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ABSTRACT: The cessation of shale and carbonate deposition of the
Conasauga Group grand cycles (Middle to Upper Cambrian) and the
establishment of the widespread peritidal carbonate deposition of the
Knox Group (Upper Cambrian to Lower Ordovician) represent a
prominent change in sedimentation along the early Paleozoic passive
continental margin in the southern Appalachians. To evaluate the caus-
es for this change, this study focuses on the Maynardville Formation,
which is the uppermost carbonate unit of the Conasauga Group. The
Maynardville consists of: (1) a lower subtidal facies succession, which
is underlain by the Nolichucky Shale and resembles the rest of the
Conasauga Group carbonate deposits; and (2) an upper peritidal facies
succession, which is conformably overlain by similar peritidal deposits
of the Copper Ridge Dolomite (Knox Group). Deposition of shale and
subtidal carbonate took place in deep-ramp (Nolichucky) to shallow-
ramp, subtidal-shoal, and lagoonal settings (lower Maynardville). The
carbonate ramp was westward sloping toward the Conasauga intrash-
elf shale basin. To the east, the ramp was linked to a broad, semiarid
carbonate tidal flat encompassing a variety of peritidal environments
(upper Maynardville and Copper Ridge). The Maynardville is a shal-
lowing-upward succession that formed by carbonate platform aggra-
dation and basinward progradation. The transition between the May-
nardville and the Copper Ridge Dolomite is within a conformable per-
itidal carbonate succession that contains common siliciclastic sand-size
detritus. This interval is interpreted as a sequence boundary correla-
tive with the craton-wide late Steptoean (Dresbachian–Franconian or
Sauk II–Sauk III) unconformity.

The change from a Conasauga to a Knox depositional style may be
related to distinct stages in passive-margin evolution. The end of
grand-cycle deposition in the early Late Cambrian is coincident with
the cessation of tectonic activity along extensional features (an intra-
cratonic graben and other fault systems), and marks the transition into
a mature-passive-margin setting. The mature margin was character-
ized by decreased rates of thermal subsidence, which, coupled with the
infilling of the Conasauga intrashelf basin, favored shallow-water car-
bonate deposition. The final stabilization of the margin is reflected in
the deposition of the thick peritidal carbonate strata of the Knox
Group.

INTRODUCTION

This study focuses on a distinct change in the style of Cambro-Ordovi-
cian passive-margin sedimentation in the southern Appalachians: the ces-
sation of the alternating shale and carbonate deposition of the Conasauga
Group (Middle to Upper Cambrian), and establishment of the shallow-
water, peritidal carbonate deposition of the overlying Knox Group (Upper
Cambrian to Lower Ordovician; Fig. 1). The Conasauga Group deposits
have been described as grand cycles (sensu Aitken 1966), composed of a
lower shale half-cycle and an upper carbonate half-cycle (Fig. 1). Grand
cycles also have been recognized in the Great Basin (Palmer and Halley
1979; Mount and Rowland 1981; Osleger and Montañez 1996), the south-
ern Canadian Rocky Mountains (Aitken 1966, 1978), and the northern Ap-
palachians (Chow and James 1987; James et al. 1989; Cowan and James
1993). The formation of grand cycles is attributed to a complex interplay

of eustatic sea-level change (Aitken 1978; Bond et al. 1988), tectonism
(Rankey et al. 1994), and the rate of sedimentation and sediment supply
(Walker et al. 1990; Srinivasan and Walker 1993; among others).

The end of grand-cycle deposition in the southern Appalachians is
marked by the deposition of the Maynardville Formation (uppermost Con-
asauga Group), which overlies the Upper Shale Member of the Nolichucky
Shale (Fig. 1). The Maynardville is conformably overlain by the Copper
Ridge Dolomite (Knox Group; Fig. 1). The Cedaria zone and Crepice-
phalus zone fauna in the Nolichucky Shale, and the Aphelaspis zone fauna
in the lower Maynardville Formation, indicate a Dresbachian or late Mar-
juman to early Steptoean age for these deposits (Fig. 1; Rasetti 1965). The
Marjumiid–Pterocephaliid Biomere boundary (Marjuman–Steptoean Stage
boundary) is within the upper part of the Nolichucky Shale. The lowermost
Knox Group strata in the southern Appalachians were deposited during the
early Franconian or late Steptoean (Fig. 1; Glumac and Walker 1998).

