
duration. The pairwise precision metric [4] is defined by
determining which time points i and j are both given the
same label in the reference annotation, and checking to see
if the estimate annotation also gives both time points the
same label; the fraction of such pairs of time points deter-
mines a precision score. Exchanging the roles of the ref-
erence and estimate annotations yields definitions for re-
call and F1-score. Similarly, the normalized conditional
entropy measures [5] quantify agreement in terms of the
mutual information between the two annotations.

Although label agreement metrics account for global
structure, they have three notable shortcomings. First, they
are sensitive to alignment errors: if two annotators are op-
erating at different levels of granularity, this information
can be obscured by the evaluation. Hierarchical structure
evaluation measures address this by integrating multiple
segmentations at different levels of granularity into a single
hierarchy, and comparing hierarchies to one another [6].

Second, since they depend on frames in isolation from
their surrounding context, label agreement metrics cannot
distinguish a long segment A from two short segments aa
that cover the same time extent. Typically, practitioners
circumvent this issue by reporting boundary detection met-

rics as well as label agreement metrics, but the interactions
between the two types of score are rarely easy to interpret.

Finally, label agreement metrics have no mechanism to
exploit similarity encoded within segment labels: labels A
and A′ are considered equally distinct as A and B, even
though the annotator is clearly implying some high-level
similarity in the first case that is absent in the second.
While one could modify such annotations directly and use
a flat segment evaluation metric, doing so discards infor-
mation that could still be useful for comparison purposes.

In this work, we address these three issues by deriving
segment hierarchies which are informed by label similarity.
Discarding variation markers (A′ → A) allows the evalu-
ation to recover from superficially distinct segment labels,
while adding counters (aa→ a0a1) provides a way to dis-
tinguish a long segment from sequential repetitions of a
short segment. By integrating these two modifications into
a hierarchy, along with the original annotation, we preserve
all of the information present in the annotation.

2.1 Hierarchical evaluation

The approach taken in this work is based on the L-measure
method for multi-level segmentation comparison [6], sum-
marized here for completeness. Given a hierarchy H , a
meet matrix M is defined by the maximum level at which
every pair of time instants (u, v) receive the same label:

M [u, v] := max {k | Sk(u) = Sk(v)} . (2)

The meet matrix induces a partial ordering over pairs of
time instants, which is summarized by a set of triplets:

A(H) := {(t, u, v) |M [t, u] > M [t, v]} . (3)

Finally, given two hierarchies HR (the reference) and HE

(the estimate), a precision score is defined by comparing
the two triplet sets:

L-Precision
(
HR, HE

)
:=

∣∣A (
HR

)
∩A

(
HE

)∣∣
|A (HE)|

. (4)

Recall is defined analogously by reversing the roles of ref-
erence and estimate, and an F1-score (hereafter denoted
as L-Measure) can be computed by the harmonic mean of
precision and recall. The terms reference and estimate to
distinguish between annotations derive from the method’s
use in comparing algorithm outputs to manual annotations.
However, the method can generally compare between dif-
ferent annotations of equal status, e.g., produced by two
different human annotators. In this case, the terms refer-
ence and estimate are merely intended to identify the an-
notators, but not to confer privileged status to either.

Although defined for multi-level segmentations, the L-
measure can also be applied to compare flat segmentations
by including a vacuous segment S0 which produces a sin-
gle segment spanning the entire duration. This results in
an evaluation which is similar to the pairwise frame simi-
larity metric [4], differing only in that it compares triples
rather than pairs. For consistency across experiments, we
will employ this method (with the S0 segment) when com-
paring flat segmentations in the remainder of this article.
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3. METHODS

This work proposes a method for expanding flat annota-
tions to include both more nuanced and coarser structural
information. Such expansions seek to address the three
shortcomings of label agreement metrics detailed in Sec-
tion 2. We also explore the concept of monotonicity within
the hierarchy resulting from applying our methods to sev-
eral levels of flat annotations.

3.1 Automatic Hierarchy Expansion

Here, we propose an automatic hierarchical expansion for
any ‘flat’ annotations. Our method expands a flat annota-
tion into a hierarchy with three levels. The first level is a
contraction of the variation markers. The second level is
the original annotation. The third level is a refinement of
the labels by making each instance of a label unique by
adding counters to the label.

For a concrete example, consider Figure 1. The left part
of the image shows the flat annotation which is repeated
on the right side of the image as the middle level of the
hierarchy. The contraction level, shown in green, removed
the variation markers of the A repetition. The result is that
the contraction part of the hierarchy has two kinds of repe-
titions instead of three.

The refined level of the hierarchy, shown in blue, has
at most one block per line. For clarity, the refinement
level is created directly from the contraction level of the
hierarchy. For each instance of a label in the contrac-
tion level, we append a counter (starting with 0) to form
a new label. If instead we had conducted this refine-
ment starting at the middle level, we would have ended up
with the annotation labels {A0, A′0, B0, B1, B2} instead
of {A0, A1, B0, B1, B2}. Both methods produce equiva-
lent results, but the latter is easier to interpret.

