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ABSTRACT
Three-dimensional numerical simulations of viscoelastic fluids in the Stokes limit with a four-roll mill background force (extended to the
third dimension) were performed. Both the Oldroyd-B model and FENE-P model of viscoelastic fluids were used. Different temporal behav-
iors were observed depending on the Weissenberg number (non-dimensional relaxation time), model, and initial conditions. Temporal
dynamics evolve on long time scales, and simulations were accelerated by using a Graphics Processing Unit (GPU). Previously, parameter
explorations and long-time simulations in 3D were prohibitively expensive. For a small Weissenberg number, all the solutions are constant in
the third dimension, displaying strictly two-dimensional temporal evolutions. However, for a sufficiently large Weissenberg number, three-
dimensional instabilities were observed, creating complex temporal behaviors. For certain Weissenberg values and models, the instability that
first emerges is two-dimensional (in the x, y plane), and then the solution develops an instability in the z-direction, whereas for others the
z instability comes first. Using a linear perturbation from a steady two-dimensional background solution, extended to three dimensions as
constant in the third dimension, it is demonstrated that there is a linear instability for a sufficiently large Weissenberg number, and possible
mechanisms for this instability are discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134927., s

I. INTRODUCTION

It is well known that viscoelastic fluids can develop instabil-
ities and time-dependent flows even in the creeping flow regime
(very low Reynolds number). It is thought that these instabilities
can be used to enhance mixing at micro-scales, which is difficult in
Newtonian fluids.

Although the mixing properties and dynamics of viscoelastic
fluids have been studied experimentally, theoretically, and numeri-
cally, a complete picture of the purely elastic instabilities in the low
Reynolds number regime has not emerged. Numerical simulations
in two spatial dimensions are the most well-studied, and there are
far fewer numerical studies in three dimensions. Analysis of insta-
bilities of 3D flows at extensional points are nearly absent in the
literature.

Note that even in experiments of fluids that exhibit three-
dimensional flows, it is difficult to measure all three dimensions
simultaneously. Only some of the newest techniques have been able

to analyze the fully three-dimensional flows.1 See Ref. 2 for a recent
review of the state of the art of the three-dimensional viscoelastic
instabilities in micro-channels, which is one of the main applications
where low Reynolds number instabilities are studied.

Numerical studies have shown the importance of varying the
height of the third dimension in different kinds of micro-fluidic
channels. In Ref. 3, the authors perform three-dimensional simu-
lations of viscoelastic fluids in a contraction channel. They showed
that varying the aspect ratio of the channel has similar effects to
varying other parameters, such as fluid properties, which influence
the elasticity number. Specifically, they simulate a three-dimensional
flow (Re = 0.465) passing through a planar contraction micro-
channel. They observe a transition in the vortex mechanism from a
salient-corner to a lip vortex mechanism as the aspect ratio is varied
from an ideal 2-D flow to a strongly 3-D flow.

One of the most significant applications of micro-scale insta-
bilities in non-Newtonian fluids is the mixing enhancement. Some
recent three-dimensional simulations have been instrumental in
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understanding this effect. For example, the first three-dimensional
DNS (Direct Numerical Simulation) study of a viscoelastic flow in
a curvilinear channel driven by a constant pressure gradient was
performed by Ref. 4 obtaining a good agreement with the experi-
mental data (even though they introduced an artificial dissipation
effect). Then, they explored the relationship between the purely
elastic instability and the effect of obtaining a mixing enhance-
ment. They have seen how above a critical Weissenberg number
(Wi, non-dimensional relaxation time) there exists a strong unstable
secondary flow in the cross-section perpendicular to the streamwise
direction, resulting in a strong mixing enhancement.

Furthermore, evidence of the importance of the third dimen-
sion in another application of viscoelastic flows can be found in
Ref. 5, where simulations for polymer extrudate, which swell out of
slit dies from low to high aspect ratios, were performed. It was shown
that increasing the aspect ratio of the die geometry (width/height
ratio variation from 1 to 20) contributes to a significant change in the
3D extrudate deformation (relative changes of 10% in several direc-
tions; absolute changes up to 30%) and delays the equilibrium axial
position (up to a factor 10).

Experimentally, even though the devices are three-dimensional,
measuring the whole three-dimensional field is not possible, and
only some planes are generally accessible. There exists a very recent
study,1 in which they used a three-dimensional holographic parti-
cle velocimetry to study the three-dimensional flow field in the case
of flow past a cylinder allowing to reproduce the three-dimensional
velocity fields. Besides, being a benchmark for non-Newtonian flu-
ids, the flow around a cylinder mechanism is not well understood.
With the three-dimensional velocity fields, they have seen more
complex flow transitions that could previously be inferred from two-
dimensional measurements. They reported three main discoveries
of the elastic instability upstream of a single cylinder, including the
demonstration of the propagation of an elastic wave, which pro-
vides a mechanism by which perturbations can travel upstream.
The elastic wave is found to increase in speed and penetrate far-
ther upstream with Wi, indicating an absolute instability emanating
from the cylinder. Note that the discoveries of the mechanisms of
instabilities in one geometry, such as planar contractions, can help
the understanding of the study of the instabilities of the flow around
the cylinder and vice versa. However, there are differences between
the flow around a cylinder and contraction type flows since the
cylinder separates the flow into two separate streams.

It has been known for a while that there is an influence of the
third dimension on instabilities in flows around cylinders. A recent
experimental study focuses on the case of flow around the high-
aspect-ratio, low-blockage-ratio microfluidic cylinders.6 They stud-
ied the configurations of one and two cylinders and how the influ-
ence on each other depends on Wi. Knowing how the instabilities
depend on the number of cylinders is especially relevant since a large
array of cylinders are often used as a model for porous media. Exper-
imentally, it was shown7 that a long micro-channel with an array
of obstacles shows instabilities in the case of non-Newtonian fluids.
More recently, an array of staggered cylinders, similar to a model for
porous media, were studied experimentally, see for example Ref. 8.
Numerically, when increasing the number of cylinders in the array,
the computational cost increases significantly, and thus, most of the
numerical studies with a multitude of cylinders are restricted to two
dimensions.