The lower part of the Maynardville Formation consists of subtidal car-
bonate and shale, which are similar to the rest of the Conasauga Group
deposits, whereas the peritidal carbonates from the upper part of the May-
nardville resemble deposits of the overlying Knox Group. Thus, the May-
nardville represents a transitional unit between the Conasauga and the Knox
sedimentary successions (Fig. 1). The major objectives of this paper are to:
(1) interpret depositional environments for the Maynardville Formation as
the carbonate half-cycle of the terminal Cambrian grand cycle; (2) propose
sequence stratigraphic interpretations for the Maynardville; (3) compare the
Maynardville with the Middle Cambrian carbonate deposits of the Cona-
sauga Group in order to document the changing style of passive-margin
sedimentation; and (4) relate the changing depositional regimes and the end
of grand-cycle deposition to the distinct stages in the evolution of the early
Paleozoic passive margin of the southern Appalachians.

GEOLOGIC SETTING

The rifting and breakup of the supercontinent Rodinia in the Late Pro-
terozoic to Early Cambrian produced passive continental margins that al-
most completely circumscribed the Laurentian continent (Bond et al. 1984;
Karlstrom et al. 1999). The Middle to lower Upper Cambrian sedimentary
record of the southern Appalachians reveals the existence of a carbonate
platform 150–200 km wide along the passive margin of eastern Laurentia
(Fig. 2). This carbonate platform faced the Iapetus Ocean to the east and
the Conasauga intrashelf shale basin to the west (Fig. 2). The western
margin of the platform was characterized by deposition of alternating shale
and carbonate units, or grand cycles, of the Conasauga Group, which are
overlain by carbonate deposits of the Knox Group (Fig. 1). These rocks
crop out within several imbricated, northeast–southwest-trending thrust
blocks in the Valley and Ridge physiographic province of eastern Tennes-
see. Five stratigraphic sections from three northwesternmost thrust blocks
were examined in the course of this study (Figs. 2, 3). Towards the west
the grand cycles are replaced by Conasauga Group shale (Fig. 1; Rodgers
1953). Lateral equivalents of the Conasauga and Knox Group in north-
eastern Tennessee and southwestern Virginia are extensively dolomitized
carbonate platform deposits of the Honaker, Elbrook, and Conococheague
Formations (Read 1989). The Knox Group represents a predominance of
shallow-water (primarily dolostone) deposition that continued into the Ear-
ly Ordovician. Passive-margin sedimentation terminated in the late Early
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953DEPOSITION AND SEQUENCE STRATIGRAPHY OF THE TERMINAL CAMBRIAN GRAND CYCLE

FIG. 1.—Middle to Upper Cambrian
stratigraphy of eastern Tennessee Appalachians
(modified from Walker et al. 1990). Note the
characteristic interfingering relationship between
shale and carbonate units, or grand cycles, of the
Conasauga Group, the predominance of
carbonate deposits in the Late Cambrian
(Maynardville Formation and Copper Ridge
Dolomite), the distribution of subtidal and
peritidal carbonates, and the position of grand-
cycle boundaries.

FIG. 2.—Schematic paleogeographic
reconstruction of Tennessee during the Middle to
early Late Cambrian (palinspastic reconstruction
after Roeder and Witherspoon 1978). A
carbonate platform (shaded area) faced the
Iapetus Ocean to the east (present-day
orientation), and was separated from the exposed
craton to the west by the Conasauga intrashelf
shale basin. The area along the western
carbonate platform margin is enlarged, showing
present-day (solid circles) and palinspastically
reconstructed (open circles) locations of the
outcrops studied. Outcrop key: TZ, Tazewell;
RR, River Ridge; TH, Thorn Hill; FG, Flat Gap;
LV, Lee Valley.

Ordovician with prolonged subaerial exposure that produced the Knox or
Beekmantown (post-Sauk) unconformity. This event marks the transition
into a convergent-margin setting (Benedict and Walker 1978; Shanmugam
and Walker 1980; Mussman and Read 1986; Read 1989).

LITHOFACIES DESCRIPTION

Table 1 contains a summary of characteristics of the lithofacies present
in measured stratigraphic successions (Fig. 3). The Maynardville Formation
conformably overlies the Nolichucky Shale (Figs. 1, 3); the contact is at

the base of the lowest thick limestone unit (Fig. 4A). The shale-rich de-
posits of the Conasauga Group are poorly exposed. The uppermost part of
the Nolichucky Shale consists of calcareous and silty shale interbedded
with carbonate layers. The latter are similar to deposits from the lower part
of the overlying Maynardville.

