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Influence of Early Lithification on
Late Diagenesis of Microbialites:
Insights from d18O Compositions of
Upper Cambrian Carbonate
Deposits from the Southern
Appalachians

BOSILJKA GLUMAC
Department of Geology, Smith College, Northampton, MA 01063

PALAIOS, 2001, V. 16, p. 593–600

This paper documents a difference in isotopic compositions
between Upper Cambrian microbial and non-microbial mi-
critic deposits and proposes implications for diagenesis of
calcimicrobial deposits. The d18O values (210.98 to 28.71;
average 29.88 ‰ VPDB) of calcimicrite comprising shallow
subtidal microbialites from the southern Appalachians are
more negative than: (1) the calcimicrite from associated
subtidal non-microbial deposits (28.98 to 27.16; average
27.82), suggesting a different diagenetic history; and (2) es-
timates of Late Cambrian marine calcite values (25 to 23
‰), indicating postdepositional modifications. Early dia-
genetic calcification of microbial deposits promoted the for-
mation of growth cavities and borings rimmed with marine
fibrous and prismatic calcite cement. Some of the voids re-
mained open and provided pathways for fluids during later
diagenesis. The microbial deposits, therefore, experienced
more pronounced diagenetic alteration than the less porous
non-microbial micritic deposits. The d18O compositions pro-
vided invaluable insights into the influence of early lithifi-
cation on the later diagenesis of microbialites and into the
processes that can result in poor preservation of syndeposi-
tional marine isotope signatures in these deposits.

INTRODUCTION

Microbial carbonate deposits are abundant in the rock
record and represent an important source of information
on local and global biogeochemical processes that operated
in the past. Yet it is currently unknown whether and when
microbial deposits might preserve syndepositional seawa-
ter chemical signals, and which processes influence the
preservation of these signals. This paper contributes in-
sights into the importance of evaluating the potential of
microbial deposits to preserve syndepositional isotopic sig-
natures, and provides an explanation for some factors that
can lead to poor retention of marine isotopic signals.

Glumac and Walker (1997) suggested that subtidal
Cambrian calcified microbialites, such as thrombolites
and digitate stromatolites, may have good potential for
preserving a geochemical signature of syndepositionaland
early diagenetic conditions. To evaluate the validity of this
hypothesis, the current paper presents the results of a sta-
ble isotope study of these Cambrian microbial carbonate
deposits and associated non-microbial deposits from the
southern Appalachians. In particular, this paper: (1) in-
vestigates the causes for the differing styles of diagenesis

between microbial calcimicrite and associated non-micro-
bial deposits; (2) explores the influence of early diagenesis
on the late diagenetic modification of microbialites; and (3)
establishes some approaches to identifying and explaining
preferential postdepositional alteration of specific types of
microbial carbonate deposits.

This study focuses on five outcrops of Upper Cambrian
deposits that include the uppermost Nolichucky Shale and
the Maynardville Formation (Conasauga Group) and the
lower part of the Copper Ridge Dolomite (Knox Group;
Fig. 1). These strata crop out within several imbricated,
NE–SW trending thrust blocks of the Valley and Ridge
province in northeastern Tennessee (Fig. 1). During the
Cambrian, this area was a passive continental margin
where a large carbonate platform was separated from the
exposed craton to the west by the Conasauga intrashelf
shale basin. Alternating shale and carbonate deposits of
the Conasauga Group were deposited along the western
platform margin. These deposits are overlain by peritidal
carbonates of the Knox Group that were deposited on a
broad carbonate shelf established by platform prograda-
tion in a westward direction over the infilled intrashelf ba-
sin (Glumac and Walker, 2000).