Although the expansion described above is most eas-
ily understood when applied to flat inputs, it can also be
applied to hierarchical inputs by expanding each level in-
dependently and combining the results. An example of
this multi-level hierarchy expansion is given in Figure 2.
We also note that whenever a contraction (or refinement)
leaves the segmentation unchanged, the redundant level is
omitted from the expanded hierarchy as it produces no ad-
ditional content. Note that the expansions of the upper and
lower annotations in Figure 2 only have two levels each;
this is due to the lack of variation markers within the orig-
inal annotations, meaning that there is nothing to contract.

3.2 Monotonicity

The L-measure described in section 2.1 hinges upon the
definition of the meet matrix M (see eq. (2)), which can be
interpreted as measuring the similarity between two time
points by the depth in the hierarchy at which they receive
the same label. When expanding a flat segmentation S, the
result is guaranteed to be a monotonic hierarchy. If S(u) 6=
S(v), then the contraction level may assign u and v the
same label, but the refinement level will not. Conversely,

Time
A

A'

B

Time
 A0
 A1
 B0
 B1
 B2

A
A'
B
A 
B 

Figure 1. An example of automatic hierarchy expansion.
A flat segmentation (left) with segments (A,B,A′, B,B)
is expanded into a three-level hierarchy (right). The con-
traction level (green, top) removes variation markers, while
the refinement level (blue, bottom) adds counters to each
instance of a segment label. The center level (orange) pre-
serves the original annotation.

Original
a

b

c

A

B

Expanded
 a0
 a1
 b0
 b1
 c0

a
b
c

 A0
 A1
 B0

A
B

Figure 2. Automatic hierarchy expansion is not guaran-
teed to preserve monotonicity when applied independently
to each level of a hierarchy (left). The dashed lines in-
dicate two instants which receive the same label a in one
level, but different labels (A0 and A1) in a preceding level.

if S(u) = S(v), then the contraction level must preserve
this equivalence, while the refinement level may not.

However, when applying automatic expansion indepen-
dently to each level of a hierarchical annotation, the re-
sult may not be monotonic. Figure 2 illustrates this ef-
fect, where the refinement of the upper level (orange, left
plot) results in violations of monotonicity, indicated by the
dashed lines in the right plot.

While one could preserve monotonicity by only con-
tracting at the highest level and refining at the lowest level,
this is undesirable for three reasons. First, there may be
informative structure encoded by variation markers in the
intermediate levels which would be missed. Second, an-
notators may not be internally consistent (i.e., monotonic)
from upper to lower-level, so monotonicity would be vio-
lated from the start. And finally, because the L-measure de-
pends only on the maximum level of agreement, it does not
strictly require monotonicity to operate, though the results
may be somewhat counter-intuitive. Still, the L-measure
definition is most intuitive when the underlying annota-
tions are monotonic, so it is worth investigating the effects
of hierarchy expansion on monotonicity.
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Figure 3. L-measure applied to pairs of annotations in the SALAMI dataset before and after automatic expansion. Left:
upper-level annotations; middle: lower-level annotations; right: hierarchical annotations.

4. EXPERIMENTS

We evaluated the effect of automatic hierarchy expansion
on flat annotations in the SALAMI dataset [12]. This
dataset was selected for two reasons. First, it contains
multiple reference annotations (by different annotators).
Second, each annotation includes segmentations at differ-
ent levels of granularity (upper and lower), which can be
treated separately or combined into one hierarchy. All ex-
periments were conducted using the L-measure implemen-
tation included in mir_eval version 0.5 [11].

4.1 Expansion on flat annotations

For each SALAMI track with two annotators, we first com-
puted the L-measure between the two upper annotations.
Because neither annotator has a privileged status as refer-
ence, we computed the “L-measure” as the harmonic mean
of L-precision and L-recall. We then applied the hierarchy
expansion procedure to each annotation, and the recom-
puted the L-measure on the expansions. Comparing the
L-measure before and after expansion of a single level al-
lows us to quantify the amount of structural similarity im-
plicitly coded in the segment labels. This process was then
repeated for the lower-level annotations.

Figure 3 (left and middle plots) summarizes the results
of this experiment. As a general trend, expansion has sub-
stantial impact on the upper level, and less impact on the
lower level. More specifically, expansion of the upper level
produces a change in L-measure of 0.107 ± 0.168 (mean
± standard deviation), while expansion of the lower-level
produces a change of 0.038± 0.09. The trend is generally
positive at the upper level (with a few exceptions), while
the lower-level changes are more symmetric.