The Maynardville Formation consists of a lower subtidal and an upper
peritidal facies succession (Figs. 1, 3). The subtidal deposits are domi-
nated by ribbon rocks, which contain centimeter-scale layers and lenses
of limestone alternating with argillaceous dolostone, siltstone, or shale
(Fig. 4B; Table 1). Limestone layers are composed of normally graded
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954 B. GLUMAC AND K.R. WALKER

FIG. 3.—Stratigraphic columns of the Maynardville Formation and the lower Copper Ridge Dolomite. See Table 1 for the explanation of the symbols. The columns are
hung on a horizon defined by the occurrence of sand-size siliciclastic detritus, and interpreted as a sequence boundary zone (shaded; see text for additional explanation).
Key to distance between outcrops: present day/reconstructed distance. Outcrop key: TZ, Tazewell; RR, River Ridge; TH, Thorn Hill; FG, Flat Gap; LV, Lee Valley.
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TABLE 1.—Lithofacies of the subtidal and peritidal successions. Symbols correspond to those in Figure 3.

skeletal packstone/grainstone (Fig. 4C), burrow-mottled mudstone, and
peloidal packstone (Table 1). Argillaceous layers of the ribbon rocks have
common compaction and pressure-dissolution features (Glumac 1997).
Thrombolitic bioherms, flat-pebble conglomerate (coarse-grained intra-
clastic packstone/grainstone), and shale layers (up to 1.2 m thick) are
interbedded with the ribbon rocks (Fig. 3; Table 1). Carbonate clasts from
flat-pebble conglomerate layers are well rounded and commonly have
pyrite coatings (Fig. 4D). At the most basinward outcrop (Tazewell), the
subtidal succession also contains ooid grainstone, intraclastic–ooid grain-
stone, fossiliferous–peloidal packstone/grainstone, and more common
thrombolitic bioherms (Fig. 3; Table 1). No apparent cyclicity was ob-
served in the subtidal lithofacies succession (Fig. 3).

The vertical transition from the subtidal to the peritidal depositional suc-
cession is in most outcrops represented by a gradual change from ribbon

rocks into microbial laminites or stratiform stromatolites (Figs. 3, 5A–B).
At the Tazewell outcrop, the subtidal to peritidal transition is marked by
the first occurrence of microbial laminites overlain by thrombolites and
ribbon rocks (Fig. 3). Overlying this interval at Tazewell, and the microbial
laminites at other localities, is a variety of peritidal lithofacies, most of
which are substantially dolomitized (Fig. 3; Table 1). Fining-upward cen-
timeter-scale couplets or mechanical laminites are the predominant peritidal
lithofacies (Fig. 5C; Table 1). Coarse-grained couplets contain intraclasts
along sharp, scoured bases (Table 1). Peloid-rich, medium-grained couplets
display wavy and lenticular bedding, and current and wave ripple cross-
stratification (Fig. 5C). Upper parts of couplets are composed of horizon-
tally laminated or massive dolomicrite (Table 1). Couplets are interbedded
with dolomitized mudstone and a variety of microbial carbonate deposits
including thrombolites, digitate stromatolites (Fig. 5D), columnar and dom-
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956 B. GLUMAC AND K.R. WALKER

FIG. 4.—Subtidal deposits. A) Base of the Maynardville Formation (arrow) is at the base of first thick limestone unit overlying the Nolichucky Shale. Intervals on Jacob’s
staff 5 10 cm. B) Ribbon rocks from the subtidal succession of the Maynardville. Light-colored limestone layers are interbedded with darker argillaceous layers. Intervals
on Jacob’s staff 5 10 cm. C) Plain-light photomicrograph showing a skeletal packstone layer interbedded with argillaceous layers (a) of the ribbon rocks. Note the
gradational upper contact and the sharp base of the skeletal layer. Scale bar 5 1 mm. D) Photomicrograph of a flat-pebble conglomerate composed of centimeter-scale
micritic intraclasts (i) interbedded with ribbon rocks. Note common pyrite (p) as coatings on intraclasts and in the matrix. Scale bar 5 1 mm.

al stromatolites, and microbial laminites (Fig. 3; Table 1). The vertical
succession of the peritidal lithofacies is complex (Fig. 3). Meter-scale shal-
lowing-upward cycles with oolitic or thrombolitic bases, overlain by stro-
matolites and/or couplets and capped by dolomitized mudstones and mi-
crobial laminites, are present in the succession (Fig. 3). Some of these
cycles are also capped with subaerial exposure surfaces with up to 30 cm
of erosional relief (Figs. 3, 5E).

The Maynardville is conformably overlain by the peritidal carbonate de-
posits of the Copper Ridge Dolomite (Knox Group). The most common
criteria for the placement of this boundary in outcrop include the first ap-
pearance of abundant chert (Rodgers 1953; Bridge 1956), thick-bedded,
coarsely crystalline dolostone (Bridge 1956; Milici 1973), or thin quartz
sandstone layers (Finlayson et al. 1965; Oder and Milici 1965; see also
Hasson and Haase 1988). A combination of these criteria was used in this
study (Fig. 3). The Maynardville–Copper Ridge boundary is contained
within a conformable interval 10–15 m thick, characterized by the occur-
rence of quartz and feldspar sand grains (Figs. 3, 5F).