METHODS

Samples for stable isotope analysis were selected by
careful petrographic examination. Special care was exer-
cised to sample homogenous micrite without skeletal frag-
ments, cement, or evidence for extensive recrystallization.
Examination of stained thin sections identified areas with
non-ferroan, aphanocrystalline to fine-crystalline calcimi-
crite and fabric retentive dolomicrite to sample, and areas
with ferroan microsparite and dolomicrosparite to avoid.
Thin sections also were examined using a Citl Cold Cath-
ode Luminescence 8200 mk3 microscope under 10–12 kV
voltage, 150–180 mA beam current, and 180–200 millitorr
chamber pressure. Areas with a dark, non-luminescent to
dark-dull luminescent matrix were sampled. Areas with
patchy distribution of bright luminescence and with
brightly luminescent crystals scattered in the matrix were
avoided. Samples for isotopic analyses were collected by
drilling individual carbonate components from polished
thin-section billets using a microscope-mounted micro-
drill. Samples of micritic matrix from microbial deposits
and various carbonate cements ranged in size from 2 to 5
mg, whereas samples of dolomicrite (microbial and non-
microbial) and non-microbial micrite were as large as 10
mg. Samples for oxygen and carbon isotope analysis were
heated at 3808C for 1 hour, reacted with 100% H3PO4 at
258C for 24 hours (calcite) or 48 hours (dolomite), and an-
alyzed on a VG-903 isotope ratio mass spectrometer. Re-
producibility of results (61s) was better than 0.2 ‰.

MICROBIAL DEPOSITS

The occurrence and petrography of the Upper Cambrian
microbial deposits from the southern Appalachians are de-
scribed and illustrated in detail in Glumac and Walker
(1997). The following sections contain a brief description
and interpretation of the origin of these deposits.
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594 GLUMAC

FIGURE 1—Location of outcrops in the southern Appalachians of
northeastern Tennessee. Outcrop key: TZ–Tazewell; RR–River Ridge;
TH–Thorn Hill; FG–Flat Gap; LV–Lee Valley.

FIGURE 2—Representative stratigraphic column of Upper Cambrian
strata measured at the Lee Valley locality. See Figure 1 for outcrop
location and Figure 3 for additional symbol explanations.

Description

The examined Upper Cambrian strata consist of a lower
subtidal and an upper peritidal facies succession (Figs. 2,
3). The subtidal succession contains thrombolitic bio-
herms, whereas the peritidal succession contains a variety
of microbial deposits including: microbial laminites (strat-
iform stromatolites), domal stromatolites, columnar stro-
matolites, digitate stromatolites, and thrombolites (Fig.
2).

The subtidal deposits are dominated by ribbon rocks
composed of centimeter-scale, alternating limestone and
argillaceous layers (shale, siltstone, or silty dolostone;
Figs. 2, 3). Samples of non-microbial calcimicrite were col-
lected mainly from the micrite-rich, subtidal limestone
layers of ribbon rocks (Fig. 2). The micritic limestone lay-
ers commonly are burrow-mottled. Burrows have diffuse
walls and are infilled with ferroan microsparite and fram-
boidal pyrite. Intergranular space of subtidal grainstones
is occluded by fibrous, prismatic, and equant calcite ce-
ments. A gradual vertical change from the ribbon rocks to
microbial laminites marks the transition into the peritidal
succession (Fig. 2). Peritidal deposits are extensively do-
lomitized. Centimeter-scale couplets or mechanical lami-
nites with scoured bases, intraclast-, ooid- or peloid-rich
lower parts, and micritic tops are the predominant litho-
facies (Figs. 2, 3). Samples of dolomicritic matrix came
from the couplets, and from the interbedded mudstone
layers and microbial deposits (Fig. 2). The most common
types of pores in the peritidal deposits are desiccation and
evaporite-dissolution voids, and rare burrows occluded
with dolomite and equant calcite cements. Microbial de-
posits also have common fenestrae filled with dolomite ce-
ment.

Thrombolites overlie ooid grainstone and flat-pebble
conglomerate, and underlie shale and ribbon rocks of the
subtidal succession (Fig. 2). In the peritidal succession,
thrombolites are interbedded with coarse- to medium-
grained couplets, and overlain by digitate stromatolites
and other microbial deposits (Fig. 2). Thrombolites com-
prise bioherms (up to about 1 m thick), characterized by a
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FIGURE 3—A summary of characteristic features and environmental interpretations for the lithofacies present. Symbols correspond to those
in Figure 2.