Another geometry where there exist pure-elastic instabilities
is the three-dimensional cross-slot geometry (and its variants such
as the “T” geometry). Low Reynolds number instabilities at exten-
sional points have been observed both experimentally and numeri-
cally,9–11 but the role of the third dimension in these instabilities is
not well understood. In Ref. 12, the authors numerically study the
three-dimensional flow behavior of Re ≤ 0.01. Later, the same group
studied experimentally the difference in having two different aspect
ratios in the cross-slot geometry.13

We have seen that there is significant evidence showing the
importance of the third dimension in the viscoelastic creeping
flow instabilities. Similar to the cross-slot geometry, i.e., showing
pure elastic instabilities at extensional points in two dimensions,
is the four-roll mill geometry. This geometry has been shown to
present instabilities but also mixing enhancement14–16 and is a some-
what simple geometry to do some analysis on the flow dynam-
ics.17,18 In this configuration, four-rollers create an extensional flow
at the center of the domain, which will drive elastic instabilities.
Here, we extend this geometry to a third dimension to understand
the effect of the third dimension on instabilities in the flow. In
this case, the domain is still periodic, but now in three dimen-
sions, and the background force is formed by cylinders instead
of circles. An examination of this extended geometry was pre-
viously discouraged by long-computation times, but our spectral
model allows for significant computational speed ups via Graph-
ics Processing Unit (GPU) acceleration of Fast Fourier Transforms
(FFTs), described in the Appendix. We focus our study on the
creation of an instability in the direction parallel to the cylinders,
which is novel with respect to the two-dimensional cases previously
studied.

II. FLUID MODELS AND NUMERICAL DETAILS
A. Stokes–Oldroyd-B model

For some of our simulations, we use the Oldroyd-B model of
a viscoelastic fluid at zero Reynolds number, with explicit polymer
stress diffusion, given in the dimensionless form by

Δu −∇p + β∇ ⋅ S = f, (1)

∇ ⋅ u = 0, (2)

∂tS + u ⋅ ∇S − (∇uS + S∇uT) + Wi−1(I − S) = νpΔS, (3)

where u is the fluid velocity, p the fluid pressure, and S the (sym-
metric) conformation tensor, a macroscopic average of the polymer
orientation and stretching that is related to the polymer stress tensor
by τp = β(S − I). The parameters, β, the non-dimensional poly-
mer stiffness, and Wi, the Weissenberg number, or non-dimensional
relaxation time, are defined by

β = GL
μU

, Wi = λU
L

, (4)

where μ is the solvent viscosity, λ the fluid relaxation time, G the
polymer elastic modulus, L = 2π the system size, and U the charac-
teristic velocity scale. Note that the Oldroyd-B model has νp = 0 in
Eq. (3). The polymer stress diffusion term, νpΔS, where νp = 0.001,
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is included in the right-hand side of Eq. (3) as numerical regular-
ization. We will make some comments on the applicability of these
results to the case without diffusion and varying resolution in the
end of Sec. V B.

The background force is given by

f =
⎛
⎜
⎝

2 sin x cos y
−2 cos x sin y

0

⎞
⎟
⎠

, (5)

which in a Newtonian Stokes flow (β = 0) corresponds to a four-roll
velocity field u = − 1

2 f. The Stokes solution sets the characteris-
tic (inverse) time scale U/L = 1. The quantity β ⋅Wi is the ratio of
the polymer viscosity to solvent viscosity, so that given a particu-
lar working fluid the ratio is fixed independent of the experimental
conditions. In our simulations β ⋅Wi = 0.5 is fixed. This value is
consistent with the fluids used in the experiments of dilute polymer
solutions with highly viscous solvents, Boger fluids (see, for example,
Ref. 9).

B. FENE-P model
To test the robustness of the instabilities, we found in the

Oldroyd-B model, we also use the FENE-P model,19 and in this case,
the advection is performed with the square root method. For the
square-root method,20 the model is reformulated in terms of the
(unique) positive symmetric square root b(x, t) of the conformation
tensor S(x, t), and the evolution of S given by Eq. (3) is replaced with

( ∂
∂t

+ u ⋅ ∇)b = b∇u + ab +
1

2Wi
((bT)

−1
+

b
1 − ∥b∥2/ℓ2 ) + νfΔb.

(6)
The time evolution produces the unique positive symmetric
square root of S, when a(x, t) is any antisymmetric matrix and
bT(x, 0)b(x, 0) = S(x, 0). The key observation is that by choosing
a(x, t) properly, it is possible to tune the evolution [Eq. (6)] (and
similarly in other models with an upper convective derivative) to
preserve the symmetry of b. Specifically, by choosing a symmetric
initial data bT(x, 0) = b(x, 0), the subsequent evolution will preserve
the symmetry. We fix the length-scale cut off to be ℓ2 = 400. We have
also added diffusion to the model, νf ≈ 0.024. The size of this diffu-
sion coefficient is comparable to the size of the square root of the
diffusion coefficient in the Oldroyd-B model.

C. Numerical details
The system Eqs. (1)–(3) [or Eq. (6) for the FENE-P simulations]

are solved in a 3D spatially periodic domain, [0, 2π)3. Figure 1 shows
a schematic of the domain with a background force.