ENVIRONMENTS OF DEPOSITION

Nolichucky Shale

The Nolichucky Shale was not examined in detail. A brief summary of
the interpretations by other workers is included here to document the

changing style of sedimentation during the Late Cambrian in the southern
Appalachians. The most basinward lithofacies of the Nolichucky Shale in
central eastern Tennessee represent deposition in slope and basinal envi-
ronments reaching 250–300 m water depth (Foreman et al. 1991). The
Nolichucky Shale from the Copper Creek thrust sheet in eastern Tennessee
(see Fig. 3) was deposited in a moderate-depth (30–50 m) to shallow-water
(5–30 m) intrashelf basin setting (Weber 1988). The gradual transition from
the Nolichucky Shale to the Maynardville Formation represents a shift from
fine siliciclastic to carbonate-dominated sedimentation (Fig. 1). This tran-
sition reflects the shallowing or the infilling of the Conasauga intrashelf
basin and the cratonward (westward) progradation of the carbonate plat-
form (Figs. 1, 2; Markello and Read 1982).

Subtidal Facies Succession of the Maynardville Formation

The Upper Cambrian ribbon rocks are most commonly interpreted as
shallow subtidal deposits (Demicco 1983; Osleger and Read 1991; Chow
and James 1992). The shaly ribbon rocks with layers of flat-pebble con-
glomerate from the lower part of the Maynardville Formation were depos-
ited on a storm-dominated shallow subtidal ramp (Fig. 6). High-energy
storm waves were capable of breaking the semilithified carbonate layers
into clasts, which were then deposited nearby, forming flat-pebble con-
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957DEPOSITION AND SEQUENCE STRATIGRAPHY OF THE TERMINAL CAMBRIAN GRAND CYCLE

FIG. 5.—Peritidal deposits. A) Gradual transition between ribbon rocks (base) and microbial laminites (top) marks a transition from the subtidal into the peritidal facies
succession of the Maynardville Formation. Intervals on Jacob’s staff 5 10 cm. B) Characteristic crinkly, wavy lamination and prominent desiccation cracks within microbial
laminites. Intervals on Jacob’s staff 5 10 cm. C) Polished slab illustrating characteristic wavy and lenticular bedding, scoured bases, and current and wave ripple cross-
lamination of couplets or mechanical laminites. Intervals on scale bar 5 1 cm. D) A digitate stromatolite bioherm (middle) interbedded with couplets and dolomitized
mudstone (top and bottom). Photo scale is 16.5 cm long. E) Polished slab of dolomicrite illustrating a subaerial exposure surface (arrows) with two erosional depressions
filled with intraclasts. Thin microbial coating is seen as a dark outline along the erosional surface. Intervals on scale bar 5 1 cm. F) Cross-polarized-light photomicrograph
showing quartz and feldspar (arrows) grains in dolomicritic matrix from a conformable interval at the Maynardville–Copper Ridge transition interpreted as a sequence
boundary zone (see Fig. 3). Scale bar 5 1 mm.
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958 B. GLUMAC AND K.R. WALKER

FIG. 6.—Schematic illustration of depositional environments for the deposits present within the succession examined (not to scale). See Table 1 for additional explanation
of the symbols.

glomerates (Sepkoski 1982; Demicco 1985; Whisonant 1987). The pro-
longed residence of clasts on the sea floor under low-energy conditions and
slow deposition or nondeposition between storms is suggested by pyrite
coatings (Fig. 4D), a common feature of submarine hardgrounds (Chow
and James 1992). Normally graded carbonate layers interbedded with thin
shale were deposited by storm waves and currents, as suggested by their
scoured bases and skeletal lag deposits (Kreisa 1981; Markello and Read
1981). Deposition of the laminated mudstone in the upper parts of normally
graded limestone layers, and the overlying shaly layers of the ribbon rocks,
took place between major storms. Primary sedimentary layering of the rib-
bon rocks has been modified during burial by compaction of soft argilla-
ceous layers around more firmly lithified carbonate layers (Bathurst 1987)
and by pressure dissolution along nonsutured dissolution seams, micros-
tylolites, or clay seams (Wanless 1979; Simpson 1985; Choquette and
James 1987; Railsback 1993).

The ribbon rocks composed of bioturbated lime mudstone and peloidal
packstone interbedded with calcareous siltstone and argillaceous dolostone
represent deposition in less agitated, shallow subtidal lagoonal environ-
ments (Fig. 6). This interpretation is supported by the paucity of skeletal
allochems and the abundance of micritic and peloidal sediment (Table 1).
In addition, the association with thrombolites reflects deposition in a shal-
low subtidal setting where the thrombolites were forming broad, low-relief
patch reefs (Figs. 3, 6; Demicco et al. 1982; Glumac and Walker 1997).
Microbial buildups, along with oolites and fossiliferous–peloidal grainstone
deposits, are most common at the most basinward Tazewell outcrop (Figs.
2, 3). These deposits formed on low-relief subtidal shoals (Fig. 6). These
shoals never developed into a prominent, continuous platform margin, judg-
ing from the fact that the characteristic platform margin deposits are not
abundant (Fig. 3). However, the shoals likely played an important role in
the periodic establishment of subtidal, restricted, lagoonal-type sedimen-
tation in more eastward localities (Fig. 6). Thus, the subtidal succession of
the Maynardville was deposited on a shallow ramp, and in locally devel-
oped shoals and lagoonal settings (Fig. 6).