Figure 4 illustrates two extreme cases where automatic
hierarchy expansion dramatically changes the L-measure
between upper annotations. 1 In the first case, track 242
improves from 0 to 0.979, because the refinement of the
second annotation (AA→ A0A1) agrees with the first an-
notation (AA′), and the contraction of the first annotation

1 Qualitatively similar examples can be observed for the lower anno-
tations, which are omitted here for brevity.

A

A'

Silence

A

Silence

SALAMI #242

A

Silence

A

Silence

SALAMI #251

Figure 4. Two extreme examples where hierarchy expan-
sion changes the L-measure from flat (upper) annotations.
Left: track 242 increases by +0.979; right: track 251 de-
creases by −0.705.

(AA′ → AA) matches with the second annotation. These
annotations effectively encode the same information, dif-
fering only in the use of variation markers. The second
case, track 251, decreased from 0.879 to 0.174 after ex-
pansion. This is explained by the first annotation explicitly
marking repeated A sections, which are refined into unique
sections (A0, A1, A2, A3) by expansion. This structure is
absent from the second annotation, which covers the en-
tire duration by a single A segment. Prior to expansion,
label-agreement metrics over-estimate the similarity be-
tween these annotations. Hierarchy expansion exposes this
oversight, resulting in a more accurate comparison.

4.2 Expansion on hierarchical annotations

Extending the analysis of the previous section, we com-
bined each annotator’s upper and lower segmentations into
a hierarchical annotation H . We then applied hierarchy ex-
pansion to each level of the hierarchy, resulting in a new hi-
erarchy H∗. Finally, we computed the L-measure between
pairs of hierarchies before and after expansion, which pro-
vides a more holistic view of how expansion affects mea-
sured agreement between annotators.

The results of expansion comparison for hierarchies are
summarized in Figure 3 (right). Overall, the differences are
qualitatively similar to the lower-level comparison, pro-
ducing differences in L-measure of 0.048 ± 0.090. While
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Original

SALAMI #341

Expanded

SALAMI #341

Figure 5. Automatic expansion significantly improves L-
measure agreement between two hierarchical annotations
of track 341 (increase of +0.954). Left: the original hi-
erarchies; right: the expanded hierarchies. Segment labels
are suppressed to enhance legibility.

less dramatic than the upper-level comparison, the trend is
still generally positive, with over 77% of comparisons in-
creasing in value after applying hierarchy expansion. This
indicates that even when evaluating with hierarchical an-
notations, there is still some latent structure encoded in the
segment labels which current methods do not account for.

Figure 5 illustrates an example where expansion in-
creases L-measure between two hierarchies, from 0 to
0.954. The second hierarchy (bottom left) assigns the same
label to each segment, though the lower level is divided
in to repetitions. Expansion separates these repeated seg-
ments in both annotations, exposing the common structure
shared by both hierarchies (right two subplots).

Figure 6 illustrates the opposite case, where expan-
sion exposes disagreement, decreasing score from 0.841
to 0.618. In this case, looking only at the upper level of
the two annotations (left plots, orange level) would indi-
cate considerable agreement between the two annotations,
though the lower levels (blue) diverge significantly.

These selected examples are the extreme cases where
L-measures deviated the most after hierarchy expansion.
In both cases, we find that the divergence can be easily ex-
plained by visual inspection, which validates that hierarchy
expansion behaves as expected. Note that these cases are
relatively unusual, and most changes in scores are much
smaller in magnitude. We therefore conclude that hierar-
chy expansion is effective at recovering from exceptional
cases while not detrimentally affecting the common cases.

4.3 Quantifying monotonicity

The experiment described in Section 4.1 started with flat
segmentations, and is therefore guaranteed to produce
monotonic hierarchies. As noted in Section 3.2, this is not
generally true when expanding hierarchies. This raises the
question of the importance of monotonicity on hierarchical
segmentation evaluation, and whether a given annotator is

Original

SALAMI #118

Expanded

SALAMI #118

Figure 6. An example where automatic expansion signif-
icantly reduces L-measure agreement between two hierar-
chical annotations (decrease of −0.223). Left: the original
hierarchies; right: the expanded hierarchies.

0.2 0.4 0.6 0.8 1.0
Monotonicity of SALAMI annotations

101

102

103

Figure 7. The distribution of monotonicity scores across
all segment hierarchies in SALAMI (median: 0.98).

internally consistent between upper and lower levels.
The definition of monotonicity given in eq. (1) is binary,

but it can be relaxed by instead measuring the proportion
of time instants u and v where agreement at level k implies
agreement at level k − 1. This is calculated exactly by the
pairwise recall measure [4], when Sk is treated as the refer-
ence and Sk−1 is the estimate. We thus computed pairwise
recall between lower and upper segmentations for each an-
notation: measures close to 1 are highly monotonic, and
lower values indicate violations of monotonicity. The re-
sults are summarized by the distribution plot in Figure 7.
Overall, the median monotonicity score across all annota-
tions was 0.98, though there appears to be a heavy tail of
non-monotonic annotations.