We use a pseudo-spectral method and alternate solving of the
Stokes equations for a given polymer stress tensor and time-stepping
the advection equation for the conformation tensor in Fourier space
using a second order Adams–Bashforth–Crank–Nicholson method.
This is the same numerical setup used in Refs. 15 and 16, where
2D solutions were studied and the instabilities in the four-roll mill
problem were first observed and more recently in Ref. 21, where the
2D instabilities were described using proper orthogonal decomposi-
tion (POD) for both the Oldroyd-B and FENE-P models. We have
used the N3 = 1283 grid points, which give uniform grid spacing
Δx = 2π/N ≈ 0.05 and time step Δt = 0.005. To demonstrate the

FIG. 1. Schematic of the setup showing the background force. Periodic boundary
conditions are assumed in x, y, z.

accuracy of the spatial resolution, a refinement study is shown in
Fig. 2. This figure shows the relative error in the L2 norm of the
velocity and the L2 norm of the conformation tensor, relative to
the N = 192 solution of a typical case of Wi = 12. We see that the
error decays with increasing refinement and the error is on the 10−5

for the two finest reported grids. Note also that the time step was
chosen sufficiently small to obtain stability in the method but the
dynamics of the problem are very slow with periods on the order of
T = 100 or longer. Therefore, there are over 20 000 time steps in a
period.

To compute the solutions for Oldroyd-B, we start from a ran-
dom perturbation of the low Fourier modes from isotropic initial
polymer stress S = I. Specifically, we randomly perturb 25 of the
modes with frequencies smaller than 8 in all the directions. There-
fore, the polymer stress with the perturbation S̃ can be written
as S = I + S̃, where the diagonal terms of the perturbation are
computed by

S̃ii =
25

∑
k=1

Ck sin(ωkxx) sin(ωkyy) sin(ωkzz),

where x, y, and z are spatial coordinates,ωkx , ωky , and ωkz are ran-
domly selected from 1 to 8, and Ck is randomly selected in Fourier
space to be 0 < Ck < 103, equivalent to a small perturbation in the
physical space. Similarly, the off diagonal terms are defined in the
same way but with a different constant 0 < Ck < 102. That is,

S̃ij =
25

∑
k=1

Ck sin(ωkxx) sin(ωkyy) sin(ωkzz).

Adding all these perturbations lead to a perturbation of the order
0.01 of the identity in the physical space.

For FENE-P, we perform these simulations with initial data
for the conformation tensor taken from the Oldroyd-B solutions
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FIG. 2. Grid refinement study. Errors computed by comparing with the finest resolution N = 192, (a) L2 norm of the velocity, (b) L2 norm of the conformation tensor.

FIG. 3. Solution for Wi = 8 at (a) t = 500, (b) t = 675, (c) t = 1370, and (d) t = 1590. First row: Contours of azimuthal vorticity at z = π. Second row: contours of trS at z = π.
Third row: contours of trS at y = π/2. Fourth row: isosurfaces of azimuthal vorticity for the values of ±0.20. Multimedia views (a): https://doi.org/10.1063/1.5134927.1; (b):
https://doi.org/10.1063/1.5134927.2
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TABLE I. Categorization of flow states found with simulations of the Oldroyd-B model in 3D. Flow is forced with a 2D four-roll
mill that is constant in z.

Wi range # Flow transitions x, y dynamics z-dynamics

Wi ≤ 5 0 Steady 2 symmetries Steady and constant
Wi = 6 1 Steady 1 symmetry Steady and constant

Wi = 7 2 Quasi-steady 1 symmetry Steady and constantthen unstable

8 ≤Wi < 10 2 Unstable in 2D Temporal z-dependence
after 2D instability

10 ≤Wi ≤ 12 2 Unstable in 2D Temporal z-dependence
before 2D instability

both with and without instability in the z direction (with the inter-
mediate step of computing the symmetric square root to the stress
tensor).

The dynamics in this problem occur on very long time scales,
and to capture the slow dynamics, we run our simulations up to at
least t = 4000 and in some cases longer. The wide parameter searches
and long time evolutions made this exploration prohibitively expen-
sive in the past. Here, we use the GPU acceleration of Fast Fourier
Transforms (FFTs), which in our spectral model allows for sig-
nificant computational speed ups. The details are described in the
Appendix.

III. RESULTS FOR OLDROYD-B
In this section, we report on the results obtained using the

Oldroyd-B model when varying Wi ≤ 12. In particular, we want to
analyze in detail the cases that develop instability in the z-direction.
This instability is new with respect to the 2D cases analyzed previ-
ously in the literature.15,16,21

A. Cases with no z -instability (Wi < 8)
For Wi < 8, there is no instability in the third dimension. Note

that since the same 4-roll mill geometry is prescribed in the x, y plane
for all z, any flow dependence in the z-direction is what we refer to as
the fully three dimensional solution. The results for Wi < 8 remain
constant in z, which we refer to as purely 2D. These results are simi-
lar to the 2D results presented in previous papers.15,16,21 As in the 2D
simulations, here it was found that for Wi ≤ 5, the flows remain in a
steady symmetric state formed by 4-roll cylinders, the arrangement

of the flow is similar to that shown in Fig. 3(a) (Multimedia view).
As in the 2D simulations for Wi = 6, the flow becomes unstable in
the x, y plane and, in the long term, produces a flow that is steady
but asymmetric and remains constant in z. For 7 ≤Wi < 8, the flow
is still two-dimensional, but it has 2D instabilities that persist in time
and are temporally quasi-periodic with a dominant vortex changing
its position in the x, y plane. A summary of the different flow states
observed is given in Table I.

B. Three-dimensional instabilities
1. 2D instability followed by a 3D instability
(8 ≤Wi < 10)

The first three-dimensional instability was observed for Wi = 8.
At early times, the flow remains in a quasi-steady state with a
symmetric 4-roll pattern. See Fig. 3(a) (Multimedia view) for a solu-
tion at t = 500 before the onset of any time-dependent behavior. The
first row shows contours of the azimuthal vorticity at z = π, where
the 4-roll symmetric structure is clear. The second row shows trS
at the same time, and the typical regions of the concentrated stress,
large trS, can be observed. Note here that using horizontal cuts at the
center of the domain, it is useful to compare with the 2D simulations.
However, this is not sufficient to describe the three-dimensional
solution. Therefore, vertical cuts and 3D isosurfaces are presented
here to better describe the solution structure. Specifically, the third
row of Fig. 3 shows trS in a vertical plane, and the last row shows
isosurfaces of vorticity. With the vertical cuts and the isosurfaces, at
t = 500, we see that there is no three-dimensional behavior in the
flow (i.e., the solution is constant in z).