clotted fabric made up of patches or mesoclots of dark,
dense micrite. Some mesoclots have well-preserved cal-
cimicrobial forms of Renalcis, Epiphyton, and Girvanella
(Glumac and Walker, 1997). Thrombolites contain growth
cavities (Fig. 4A) and borings (Fig. 4B). These voids are
floored with geopetal sediment, rimmed with fibrous and
prismatic calcite cement, and occluded with equant cal-
cite. Thrombolites also have voids of uncertain origin (dis-
solution-enlarged?) occluded with equant calcite (Fig. 4C)
and rare pore-central saddle dolomite. Digitate stromato-
lites form bioherms and biostromes (up to 1.5 m thick) that
are characterized by branching columns of low relief com-
posed of crudely laminated, micritic, pelleted (clotted) fab-
ric, and are surrounded by ooid-peloidal packstone/grain-
stone. Digitate stromatolites and thrombolites have simi-
lar types of pores and occluding cements (Fig. 4), and com-
pose the rare lithofacies in the peritidal succession that
were not extensively dolomitized, even though they are in-
terbedded with completely dolomitized deposits (Glumac
and Walker, 1997).

Origin

The patterns of selective dolomitization of microbial de-
posits and their association with non-microbial deposits
correlate with microbialite origin (Glumac and Walker,
1997). Pervasively dolomitized columnar, domal, and strat-
iform stromatolites formed by the trapping of particles in
restricted intertidal and supratidal environments of a semi-
arid tidal flat (Fig. 3), as indicated by the presence of desic-
cation cracks, evaporite-mineral pseudomorphs, and the
similarity with modern agglutinated stromatolites (Logan
et al., 1974; Playford and Cockbain, 1976). The absence of
preserved cyanobacterial forms suggests that calcification
of cyanobacteria was not prominent during the formation of
these deposits. In the absence of processes that promote
early calcification, micrite trapped on microbial substrates
was susceptible to early diagenetic dolomitization. In con-
trast, non-dolomitized digitate stromatolites and thrombol-
ites formed broad, low-relief mounds in less restricted, agi-
tated, shallow subtidal environments (Fig. 3). This is sup-
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596 GLUMAC

FIGURE 4—Plain-light photomicrographs of common types of pores
and occluding cement in thrombolites and digitate stromatolites. (A)
Microbial deposit with a growth cavity rimmed with turbid fibrous cal-
cite cement and occluded with less turbid equant calcite. Scale bar 5
0.5 mm. (B) Boring filled with geopetal sediment and turbid fibrous to
prismatic calcite cement. Scale bar 5 1 mm. (C) Void of uncertain
origin (dissolution-enlarged?) occluded with equant calcite cement.
Scale bar 5 0.5 mm.

FIGURE 5—Comparison of stable isotope compositions of microbial
and non-microbial calcimicrite and dolomicrite.

ported by the absence of exposure indicators, the presence
of bioturbation, and the association with skeletal frag-
ments, ooids, peloids, and intraclasts. The fact that digitate
stromatolites and thrombolites commonly are surrounded
by completely dolomitized deposits suggests that early lith-
ification of these microbial deposits may have reduced their
susceptibility to dolomitization (Glumac and Walker,1997).
Early diagenetic lithification of these microbial deposits

may have been promoted, in part, by calcification of cyano-
bacteria, as suggested by the presence of Renalcis, Epiphy-
ton, and Girvanella (Riding, 1975; Pratt, 1984; Kennard
and James, 1986). Calcification also may have been related
to heterothrophic bacterial decomposition and sulfate-re-
ducing processes (Chafetz and Buczynski, 1992; Visscher et
al., 1998; Reid et al., 2000; Riding, 2000). The absence of
coarse-grained agglutinated particles within microbial ‘‘dig-
its’’ and mesoclots substantiates the formation of digitate
stromatolites and thrombolites through calcification by cy-
anobacteria and bacteria. Early lithification of thrombolites
and digitate stromatolites is further indicated by well-pre-
served borings and growth cavities rimmed with marine fi-
brous and prismatic calcite cements (Fig. 4A,B).

ISOTOPIC COMPOSITIONS OF MICROBIAL
DEPOSITS

Observations

The d18O compositions of dolomicrite from the peritidal
microbial deposits that formed by sediment trapping
(27.77 to 26.21; average 26.70 ‰ VPDB) are similar to
dolomicrite from the associated non-microbial deposits
(27.88 to 25.86; average 26.72; Fig. 5; Table 1). In con-
trast, the d18O values of calcimicrite from the shallow sub-
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TABLE 1—Stable isotope data for dolomicritic matrix samples.