Peritidal Facies Succession of the Maynardville Formation

The vertical transition from ribbon rocks into microbially laminated de-
posits (Fig. 5A) represents a change from entirely subtidal to predominantly
peritidal carbonate deposition in response to progressive carbonate-platform
aggradation and shallowing. The establishment of a wide, restricted tidal
flat covered by extensive microbial mats with deposition that was able to
keep up with changing accommodation is suggested by laterally extensive,
thick, uniform microbial laminites in the lower part of the peritidal suc-
cession (Figs. 3, 5B).

The variety of peritidal lithofacies in the upper Maynardville represent

deposition in a wide spectrum of settings ranging from supratidal to shallow
subtidal (Figs. 3, 6; Table 1). A great lateral extent and a complex vertical
succession of peritidal lithofacies (Figs. 1, 3) reflect an intricate pattern of
facies migration on a flat-topped, broad, fully aggraded carbonate tidal flat
(Fig. 6). Evaporite molds and desiccation cracks, common in some of the
lithofacies (Fig. 5B; Table 1), indicate increased salinity and occasional
subaerial exposure of the peritidal deposits. The lack of abundant evaporite
deposits suggests a semiarid climate. Intermittent periods of subaerial ex-
posure produced erosional surfaces indicative of surface paleokarst for-
mation (Fig. 5E; Choquette and James 1988; Chow and James 1992).

The coarse- to medium-grained couplets represent deposition in tide-,
wave-, and storm-dominated, shallow subtidal and intertidal settings (Figs.
5C, 6; Table 1). The medium-grained couplets resemble peloidal silt and
carbonate mud deposited by storm and tidal currents in modern intertidal
settings in the Bahamas (Hardie and Ginsburg 1977). Scoured bases of
coarse-grained couplets and their intraclastic lag deposits are indicative of
storm activity (Table 1). Storms may have also been responsible for the
reworking of ooids from small, locally developed, high-energy shoals (Fig.
6). The ooids were redeposited and incorporated at the bases of some of
the couplets or scattered in the muddy matrix of other lithofacies (Table
1). The effect of waves and tidal currents is reflected in the rounding of
micritic clasts and in the cross-stratification in coarse- and medium-grained
couplets (Fig. 5C; Table 1). Similar types of cross-stratification, desiccation
features, and microbial laminae are present in the calcareous siltstone, sug-
gesting deposition in a moderately agitated intertidal setting (Table 1). The
fine-grained couplets and dolomitized mudstone were deposited on the up-
per intertidal to supratidal muddy flats of the Maynardville platform (Fig.
6). This interpretation is substantiated by common desiccation features,
evaporite molds, absence of skeletal fauna, and the association with lami-
nated microbial deposits (Fig. 3; Table 1).

Thrombolites and digitate stromatolites are among the rare peritidal lith-
ofacies that have not been completely dolomitized. The susceptibility of
these deposits to dolomitization may have been reduced by early diagenetic
microbial calcification in a shallow subtidal to lower intertidal environment
(Glumac and Walker 1997). This environmental setting is supported by the
presence of thrombolites in the subtidal depositional succession, and by
their association with coarse- and medium-grained peritidal couplets. The
succession from thrombolites, digitate stromatolites, columnar stromato-
lites, domal stromatolites, to microbial laminites or stratiform stromatolites
represents decreasing water turbulence from subtidal to supratidal environ-
ments (Fig. 6; Logan et al. 1964; Aitken 1967; Chafetz 1973; Glumac and
Walker 1997). Microbial laminites, domal stromatolites, and columnar stro-
matolites formed mainly by sediment trapping in supratidal to lower inter-
tidal environments (Fig. 6; Glumac and Walker 1997). This interpretation
is supported by common desiccation features and fenestrae (Table 1).
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The Maynardville grades conformably upward into the peritidal deposits
of the Copper Ridge Dolomite (Knox Group). The occurrence of quartz
sand in the part of the carbonate platform succession that contains the
Maynardville–Copper Ridge transition (Figs. 3, 5F) is interpreted as an
eastward migration of siliciclastic source areas in response to sea-level
lowering and subaerial exposure of the craton. These conditions were es-
tablished during the well-documented, craton-wide late Steptoean (Dres-
bachian–Franconian or Sauk II–Sauk III) unconformity (Lochman-Balk
1971; Palmer 1971, 1981; Osleger and Read 1993). The increased rate of
siliciclastic sedimentation during this sea-level fall may have contributed
to the infilling of the Conasauga intrashelf basin, which set the stage for
westward carbonate-platform progradation during the subsequent (Francon-
ian) sea-level rise (Figs. 1, 2; Markello and Read 1982). The Copper Ridge
Dolomite marks the predominance of peritidal carbonate deposition in the
study area (Fig. 1).