FIG. 4. Time evolution of the z-axis for trS at different x, y locations for Wi = 8: (a) x = 1.18 y = 3.53, (b) x = 1.18 y = 2.36, (c) x = 1.57 y = 0.39, (d) x = π/2 y = π/2, and
(e) x = π y = π.
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At later times, the flow undergoes a 2D instability, where it
loses the 4-roll symmetric pattern at around t = 550 and one of
the vortices becomes dominant. See, for example, Fig. 3(b) (Mul-
timedia view) for a solution at t = 675, where the top-right vortex

is dominant. The dominant vortex starts rotating to different posi-
tions (similar to the instability found in the 2D simulations of Wi = 7
described in Ref. 21). Then, around t = 1200, the flow becomes three-
dimensional perturbing the cylindrical isosurfaces. See, for example,

FIG. 5. Solution for Wi = 12 at (a) t = 140, (b) t = 205, (c) t = 230, (d) t = 445, (e) t = 640, (f) t = 890, (g) t = 1020, (h) t = 1140, (i) t = 1240, and (j) t = 1355. First and second
row: Contours of azimuthal vorticity at z = π. Third and fourth row: vertical contours of trS at y = π/2. Fifth and sixth row: 3D isosurfaces of azimuthal vorticity for the values
±0.20. Multimedia views (a): https://doi.org/10.1063/1.5134927.3; (b): https://doi.org/10.1063/1.5134927.4
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Fig. 3(c) for a solution at t = 1370. In this case, this 3D motion is
occurring simultaneously with the rotation of the dominant vortex
making the flow pattern difficult to describe. See Fig. 3(d) for a solu-
tion at t = 1590, where the dominant vortex is now in a different
quadrant and the vortex tube pinching is at different heights from
that shown in Fig. 3(c). For details of the temporal dependence, see
the movies (Multimedia view).

An interesting way to visualize the evolution of the z insta-
bility is to look at the time evolution of trS along the z-axis for a
fixed x, y location. While we have reviewed the evolution of the
z-axis in the whole x, y domain, we display only a few of these
time evolutions (see Fig. 4). We choose some singular points such
as the one at the center of a roll (x, y) = (π/2, π/2), as well as at
the extensional point in the center of the domain (x, y) = (π, π)
along with three more generic points at (x, y) = (1.18, 3.53), (x, y)
= (1.18, 2.36), and (x, y) = (1.57, 0.39), respectively. The rest of the
z, t slices show a consistent pattern with the ones presented here.
It is evident that for early times (t < 550) trS is constant in time
for each x, y position since at that stage the behavior of the flow is
quasi-steady. Later for 550 ≤ t ≤ 1200, the value of the trS change
with time but it is constant along the z axis, corresponding with
times where we have a two-dimensional instability with a rotating
dominant vortex. For the latest times (t > 1200), it is clear how
the flow is evolving with time, and it also presents a non-uniform
pattern along the z direction. In that range of times, both instabil-
ities are acting simultaneously. Note here that for all the studied
cases, the instability in the z-direction was always found to be a low
frequency instability, i.e., the created pattern in that area is peri-
odic in the z-direction with period 2π/n, where n is the frequency
number.

2. 3D instability first (Wi ≥ 10)
For cases with Wi ≥ 10, the flow develops first the z instabil-

ity before it becomes unstable in the x, y plane. Contour plots of
the vorticity, trS, vertical slices as well as isosurfaces for Wi = 12
are shown in Fig. 5. Initially, the flow remains a quasi-steady sym-
metric flow [Fig. 5(a) (Multimedia view)]. Then, around t = 205, a
three-dimensional flow instability appears. This instability is most
clear in the representations of 3D isosurfaces of vorticity, where
the original cylinder appears to be bending [Fig. 5(b) (Multimedia
view)]. This bending is even more evident later, e.g., in Fig. 5(c).
When looking at the details of the solutions, we can appreciate both
the bending and pinching effects of the cylinders [see Fig. 5(d)],
t = 445. It is important to remark here that at these times, still,

the four vortices have similar magnitude as is most clear in the 2D
representations at the central z plane. For further times, around
t = 775, one of the vortex starts being weaker and another one
stronger, as was typically found in the 2-dimensional time evo-
lutions. This effect leads to complex evolutions for further times,
where both the z and the x, y temporal evolutions are simultane-
ously creating a flow where there is bending in the vortex tubes,
pinching, and some vortex dominates the others. See sequence of
Figs. 5(f)–5(i).

The vertical cuts for Fig. 5 are also very useful to see how the z-
dependence evolves with time. For some cases, for example, Fig. 5(f),
an instability with frequency 3 is appreciable as cells in trS. At this
instant, each of the cells (corresponding to strong pinching) has
roughly the same size. This instability is also observable in the vor-
tex tube where the isosurface structure has similarly sized “beads” of
constant vorticity. Subsequently, these “beads” periodically increase
and decrease in size [see Fig. 5(g)]. For further times [Fig. 5(h)],
the pinching is not so strong in the dominant vortex creating a pat-
tern that looks more like tubes than cells (see the 3D vorticity plot).
Later, the tubes evolve to more asymmetric solutions in the z direc-
tion [Fig. 5(i)], and they recover a two-mode cell pattern [Fig. 5(j)].
This process of creating and destroying cells with spatial frequencies
2 or 3 continues in time (our simulations ran to t = 4000), cre-
ating complicated flow patterns. See also the movies (Multimedia
view).

Figure 6 shows the time evolution of trS as a function of z for
fixed x, y with Wi = 12 for different x, y locations. We see the flow
becoming unstable in the z direction around t = 205, developing
three-dimensional time-dependent behavior. Note that since there is
no significant displacement in the x and y directions at early times,
there are no large changes in trS values from one time to the next
(see the bottom section of Fig. 6 advancing in the vertical direc-
tion). At about t = 775, when the dominant vortex starts rotating,
the displacement visible in the time evolution of trS shows additional
features. We can see variations in trS when comparing values at the
same time and with different z, but also when comparing different
times and maintaining the same z. Together with Fig. 5, this paints
the picture that the regions of large stress are rotating along with the
dominant vortex around the four cylinders, but there is also varia-
tion along the z-axis of this rotation and the stress concentration.
When the dominant vortex is passing through a particular x, y posi-
tion, the value of trS is larger along the z-axis compared with those
times, when a weak vortex is passing that x, y position. This behavior
persists in time.