‰ VPDB

Locali-
ty Source d18O d13C

Dolomicritic matrix of microbial deposits
TZ
TH
TH
TH
TH
TH
TH
TH
FG
FG
LV

Stratiform stromatolite
Stratiform stromatolite
Stratiform stromatolite
Domal stromatolite
Domal stromatolite
Stratiform stromatolite
Domal stromatolite
Domal stromatolite
Stratiform stromatolite
Domal stromatolite
Stratiform stromatolite

26.29
26.58
26.21
26.78
26.55
26.37
26.42
27.77
26.85
26.84
27.03

4.38
3.90
4.01
3.55
2.94
2.72
2.36
0.67
3.32
3.08
3.47

Dolomicritic matrix of non-microbial deposits
TZ
TZ
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
FG
FG
FG
LV

Fine-grained couplets
Fine-grained couplets
Dolomitized mudstone
Coarse-grained couplets
Fine-grained couplets
Fine-grained couplets
Fine- to medium-grained couplets
Fine-grained couplets
Dolomitized mudstone
Dolomitized mudstone
Dolomicritic intraclast
Dolomicritic intraclast
Fine-grained couplets
Dolomitized mudstone
Dolomitized mudstone/fine couplets
Medium-grained couplets
Fine- to medium-grained couplets
Dolomitized mudstone
Fine- to medium-grained couplets
Medium-grained couplets
Medium-grained couplets
Medium-grained couplets
Mudstone to fine-grained couplets
Fine-grained couplets to mudstone
Mudstone to fine-grained couplets
Fine-grained couplets
Fine-grained couplets
Coarse-grained couplets
Fine-grained couplets
Fine-grained couplets
Mudstone to fine-grained couplets
Fine- to medium-grained couplets
Fine-grained couplets
Burrowed fine-grained couplets
Dolomitized mudstone
Dolomitized mudstone
Dolomitized mudstone
Medium- to coarse-grained couplets

26.73
26.22
26.41
26.76
27.02
27.41
27.07
27.05
27.88
27.29
27.77
27.67
27.72
26.82
26.12
26.96
26.39
26.59
25.86
26.35
25.99
26.99
26.87
26.18
26.24
26.33
26.68
25.99
26.38
27.44
26.43
27.13
26.36
26.10
27.33
26.42
26.49
26.10

2.72
3.69
3.25
2.76
2.72
2.46
3.03
3.01
3.25
3.28
3.25
3.18
3.08
3.68
3.06
2.88
2.96
3.14
3.43
3.82
3.80
3.61
3.76
3.40
4.08
3.83
3.11
2.65
2.20
2.42
3.71
2.77
1.42
0.32
3.45
3.21
3.21
3.73

TABLE 2—Stable isotope data for calcimicritic matrix samples.

‰ VPDB

Locali-
ty Source d18O d13C

Calcimicritic matrix of microbial deposits
TZ
TZ
RR
RR
TH
FG
FG

Thrombolitic mesoclots
Thrombolitic mesoclots
Thrombolite to digitate stromatolite
Digitate stromatolite
Digitate stromatolite
Digitate stromatolite
Digitate stromatolite

29.06
28.71

210.74
210.98
29.52

210.39
29.74

3.67
3.47
2.44
2.29
1.53
2.58
2.48

Calcimicritic matrix of non-microbial deposits
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
FG

Ribbon rock (intraclasts)
Ribbon rock (mudstone)
Ribbon rock (burrowed mudstone)
Ribbon rock (laminated mudstone)
Ribbon rock (mudstone)
Ribbon rock (packstone)
Ribbon rock (intraclasts)
Ribbon rock (mudstone)
Ribbon rock (peloidal mudstone)
Ribbon rock (wackestone/packstone)
Ribbon rock (mudstone)
Ribbon rock (mudstone)
Ribbon rock (peloidal mudstone)
Ribbon rock (mudstone)
Ribbon rock (mudstone)
Ribbon rock (mudstone)
Ribbon rock (mudstone)
Ribbon rock (mudstone/packstone)
Ribbon rock (burrowed mudstone)
Ribbon rock (mudstone)

28.98
28.84
27.90
27.48
27.43
28.03
27.87
27.79
27.51
27.43
27.77
27.76
28.14
27.48
27.16
27.58
27.80
27.63
27.88
27.98