SEQUENCE STRATIGRAPHY

Cambrian grand cycles are commonly interpreted as third-order deposi-
tional sequences (sensu Vail et al. 1977), composed of a lower shale half-
cycle and an upper carbonate half-cycle. Sequence boundaries have been
recognized at abrupt carbonate-to-shale contacts on top of several Middle
Cambrian grand cycles of the Conasauga Group (Fig. 1; Kozar et al. 1990;
Srinivasan and Walker 1993; Rankey et al. 1994). Sequence-bounding dis-
conformities have also been recognized within individual grand-cycle suc-
cessions elsewhere (Mount et al. 1991; Cowan and James 1993; Osleger
and Montañez 1996), suggesting that grand cycles are not always equiva-
lent to depositional sequences. The following sections focus on the inter-
pretation of the sequence stratigraphy for the carbonate half-cycle of the
Upper Cambrian grand cycle that consists of the upper Nolichucky Shale
and the Maynardville Formation (Fig. 1). Comparisons with sequence
stratigraphic interpretations for other Conasauga Group grand cycles are
included to demonstrate the change in the nature of sequence-bounding
surfaces in the Cambrian strata from the southern Appalachians.

Nolichucky–Maynardville Transition

The termination of Middle Cambrian Maryville carbonate platform de-
position by subaerial exposure and/or drowning, followed by an abrupt
onlap of basinal shales (the Lower Shale Member of the Nolichucky), pro-
duced a sequence boundary on top of the upper Rogersville Shale–Mary-
ville Limestone grand cycle (Fig. 1; Srinivasan and Walker 1993). Like-
wise, the onlap of the Upper Shale Member of the Nolichucky onto the
Middle Limestone Member is interpreted as a sequence boundary (Fig. 1;
Kozar et al. 1990). Thus, the Upper Shale Member of the Nolichucky
represents a retrogradational parasequence set of a transgressive systems
tract (e.g., Van Wagoner et al. 1988) that formed by the migration of
relatively deep-water siliciclastic environments towards the carbonate plat-
form as a consequence of an increased rate of relative sea-level rise (Sri-
nivasan and Walker 1993). The deposition of the upper Nolichucky cor-
responds to the period of maximum flooding of the carbonate platform
during the early Late Cambrian (Bond et al. 1988; Osleger and Read 1993).
The transition between the Nolichucky Shale and the Maynardville For-
mation is gradational, and it represents a change from retrogradational to
aggradational-to-progradational stacking patterns as a result of a decrease
in the rate of relative sea-level rise. Thus, this transition also marks a
change from transgressive to highstand systems tracts.

Maynardville Lithofacies Succession

Following the drowning of carbonate platforms and shale onlap in re-
sponse to a rapid relative sea-level rise, carbonate deposition was reestab-
lished through start-up, catch-up, and keep-up phases (Kendall and Schla-
ger 1981). Deposition of the mixed shale and carbonate deposits of the

upper Nolichucky Shale and the lower part of the subtidal succession of
the Maynardville is equivalent to the start-up of carbonate platform depo-
sition. The rate of relative sea-level rise was still exceeding the rate of
carbonate sediment accumulation, as suggested by the relatively high shale/
carbonate ratio and the common hardgrounds in this part of the stratigraphic
succession (Figs. 3, 4A, D). The rest of the subtidal succession of the
Maynardville is characteristic of a catch-up phase during which the car-
bonate accumulation rate exceeded the rate of sea-level rise and the plat-
form aggraded to sea level. The increasing rate of carbonate production is
reflected in the decreased shale/carbonate ratio in the upper part of the
subtidal succession (Fig. 3). Progressive aggradation and shallowing of the
carbonate platform resulted in the vertical transition from the subtidal into
the peritidal depositional regime (Figs. 3, 5A). The peritidal succession is
characteristic of a keep-up phase of carbonate-platform deposition, with the
rate of sediment accumulation matching or exceeding the rate of relative
sea-level rise. This is supported by the thick succession of very shallow-
water deposits and by carbonate-platform progradation in a cratonward di-
rection (Figs. 1–3). Thus, the shallowing-upward lithofacies succession of
the Maynardville represents an aggradational to progradational stacking
pattern. Such patterns are typical of highstand systems tracts deposited
during decreasing rates of relative sea-level rise, a sea-level stillstand, and
an initial relative sea-level fall (e.g., Van Wagoner et al. 1988).