FIG. 6. Time evolution of the z-axis for trS at different x, y locations for Wi = 12: (a) x = 0.00 y = 1.96, (b) x = 0.39 y = 4.32, (c) x = 1.57 y = 2.75, (d) x = π/2 y = π/2, and (e)
x = π y = π.
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IV. FENE-P RESULTS

We found that there is no z-instability for Wi < 12 for
the FENE-P model, but we find the z-instability for Wi = 12.

In simulations with Wi = 12, the z-instability persists in time, but
now we find periodic temporal behavior. Different initial conditions
were used, all arriving at different final states that are periodic. In
these states, the z-instability is persistent, and there is no sign of the

FIG. 7. Time evolution azimuthal vorticity at z = π, trS at a vertical plane y = π/2, and 3D isosurfaces of azimuthal vorticity for the values ±0.20 with FENE-P Wi = 12. The first
group starting from the initial condition of Oldroyd-B solution for Wi = 8 at t = 4000. The second group starting from the initial condition of Oldroyd-B solution for Wi = 10 at t
= 100. (a) t, (b) t + 5, (c) t + 10, and (d) t + 15. Multimedia views: https://doi.org/10.1063/1.5134927.5; https://doi.org/10.1063/1.5134927.6; https://doi.org/10.1063/1.5134927.7;
https://doi.org/10.1063/1.5134927.8
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FIG. 8. Time evolution of the z-axis for trS at different x, y locations for Wi = 12, FENE-P. (a) x = 0.00 y = 1.18 IC1, (b) x = 1.18 y = 4.71 IC1, (c) x = 0.00 y = 2.75 IC2, and
(d) x = π/2 y = 3.93 IC2.

dominant vortex rotating around the four cylinders as in some of
the Oldroyd-B solutions. Figure 7 (Multimedia view) shows snap-
shots of the fully developed periodic flow for two solutions obtained
for Wi = 12 using the FENE-P model. These two different results
come from using two different initial conditions. The first initial
condition, hereafter IC1, uses an initial conformation tensor taken
from solutions to the Oldroyd-B model with Wi = 8 at t = 4000;
at this point, the 2D flow asymmetry and z-spatio-temporal behav-
ior has already begun. The second initial condition, hereafter IC2,
comes from an early solution with Wi = 10 and t = 200, where
the 2D symmetry break and z-dependence have not yet happened.
In Fig. 7 (Multimedia view), the first row of each group shows the
vorticity at z = π, over nearly a period where it is appreciable that
there is no rotation of the main vortex for any solution. The fol-
lowing rows display a vertical plane of trS passing through y = π/2.
The z-dependence shows 2 modes in the right-hand side of the IC1
solution. Finally, the 3D representations of the vorticity are shown,
where the z-instability and periodicity of the solutions can be seen by
the eye. Note here that the solutions are displayed in a time interval
of Δt = 5, which is not necessarily a fraction of the period of the solu-
tion; therefore, the first and last figures of each row are not exactly
equal. See also the movies (Multimedia view).

Figure 8 shows the time evolution of the z-axis for fixed x, y,
Wi = 12, and different initial conditions, demonstrating the periodic
temporal behavior. Note that the z positions were picked arbitrar-
ily, and other locations show similar behavior. When comparing the
FENE-P temporal behavior shown in Fig. 8 with the Oldroyd-B sim-
ulation in Fig. 6, we note that the FENE-P solutions show traveling
waves in the z-axis and no evidence of the rotating vortices was seen
in Oldroyd-B.

V. CHARACTERIZING THE INSTABILITY
IN THE z -DIRECTION

In order to characterize the instability in the z-direction, we
focus on an extensional point in the flow. Here, we focus on (x, y)
= (π, π) and examine the behavior of the stress and velocity at the
onset of the z-dependence. We will first examine the nonlinear sim-
ulations presented in Sec. III B 1 and Sec. III B 2 for Wi = 8, 12,
and then, we will consider a linearized problem that is related to the
transition we see for Wi = 12.

A. Onset of instability in nonlinear simulations
In Fig. 9(a), we plot the S11, S12, S22 components of the stress

tensor at the central stagnation point (x, y) = (π, π) at z = 0.88 (an
arbitrarily chosen z value) over time for the Wi = 8, Oldroyd-B simu-
lation. At t ≈ 1300, we note that these components of the stress tensor
begin to depend on z. This is correlated with the growth of the |S13|,
|S23|, |S33 − 1| components of the stress tensor deviating away from
the 2D solution, which has S13 = S23 = 0 and S33 = 1. We note that
all the components of the stress tensor were initially perturbed, but
these three components reach zero rapidly and remain zero as long
as the flow remains quasi-2D. The onset of the z-instability corre-
sponds with the growth of these stress components. This is seen as
well for Wi = 12, shown in Fig. 10. We plot the separate components
of S11, S12, S22 due to their different scales. In this case, the flow is
initially symmetric (in 2D and constant in z) as is seen in Fig. 5(a)
(after some transient due to the initial perturbation), and the flow
is steady until the S13, S23, S33 components become sufficiently large
and begin to affect the constant z-flow state. In Fig. 11, we plot the
temporal behavior of ∂zu, ∂zv, ∂xw, ∂yw at (x, y) = π, π for z = 0.88.
These are the components of the velocity gradient that are zero
when the flow is quasi-2D, and their growth corresponds to the
onset of the z-instability. We note that in these simulations, we have
sampled the data to plot with Δt = 5, which is rather coarse and
hence after the onset of the z-dependence, the time series is not well
resolved in the figure.