1.98
2.54
3.01
1.82
1.66
1.29
0.49
1.19
1.53
1.13
2.92
1.71
3.18
3.21
3.54
4.09
2.29
3.52
3.80
3.06

tidal microbial deposits that formed by cyanobacterial and
bacterial calcification (210.98 to 28.71; average 29.88)
are more negative than calcimicrite from the non-micro-
bial deposits (28.98 to 27.16; average 27.82; Fig. 5; Table
2), and estimates for Late Cambrian marine calcites (25
to 23 ‰; Lohmann and Walker, 1989; Gao and Land,
1991). The d18O values of microbial calcimicrite overlap
with fibrous to prismatic (210.16 to 27.48; average
28.92), equant (210.65 to 28.83; average 29.53), ferroan
equant (211.00 to 29.07; average 29.87), and fracture-oc-

cluding equant calcite cements (212.92 to 29.38; average
211.22; Fig. 6; Table 3). The d13C values of the microbial
deposits (0.67 to 4.38 ‰ VPDB) and all other components
vary greatly (Figs. 5, 6; Tables 1–3).

Interpretations and Implications

A wide range of determined d13C compositions reflects a
short-term secular increase in the 13C/12C ratio of Late
Cambrian (Steptoean) seawater by 4–5‰ (Glumac and
Walker, 1998). The secular nature of this excursion is con-
firmed by studies of coeval successions in the Great Basin,
Kazakhstan, and China (Brasier, 1993; Saltzman et al.,
1998). The d13C values of individual samples depend main-
ly on the stratigraphic position of the sample, with possi-
ble effects of variations in environmental conditions and
diagenesis in the presence of degrading organic matter
(e.g., Patterson and Walter, 1994; Andrews et al., 1997)
superimposed on the secular marine 13C/12C trend (Glu-
mac and Walker, 1998).

All calcimicritic samples have d18O compositions at least
3 to 4 ‰ more negative than estimated Late Cambrian
marine calcite, with the d18O values of microbial micrite
being more negative than those of non-microbial micrite
(Fig. 5). These observations could reflect: (1) temperature
or salinity variations within the environment of deposi-
tion; (2) formation of microbial deposits by non-equilibri-
um precipitation due to vital effects; or (3) a greater degree
of diagenetic modification of microbial deposits with re-
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FIGURE 6—Comparison of stable isotope compositions of microbial
and non-microbial calcimicrite with carbonate cements (compositional
fields from data on Fig. 5).

TABLE 3—Stable isotope data for calcite cement samples.

‰ VPDB

Locali-
ty Source (lithology; porosity type) d18O d13C

Fibrous to prismatic calcite cement
TZ
TZ
TZ
TZ
TZ
TZ
RR
RR
RR
RR
RR
RR
TH
TH
TH
FG
LV

Ribbon rock; intergranular
Ribbon rock; intergranular
Peloidal grainstone; intergranular
Peloidal pack/grainstone; burrows
Peloidal pack/grainstone; intergranular
Peloidal pack/grainstone; burrows
Thrombolite; framework
Thrombolite; borings
Thrombolite; borings
Thrombolite; borings
Thrombolite; borings
Thrombolite; borings
Flat pebble conglomerate; intergranular
Flat pebble conglomerate; intergranular
Coarse-grained couplets; intergranular
Grainstone; intergranular and shelter
Intraclast-peloid grainstone; intergran.

28.62
28.33
29.16
29.38
29.08
28.18
28.37

210.13
29.94
29.18
28.38
29.70
27.86
27.77
29.96

210.16
27.48

4.51
4.89
4.60
4.35
4.27
3.93
3.01
2.58
2.84
3.63
3.75
2.47
2.88
2.97
2.65
2.31
3.51

Equant calcite cement
TZ
TZ
TZ
TZ
TZ
RR
TH
FG
FG
FG
LV

Ribbon rock; intergranular
Ribbon rock; intergranular
Stratiform stromatolite; burrows
Peloidal pack/grainstone; dissolution
Peloidal pack/grainstone; burrows
Thrombolite; borings
Digitate stromatolite; framework
Ribbon rock; burrow(?)/synaeresis(?)
Mechanical couplets; burrows
Thrombolite; borings
Thrombolite; borings