The vertical succession of the Maynardville lithofacies is complex (Fig.
3). The subtidal succession does not appear to be cyclic. Parts of the per-
itidal succession can be divided into meter-scale shallowing-upward cycles.
Such cycles are commonly interpreted to be a result of short-term eustatic
sea-level oscillations (e.g., Koerschner and Read 1989; Bond et al. 1991;
Osleger and Read 1991; Montañez and Osleger 1993; McLean and Mo-
untjoy 1994; Yang et al. 1995). On the other hand, they may reflect the
complex pattern of migration of tidal-flat lithofacies independently of pe-
riodic extrinsic mechanisms (e.g., Kozar et al. 1990; Hardie et al. 1991;
Drummond and Wilkinson 1993; Wilkinson et al. 1996). The meter-scale
cycles of the Maynardville Formation cannot be laterally correlated be-
tween outcrops with certainty because of the substantial distance between
outcrops, poor exposure of parts of the outcrops, and the possibility that
the observed cycles may not be laterally extensive (Fig. 3). Additionally,
because of the apparent noncyclic nature of parts of the succession, and
possible subjectivity in recognizing shallowing-upward trends (see Wilkin-
son et al. 1996), subdivision of the complete stratigraphic intervals in me-
ter-scale cycles and their lateral correlation were not attempted (Fig. 3).

Maynardville–Copper Ridge Transition

Recognition of the influence of the late Steptoean (Dresbachian–Fran-
conian or Sauk II–Sauk III) sea-level fall on the style of carbonate depo-
sition led to the interpretation of the conformable interval at the Maynard-
ville–Copper Ridge Dolomite transition as a sequence boundary (Kozar et
al. 1990; Osleger and Read 1993; Glumac and Walker 1998). This bound-
ary is referred to here as a sequence boundary zone correlative to the
Dresbachian–Franconian unconformity on the craton (Fig. 3). The sequence
boundary separates the Conasauga Group, which was deposited on a car-
bonate platform laterally linked to an intrashelf shale basin, from the Knox
Group, which represents deposition on a broad carbonate shelf that was
established following westward progradation of the platform over the in-
filled intrashelf basin (Figs. 1–3).

THE CHANGING STYLE OF PASSIVE-MARGIN DEPOSITION

Comparison of the depositional and sequence stratigraphic interpretations
for the Middle Cambrian Conasauga Group grand cycles with the May-
nardville Formation and the overlying Knox Group (Upper Cambrian to
Lower Ordovician) provides important information about the changing
style of deposition along the early Paleozoic passive margin of the southern
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Appalachians. The Middle Cambrian Conasauga grand cycles followed a
cyclical pattern of development from ramps during deposition of shale half-
cycles, to flat-topped, rimmed platforms resulting in carbonate half-cycles
(Srinivasan and Walker 1993; Rankey et al. 1994). Carbonate-platform de-
position ended by subaerial exposure and/or drowning, which produced
surfaces interpreted as sequence boundaries (Fig. 1). The Maynardville For-
mation in the study area lacks well-developed shelf-margin buildups and
debris-flow deposits comparable to those of the Middle Cambrian Maryville
Limestone (Srinivasan and Walker 1993). Thus, the development from
ramp to high-relief, rimmed, Middle Cambrian carbonate platforms was
replaced in the Late Cambrian by a gently sloping ramp, and locally de-
veloped shoals and lagoonal environments that evolved into the broad tidal
flat of the Maynardville platform (Fig. 6).