B. Linear perturbations
We have observed that an instability develops in the z-direction

for a range of sufficiently large Wi, and we noted that the onset of
z-dependence occurs both when the flow in x, y has already transi-
tioned to a quasi-periodic asymmetric state (the example above was
for Wi = 8) and when the x, y flow is steady (Wi = 12). The sim-
pler case to analyze is when the x, y flow is steady. Here, we examine
a numerical linearized flow where the background state is symmet-
ric in x, y and is steady. To obtain the 3D background solution, we
first evolve the Stokes–Oldroyd-B system [i.e., Eqs. (1)–(3)] in two
space dimensions to a symmetric steady state with a four-roll mill
background force. The arrangement of the flow is similar to that
shown in Fig. 3 at t = 500 (in 2D). We extend the 2D solutions to
3D by making them constant in z [renaming Sij(x, y) to S0

ij(x, y, z),
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FIG. 9. Data from Oldroyd-B simulation described in Sec. III B 1 for Wi = 8. (a) Temporal behavior of S11, S12, S22 components of the conformation tensor at (x, y) = (π, π)
for z = 0.88. (b) Temporal zoom of the data from (a) but plotted at 4 different z values between 0.88 and 3.14. (d) Temporal behavior of |S13|, |S23|, |S33 − 1| components of
the conformation tensor at (x, y) = (π, π) for z = 0.88; note the log scale on the y-axis.

FIG. 10. Data from Oldroyd-B simulation described in Sec. III B 2 for Wi = 12. Temporal behavior of (a) S11, (b) S12, and (c) S22 components of the conformation tensor at
(x, y) = (π, π) plotted at 4 different z values between 0.88 and 3.14. (c) Temporal behavior of |S13|, |S23|, |S33 − 1| components of the conformation tensor at (x, y) = (π, π)
for z = 0.88; note the log scale on the y-axis.
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FIG. 11. Data from Oldroyd-B simulation described in Secs. III B 1 and III B 2 for (a) Wi = 8 and (b) Wi = 12. Temporal behavior of ∂zu, ∂zv, ∂xw, ∂yw at (x, y) = (π, π) for
z = 0.88; note the log scale on the y-axis. These are components of the velocity gradient that are zero when there is no z-dependence in the flow.

and similarly for the velocity]. Then, we define the 3D conformation
tensor as

S0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S0
11 S0

12 0

S0
12 S0

22 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(7)

with the corresponding velocity

u0 =
⎡⎢⎢⎢⎢⎢⎣

u0

v0

0

⎤⎥⎥⎥⎥⎥⎦
. (8)

It is easy to see that (u0, S0) will solve Eqs. (1)–(3) in 3D, given the 2D
solution. Now, we consider perturbations around this background
(numerical) solution, i.e., let

S = S0 + S̃, and u = u0 + ũ, (9)

then the perturbation (ũ, S̃) satisfies

Δũ −∇p̃ + β∇ ⋅ S̃ = 0, (10)

∇ ⋅ ũ = 0, (11)

∂t S̃ + Wi−1S̃ − νΔS̃ = −N(u0, S̃) −N(ũ, S0) −N(ũ, S̃), (12)

where N(u, S) = u ⋅ ∇S − (∇uS + S∇uT) are all the quadratic
terms, and the nonlinear terms are given by N(ũ, S̃). We do not
have a closed form solution for (u0, S0) necessitating a numerical
study of the system. We numerically solve the linear system [i.e.,
Eqs. (10)–(12), but dropping the terms N(ũ, S̃)] from different ini-
tial conditions, and for different Wi, to see if small perturbations
grow or decay. Here, we demonstrate, by an example where we
perturb a single z-mode, that there is a linear instability in this sys-
tem beyond a critical Wi. We show that with an initial perturba-
tion only to a single mode in z of the 13-component of S̃, we have

growth of the perturbation for Wi = 12 and decay of the pertur-
bation for Wi = 8. This is not meant to be exhaustive but rather
to indicate that there is a linear instability in this system and also
to describe the behavior of the instability. A full analysis of the
numerical eigenvalues–eigenfunctions is beyond the scope of this
work.

We start with an initial perturbation of the form S̃13(x, y, z, 0)
= ε sin z, with ε = 0.001. Solving the Stokes equation with this initial
perturbation of the conformation tensor gives an initial perturba-
tion to the velocity of the form ũ(x, y, z, 0) = −εβ cos z, with ṽ, w̃ ≡ 0.
When we examine the solutions with these initial data, we find that
due to the structure of the equations, a “partition” of the z-axis is
created, where initially some of the stress components grow where
sin z ≈ 1 and some terms grow where cos z ≈ 1. This particular
initial condition seems to accentuate this phenomenon. We next
examine the structure of the equations that create/accentuate this
partition.

The terms that grow where sin z ≈ 1 are S̃13 and S̃23, along with
w̃ and ∂zũ,∂zṽ,∂xw̃,∂yw̃. We show contours of the (x, y) spatial
dependence of these terms in Figs. 12 and 13. For Wi = 12, the per-
turbation grows and contours of S̃13(x, y, z∗, te) and S̃23(x, y, z∗, te)
are shown in Figs. 12(a) and 12(b), where we choose te = 24.5 as a
sample early time point and z∗ = π/2. We note that the x, y struc-
ture of the S̃13 term [Fig. 12(a)] is largest at the extensional point at
(π, π) and extended along the y-axis, similar to the S0

11 component
of the background solution. However, the x, y structure of the S̃23
term, in Fig. 12(b), shows concentration along the axis of compres-
sion. As we see in Fig. 12(c), the instability has begun to grow, but
it is early in the evolution of the instability. All other components of
the conformation tensor are zero at z∗ to machine precision at this
time.