210.16
28.88
28.83
29.03

210.14
29.75
29.84
28.85

210.65
29.28
29.43

2.61
4.72
3.80
4.36
3.25
1.24
1.54
2.71
1.65
2.50
2.00

Ferroan equant calcite cement
TZ
RR
RR
TH
TH
TH
FG
FG

Grainstone; burrows
Stratiform stromatolite; burrows
Thrombolite; framework
Ribbon rock; burrow(?)
Ribbon rock; burrow(?)
Stratiform stromatolite; burrows
Couplets; burrows
Thrombolite; borings

210.69
29.28
29.44
29.68
29.07
29.69

211.00
210.15

2.42
3.19
2.75
2.27
2.70
2.69
1.97
2.23

Equant calcite cement in fractures (F 5 ferroan)
TZ
RR
RR
RR
RR
RR
RR
RR
FG
LV

Thrombolite (F)
Ribbon rock (F)
Skeletal packstone/grainstone (F)
Ribbon rock (F)
Fine-grained couplets to mudstone
Extensively deformed layer
Stratiform stromatolite
Stratiform stromatolite (F)
Dolomitized mudstone (F)
Ribbon rock (F)

212.92
211.79
210.23
211.47
210.34
211.51
211.42
210.62
212.50
29.38

3.20
2.48
2.07
2.09
2.08
0.70
3.29
3.10
2.19
1.64

spect to non-microbial deposits. Calcimicritic microbial
and non-microbial deposits most likely formed under a
similar temperature and salinity regime because these de-
posits formed in similar shallow subtidal settings where
microbes were forming low-relief mounds (Glumac and
Walker, 1997). The presence of calcified thrombolites and
digitate stromatolites interbedded with dolomitized peri-
tidal deposits with common evaporite-mineral pseudo-
morphs suggests that the diagenesis of these microbial de-
posits may have been influenced by hypersaline fluids. If
this were the case, the compositions of these microbial de-
posits would be relatively enriched in 18O rather than de-
pleted (Fig. 5). Thus, temperature and salinity variations
within the depositional environment cannot account for
the observed differences in d18O values (Fig. 5). Compari-
sons between microbial deposits and marine cements by
other researchers suggest that there are no measurable vi-
tal effects in Proterozoic and Lower Cambrian microbial
deposits, and that Cambrian calcimicrobes precipitated
carbonate in equilibrium with ambient seawater in the ab-
sence of vital effects (Fairchild et al., 1990; Surge et al.,
1997). Therefore, diagenetic alteration is the most plausi-
ble explanation for the observed d18O values.

Early diagenetic calcification enhanced the formation
and preservation of growth cavities and borings in micro-
bial calcimicritic deposits (Fig. 4A,B). The pores that were
not occluded completely during early marine diagenesis
provided pathways for the migration of fluids during later
diagenesis. This is suggested by non-marine equant cal-
cite cement in the centers of larger pores (Fig. 4A), by dis-
solution modification and occlusion of pores with equant
calcite (Fig. 4C), and saddle dolomite cements of burial or-
igin. The d18O values of shallow subtidal microbial calcim-
icrite reflect diagenetic alteration by: (1) meteoric waters
during subaerial exposure of overlying peritidal deposits
(Fig. 2); and/or (2) burial fluids at elevated temperature—

the Upper Cambrian deposits from the study area were
buried to a depth of about 4.5 km (Glumac, 1997). The d18O
composition of microbial calcimicrite overlaps with: (1) fi-
brous and prismatic calcite cements that are morphologi-
cally similar to documented occurrences of marine cement,
but have d18O compositions indicative of diagenetic modi-
fications; (2) equant calcite cements interpreted to repre-
sent meteoric to burial diagenesis; and (3) fracture-occlud-
ing equant calcite of burial origin (Fig. 6, Table 3; Glumac,
1997). Microbial micrite samples may have been contami-
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nated by minor amounts of other carbonate components.
However, given the careful sampling protocol, it is unlike-
ly that their d18O values purely reflect contamination by
non-marine components. Instead, the d18O values suggest
that diagenetic modifications of microbial deposits most
likely occurred as microscale, fabric-retentive recrystalli-
zation of micrite in the presence of meteoric and burial flu-
ids. The more negative d18O values of microbial calci-
micrite and most non-marine carbonate cements relative
to non-microbial deposits (Fig. 6) suggest that the micro-
bial deposits experienced more pronounced later diagenet-
ic modifications than non-microbial calcimicritic deposits
with diffuse burrows and rare intergranular pores. The
difference in primary porosity, which is a direct function of
the origin of microbial versus non-microbial deposits, may
have played an important role in causing different diage-
netic modification in these deposits.