Looking more carefully into the data, we observed that a
significant portion of monotonicity violations could be ex-
plained by the use of variation markers in the upper-level
segmentation. These annotations are specifically problem-
atic because the lower segment a may correspond to dis-
tinct upper labels A and A′. More than 60% of hierarchies
that do not use variation markers in the upper level are per-
fectly monotonic, while only 27% of hierarchies with up-
per variations are monotonic.

Figure 8 illustrates the distribution of monotonicity
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Figure 8. Monotonicity measurements for each SALAMI
annotation, grouped by annotator. Median values and 95%
bootstrap confidence intervals are indicated by bars.

scores for each individual annotator, sub-divided according
to the presence or absence of variation markers in the upper
level. Figure 8 shows that use of upper variation markers
consistently coincide with lower monotonicity score.

In these experiments, we identified that variation mark-
ers can introduce unnecessary differences between sec-
tions. What is more, our investigations suggest that the
use of variation markers coincides with reduction in mono-
tonicity. The contraction level in the automatic hierarchy
expansion seeks to address this issue. However, expand-
ing multiple levels can introduce monotonicity violations.
Combining the investigations in this section with the re-
sults from Section 4.2, we conclude any new violations
created by the contraction of the lower level and the refine-
ment of the upper levels are not substantially detrimental
compared to the overall improvements conferred by auto-
matic hierarchy expansion.

4.4 Permutation stability

It is natural to ask whether the previous results are due to
introducing multiple hierarchical levels (independent of la-
bels), or if the specific manner in which the contraction and
refinement levels are constructed matters. If the effects of
hierarchy expansion on L-measure are primarily due to ad-
ditional levels, but not their specific label structure, we ex-
pect that expanding the segmentation with randomly per-
muted labels should produce comparable results.

To test this idea, we took inspiration from statistical per-
mutation testing, and conducted the following experiment
on each level of flat segmentations.

• For each annotation S, construct its hierarchy expan-
sion H and compute the L-recall from S to H .

• (Repeat): randomly permute the labels of S to pro-
duce new flat segmentation P , and expand P to new
hierarchy HP . Compute L-recall from S to HP .

We then compared the distribution of recall scores arising
from the (S,H) comparisons to distribution arising from
(S,HP ) comparisons. Since the expansion H contains S,

Level Mean (original) Mean (permutation) KS

Upper 0.992 0.603 0.940
Lower 0.996 0.468 0.977

Table 1. Results of the permutation-expansion test on
upper- and lower-level segmentations. KS reports the 2-
sample Kolmogorov-Smirnov test statistic between expan-
sion and permuted expansion comparisons.

the recall score will be identically 1. 2 Note that the expan-
sion HP will have equivalent refinement level to that of H
because each segment is uniquely labeled, so the differ-
ences induced by permutation are confined to the middle
and upper (contraction) levels.

For each annotation, 20 independent permutations were
generated. For each level, we report the mean L-recall over
original expansions and permuted expansions. We then
calculated the 2-sample Kolmogorov-Smirnov test statis-
tic (KS) to determine if the two samples could plausibly
be generated from the same underlying distribution. Ta-
ble 1 summarizes the results of the experiment. In both
cases, this null hypothesis was rejected with p-value nu-
merically indistinguishable from 0, indicating that the ef-
fects of the hierarchy expansion on the L-measure depend
on both the additional hierarchical information and its spe-
cific label structure.

5. CONCLUSION

The automatic hierarchy expansion method proposed in
this article provides a flexible framework for retaining sub-
tle differences in annotations, while simultaneously expos-
ing coarse similarity. By leveraging ideas from hierarchi-
cal structure evaluation, the proposed method is able to il-
luminate detailed structure latent in the annotations, and
recover from problematic edge cases not handled by previ-
ous methods. Moreover, the segment refinement technique
provides a way to simultaneously evaluate segment bound-
aries and repetitions, which has been problematic for pre-
vious, frame-based evaluations.

Although our focus of the experiments in this work
relies on structural segmentation labels in the SALAMI
dataset, the general ideas may be applied more broadly,
e.g., to the functional section labels used in the Isophon-
ics and TUT annotations [9]. Alternatively, this automatic
hierarchy expansion could be applied to other musical con-
cepts where hierarchies naturally occur, such as chord la-
bels (root, quality, extensions) or instrumentation (family,
instrument, register). This could provide a robust alterna-
tive evaluation technique for classification problems where
adhering to a flat vocabulary is problematic, but where
modeling full taxonomies might also be intractable.

2 When S consists of a single segment spanning the entire duration,
it will produce an L-recall of 0. However, we note that the permutation
procedure on such annotations will have no effect.
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