We also show components of the perturbation to the veloc-
ity gradients at this early time in Fig. 13. These four components,
∂zũ,∂zṽ,∂xw̃,∂yw̃ as well as w̃ (not shown) are the only non-zero
components of the velocity gradient at z∗, te. We write the evolution
of S̃13 and S̃23 out explicitly below as there is some simplification
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FIG. 12. Solutions from linear evolution of the Oldroyd-B system with Wi = 12. (a) Contours of S̃13(x, y,π/2, te) for te = 24.5, (b) contours of S̃23(x, y,π/2, te) for te = 24.5,
and (c) S̃13(π,π, z, t), for several locations 0 < z < π and Wi = 12.

due to the structure of the background solution. In other words, we
expand Eq. (12) as

∂t S̃13 +
1

Wi
S̃13 − ηΔS̃13 = − (u0∂x + v0∂y)S̃13 + ∂xw̃S0

11 + ∂yw̃S0
12

+ ∂zũ + ∂xu0S̃13 + ∂yu0S̃23, (13)

∂t S̃23 +
1

Wi
S̃23 − ηΔS̃23 = − (u0∂x + v0∂y)S̃23 + ∂xw̃S0

12 + ∂yw̃S0
22

+ ∂zṽ + ∂xv
0S̃13 + ∂yv

0S̃23, (14)

Examining Eqs. (13) and (14), we note that it is exactly the above
listed components of the velocity that are involved in the evolution

FIG. 13. Components of the veloc-
ity gradient at te = 24.5, Wi = 12.
(a) ∂z ũ(x, y, π/2, te), (b) ∂zṽ(x, y,
π/2, te), (c) ∂xw̃(x, y,π/2, te), and (d)
∂yw̃(x, y,π/2, te).
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of S̃13, S̃23 at z∗. This implies a linear evolution of the components
that has the form eαtf (x, y) sin z for short times. The real part of
α is positive for Wi = 12 and the imaginary part is nonzero. How-
ever, the Stokes equation couples all of the stress components in a
non-local manner and deriving exactly how α depends on the back-
ground solution is beyond the scope of this work. It is clear from
the x, y spatial dependence of the components shown in Figs. 12 and
13 that the spatial structure of these terms is non-trivial and also
relevant in the dynamics. In particular in Eq. (13), we see that the
background S0

11 solution is driving the growth of S̃13 via the term
∂xw̃S0

11.
The spatial structure of these stress components is very similar

(not shown) for Wi = 8 at early times, but the initial perturbation
shows decaying oscillations, indicating that Wi = 8 is linearly sta-
ble with respect to this initial condition. This is shown in Fig. 14,
where we display the evolution of the components above (π, π, π/2),
indicating that this perturbation decays for Wi = 8 [Figs. 14(a) and
14(b)] and grows for Wi = 12 [Figs. 14(c) and 14(d)].

We have simulated a range of Wi and have found that when
Wi ≈ 9.7, the flow becomes linearly unstable to this perturbation,

but we do not have a precise explanation for this value. Examining
Eq. (13), we can see a cartoon of a possible instability criteria where
the decay terms− 1

Wi S̃13+ηΔS̃13 must be overcome by the other terms
(for example) ∂xw̃S0

11 + ∂zũ + ∂xu0S̃13, but again the coupling via
Stokes equation and how w̃, ũ depend on S̃must be understood more
fully before this argument can be made precise and predictive of the
instability.

The evolution of the terms S̃11, S̃12, S̃22 in the conformation
tensor is given in Eqs. (15)–(17).

∂t S̃11 +
1

Wi
S̃11 − ηΔS̃11 = −(ũ∂x + ṽ∂y)S0

11 − (u0∂x + v0∂y)S̃11

+ 2(∂xũS0
11 + ∂yũS

0
12)

+ 2(∂xu0S̃11 + ∂yu0S̃12), (15)

∂t S̃12 +
1

Wi
S̃12 − ηΔS̃12 = −(ũ∂x + ṽ∂y)S0

12 − (u0∂x + v0∂y)S̃12

+ (∂xũ + ∂yṽ)S0
12 + ∂xṽS

0
11

+∂yũS
0
22 + ∂xv

0S̃11 + ∂yu0S̃22, (16)

FIG. 14. (a) and (b) Wi = 8, (c) and (d) Wi = 12. Temporal evolution of linear perturbation for ∣S̃13∣, ∣S̃23, ∣∂zũ∣, ∣∂z ṽ∣, ∣∂xw̃∣, ∣∂yw̃∣ at (π, π, π/2).
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∂t S̃22 +
1

Wi
S̃22 − ηΔS̃22 = −(ũ∂x + ṽ∂y)S0

22 − (u0∂x + v0∂y)S̃22

+ 2(∂xṽS0
12 + ∂yṽS

0
22)

+ 2(∂xv0S̃12 + ∂yv
0S̃22). (17)

All these terms have z-dependence like cos z on short times, and
this is due to the fact that at t = 0, ũ(x, y, z, 0) = −εβ cos z,
which introduces the z-dependence into all of these terms. How-
ever, the growth of the instability does not appear to be tied to
these terms because these terms are effectively acting only in the x, y
plane.

Finally, the S̃33 component evolves according to the following
equation:

∂t S̃33 +
1

Wi
S̃33 − ηΔS̃33 = −(u0∂x + v0∂y)S̃33 + 2∂zw̃. (18)

As S̃13 becomes spatially dependent, the z-dependence enters w̃
via the Stokes equation, and hence (matching derivatives) w̃
will depend on z as S̃13 via sin z, and hence ∂zw̃ ∼ cos z.

The growth of S̃33 is essential to the linear instability, and this
is where a criterion for instability is most likely to be found.
If we can analytically understand the relationship between ∂zw̃
and S̃33, then a criterion related to Wi seems likely to follow
this.

The perturbative terms in Eqs. (15)–(18) are all largest (in abso-
lute value) at z = 0, consistent with the z-structure ∼cos z, and this is
precisely where the previous terms (S̃13, S̃23, w̃,∂zũ,∂zṽ,∂xw̃,∂yw̃)
are zero (to machine precision). In Fig. 15 we show the evolution of
these components at (π, π, 0) for Wi = 8 and Wi = 12. Again, we find
that the perturbation decays for Wi = 8 [(a) and (b)] and grows for
Wi = 12 [(c) and (d)].