Syndepositional growth cavities are a common feature
of Early Cambrian microbial mounds (Rowland and Gan-
gloff, 1988; Brasier et al., 1994; Whittaker et al., 1994), in-
dicating the importance of early lithification in the forma-
tion of these deposits. However, the isotopic compositions
of Lower Cambrian calcimicrobial carbonates tend to plot
close to those of coeval non-microbial micrite-microspar
carbonates (e.g., Brasier et al., 1994). Even though the ev-
idence for the destruction of archaeocyathan and microbi-
al mounds by borers dates back to the Early Cambrian
(James et al., 1988; Rowland and Gangloff, 1988), common
borings were not reported from the Lower Cambrian mi-
crobialites analyzed for their stable isotope compositions
by Brasier et al. (1994). The additional porosity produced
by the activity of borers may account for the isotopically al-
tered compositions of the Upper Cambrian calcimicrobial
carbonates from the southern Appalachians examined in
this study. Oxygen isotope compositions of other examples
of calcimicrobial carbonate need to be analyzed to deter-
mine if the proposed relationship between the extent of
boring and the degree of later diagenetic alterations gen-
erally holds true.

Unlike the calcimicritic deposits, there is no difference
between the d18O values of the non-microbial and micro-
bial dolomicrite from the Upper Cambrian peritidal depos-
its in the southern Appalachians (Fig. 5; Table 1). Dolo-
mitized microbial deposits formed by the trapping or ag-
glutination of particles that were derived from the same
source as the non-microbial dolomicrite. Dolomitized mi-
crobial and non-microbial deposits do not differ substan-
tially in the type and amount of porosity; both have desic-
cation voids and evaporite molds filled with dolomite ce-
ment, and both have less common burrows with equant
calcite cement. The microbial deposits also contain fenes-
trae, but they are fairly small, not interconnected, and
were occluded during early diagenesis. Thus, dolomitized
microbial and non-microbial deposits experienced very
similar diagenetic histories. The fact that d18O values of
peritidal dolomicrite, in general, are more positive than
the d18O values of subtidal calcimicrite can be a conse-
quence of: (1) an equilibrium fractionation between dolo-
mite and calcite (Friedman and O’Neil, 1977); (2) the for-
mation of dolomite under evaporative conditions (Mc-
Kenzie, 1981); and (3) a lesser degree of diagenetic alter-
ation of dolomite relative to calcite (Knoll et al., 1995).

The outcome of this study was quite surprising. It was

predicted that the oxygen isotope values of shallow subti-
dal calcified microbialites would reflect most closely sea-
water composition (Glumac and Walker, 1997). Instead,
the d18O values of these deposits were among the most
negative values in the suite of samples analyzed. The re-
sults illustrate that the processes that promote early dia-
genetic calcification of microbialites also may influence
late diagenesis and preferential alteration of these depos-
its, thus limiting the potential of ancient calcified micro-
bial deposits for reconstructing geochemical signatures of
syndepositional and early diagenetic conditions.

CONCLUSIONS

Upper Cambrian dolomicritic microbial deposits that
formed by trapping or agglutination of particles do not dif-
fer substantially in their primary porosity from associated
non-microbial dolomicrite and, consequently, these depos-
its experienced a similar diagenetic history. In contrast,
early diagenetic lithification processes of cyanobacterial
and bacterial calcification promoted the formation of
growth cavities and borings, which served as conduits for
fluids during later diagenesis of calcimicrobial deposits.
This resulted in more pronounced diagenetic alterationsof
these deposits relative to the less porous, non-microbial
deposits, as indicated by: (1) more negative d18O values of
microbial calcimicrite in comparison with associated non-
microbial calcimicrite; and (2) overlapping d18O values of
microbial calcimicrite and non-marine carbonate cements.
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