We find that the linear equations can be run on a coarse mesh,
i.e., N = 32 grid points in each dimension, with results consistent
with high resolution simulations, i.e., predicting that the flow is lin-
early stable for Wi = 8 and unstable for Wi = 12. The stress diffusion
is also not necessary in these calculations and the linear simulations
with zero stress diffusion still show stability for Wi = 8 and instability
for Wi = 12.

FIG. 15. (a) and (b) Wi = 8, (c) and (d) Wi = 12. Temporal evolution of linear perturbation for ∣S̃11∣, ∣S̃12∣, ∣S̃22∣, ∣S̃33∣, ∣∂xũ∣, ∣∂yũ∣, ∣∂xṽ∣, ∣∂yṽ∣, ∣∂zw̃∣ at (π, π, 0).
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VI. CONCLUSION
We have analyzed the dynamics for a viscoelastic fluid at zero

Reynolds number in a 3D periodic geometry with a 3D 4-roll mill
background force. For small Wi, the flow is steady or has a tempo-
ral behavior confined to the x, y directions. However, for sufficiently
large Wi, three-dimensional instabilities (instabilities in the z direc-
tion) occur. This three-dimensional instability is maintained in time
and robust in the sense that it was found with both Oldroyd-B and
FENE-P models, using different initial conditions and using dif-
ferent simulation techniques (i.e., both usual formulation and the
square root formulation).

For the solutions analyzed using the Oldroyd-B model with
8 ≤ Wi < 10, the flow develops x, y temporal behavior first, with a
dominant vortex rotating around the four quarters, and then the z
instability emerges creating three-dimensional behavior, where both
instabilities are acting simultaneously. However, for Wi > 10, the z-
instability comes first, with an x, y instability occurring later. For
solutions using the FENE-P model, we see the z instability but a sim-
pler periodic state evolves with no significant x, y instability, nor any
single dominant vortex.

Finally, we analyzed a particular initial condition that leads to
a linear instability in the z direction beyond a critical Wi. This lin-
ear instability arises when the background flow is constant in z, but
highly concentrated along the axis of extension, indicating that it is
instability for the extensional flow geometry. This is a complicated
system to analyze for the 4-roll mill solution at zero Reynolds num-
ber because the Stokes equation instantly couples all components of
the velocity gradient with the stress tensor. The demonstration of a
linear instability from the extensional background flow is a first step
in understanding this three-dimensional instability.
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APPENDIX: IMPLEMENTATION DETAILS USING GPU
Our simulations require several Fast Fourier Transforms (FFT)

and inverses (IFFT) in each iteration. This is because our model
evolves entirely in Fourier space, which requires that all nonlinear
terms in the upper-convected derivative are handled by perform-
ing the multiplications in real space and, subsequently, inverting the
product to advect in Fourier space, with appropriate filtering. In pre-
vious, non-parallel implementations, it was found that computing
FFTs (from now on, used as a generalization of FFT and IFFT) in
long datasets was the largest bottleneck with regard to the runtime.
For this reason, it was decided to parallelize the code, so it could run
on a Graphics Processing Unit (GPU). Although a Central Process-
ing Unit (CPU) can perform each specific addition/multiplication
several times faster than a GPU, a GPU can perform between hun-
dreds and thousands of these operations at the same time. In partic-
ular, GPUs are specialized for divide-and-conquer algorithms, such
as FFT, allowing speeds ups beyond those available from CPUs or
even multi-core CPUs.

GPU aided computation is already a well known and well-
documented tool, and many programming languages/platforms

TABLE II. 2D simulation speed ups on a run for 0 ≤ t ≤ 5.

Resolution CPU (s) GPU (s) Speed-up

128 × 128 11.2275 3.551 22 ×3.166
256 × 256 98.8118 10.015 7 ×9.866
512 × 512 1904.8 42.148 5 ×45.193

geared toward computational endeavors have built-in Application
Programming Interfaces (APIs), which directly interact with GPUs.
In particular, the recent versions of MATLAB have built-in sup-
port for GPU computing, in a form resembling the typical MATLAB
language/design philosophy. MATLAB’s GPU computing API auto-
matically calibrates several of MATLAB’s native functions to most
optimally run on the GPU (e.g., FFT and IFFT). Furthermore, MAT-
LAB’s language natively has N-D matrix data-structures with their
corresponding operations, and its GPU computing API smoothly
accommodates these structures with minimal alterations from the
user. For these reasons, we developed a GPU implementation of our
spectral code using MATLAB.

We provide a few more details for the interested reader. To
speed up the calculations, repetitively calculated or defined variables
were initialized at the start and stored on the GPU preemptively. Any
quantities to be computed on the GPU were computed from quanti-
ties/variables already stored on the GPU. Even simple matrices, such
as the identity, were stored on the GPU at the start of the program.
This was done for two reasons. First, CPU to GPU data transfer rates
are slow relative to the normal internal CPU data transfer rates. Sec-
ond, GPU memory allocation is considerably slower than the CPU
memory allocation. Furthermore, stressing awareness of the previ-
ous issue, GPUs have a small amount of onboard memory compared
to a CPU. For example, the specific GPUs used in the implementa-
tion for this paper has only about 8 GB of available memory, mean-
ing that only that much data can be initialized on the GPU. Last,
GPUs have a smaller memory bandwidth. In other words, perform-
ing operations on larger datasets is slower than the trends established
on smaller datasets would suggest. In other words, there are dimin-
ishing returns in performance beyond a certain threshold amount
of data. The significance of this issue varies significantly between
different models of GPUs.

Overall, the GPU implementation of our simulations signif-
icantly outperformed the CPU implementation, as illustrated in
Table II. We performed our speed up tests on the 2D problem so
that we could use fine grids. This was also to test the accuracy of the
code by comparing with the CPU version. The finest grid 5122 = 643

showed a 45× speed up for the simulation. These types of speed ups
allowed us to run our long-time simulations on grids 1283.
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