Deposition of the Middle Cambrian Maryville Limestone terminated in
a subaerial exposure and drowning unconformity, followed by Nolichucky
Shale onlap (Fig. 1; Srinivasan and Walker 1993). In contrast, the transition
from the Maynardville Formation into the overlying Copper Ridge Dolo-
mite is within a conformable peritidal carbonate succession (Fig. 3). The
deposition of this interval was influenced by the Steptoean (Dresbachian–
Franconian) sea-level fall, as evidenced by common siliciclastic sand grains
(Figs. 3, 5F). The presence of quartz sand in the coeval carbonate deposits
of the Conococheague Formation in southwestern Virginia (Koerschner and
Read 1989) suggests a platform-wide influence of this sea-level fall on
carbonate deposition. Occurrences of quartz sand in the Steptoean carbon-
ate deposits of the Petit Jardin Formation (Port au Port Group) in western
Newfoundland are interpreted to indicate exposure of inboard platform ar-
eas and eolian influx of sand (Cowan and James 1993), whereas a quartzose
calcarenite sediment apron in the coeval platform margin deposits (the Cow
Head Group) represents a period of arrested shallow-water sedimentation,
eolian sand bypassing, and margin progradation (James and Stevens 1986).
Slope and basin-margin facies in eastern New York and Vermont contain
periplatform breccias and resedimented and locally channelized quartz
sands (Read 1989, and references cited therein), which may represent low-
stand deposits related to the Steptoean sea-level fall. Steptoean deposits of
the eastern carbonate platform margin are not exposed in the southern Ap-
palachians, but that area may have been similarly affected by the sea-level
fall. To the west of the Maynardville carbonate platform the sea-level fall
facilitated the complete infilling of the Conasauga intrashelf basin and car-
bonate platform progradation toward the craton upon subsequent flooding
(Figs. 1, 2). This progradation resulted in the establishment of widespread
Upper Cambrian to Lower Ordovician peritidal carbonate deposition of the
Knox Group. Similar paleogeographic changes have been documented for
the Great Basin area, where a flood of terrigenous sediment (Worm Creek
Quartzite), reflecting a sea-level lowering in the late Steptoean, was fol-
lowed by the infilling of the Eureka–House Range embayment and the
establishment of carbonate sedimentation in the entire Great Basin region
(Palmer 1971; Brady and Rowell 1976). In addition, Steptoean carbonate
rocks from both the Great Basin and the southern Appalachians record a
large positive carbon-isotope excursion, with the maximum d13C values (4
to 5‰ PDB) coinciding with the Dresbachian–Franconian (Sauk II–Sauk
III) sea-level fall (Brasier 1993; Saltzman et al. 1998; Glumac and Walker
1998). This indicates that the deposition of this stratigraphic interval is
associated with a large perturbation in the global cycling of carbon, which
may be related to changing sea level, ocean stratification, climate, sediment
accumulation rates, or organic productivity (Glumac and Walker 1998).

PASSIVE-MARGIN EVOLUTION AND GRAND-CYCLE CESSATION

This section proposes a hypothesis on the relationship between passive-
margin evolution and the end of grand-cycle deposition in the southern
Appalachians. This hypothesis is based on the pattern of sedimentation
described in this paper, and on the studies of continental-margin develop-

ment and tectonic activity along the early Paleozoic Laurentian passive
margins by others.

Faulting is common during the post-rift stage of development of basins
along divergent plate margins, and is enhanced by sediment and water
loading (Watts 1981; Heller et al. 1982; Scrutton 1982; Steckler and Watts
1982; Turcotte 1982; Pitman and Golovchenko 1988; Bott 1992; Frostick
and Steel 1993a). These mechanisms generate relatively rapid subsidence
superimposed on slower thermal passive-margin subsidence, and can influ-
ence the development of depositional sequences (Bally 1982; Watts and
Thorne 1984; Cloetingh et al. 1985; Stephenson 1989; Embry 1989; Sloss
1991; Aubry 1991; Frostick and Steel 1993b). The Middle Cambrian was
a time of significant tectonic activity along the Mississippi Valley–Rough
Creek–Rome Trough intracratonic graben system to the west, the Birming-
ham fault system to the southwest, and other basement faults to the east
of the study area (Fig. 7A; Read 1989; Thomas 1991). Synsedimentary
fault movement along the Mississippi Valley–Rough Creek–Rome Trough
during the Middle Cambrian produced grabens that were infilled by the
Late Cambrian (Fig. 7; Thomas 1991). Early Cambrian initiation of the
Birmingham fault system and continued fault movement until the early Late
Cambrian are documented from the thickness and distribution of the Con-
asauga Group deposits (Fig. 7A; Thomas 1986; Ferrill 1989). Deposition
of the Middle Cambrian Conasauga Group grand cycles took place during
this immature stage of passive-margin development (Fig. 7A). Subsidence
generated by episodic tectonic activity along extensional faults may have
influenced sequence development by causing abrupt changes from carbon-
ate to shale deposition in response to the drowning of carbonate platforms
and the onlap of basinal shale (Figs. 1, 7A; Kozar et al. 1990; Walker et
al. 1990; Srinivasan and Walker 1993; Rankey et al. 1994). The change
from Conasauga grand-cycle deposition to the thick peritidal carbonate suc-
cession of the Knox Group corresponds with the cessation of tectonic ac-
tivity along extensional fault systems (Fig. 7B). Deposits of the Knox
Group extend across the intracratonic graben and basement fault systems
without substantial thickness variations, which indicates the end of exten-
sion in the area (Thomas 1991). Thus, the end of grand-cycle deposition
is coincident with the stabilization of the margin and the transition from
immature into a mature passive margin in the Late Cambrian (Fig. 7B).
The similarities in the style of deposition along the Cordilleran and Ap-
palachian passive margins suggest that these Laurentian margins, which
formed by rifting of Rodinia in the Late Proterozoic to Early Cambrian,
experienced similar evolutionary histories.

The cessation of tectonic activity in the southern Appalachians was ac-
companied by a decrease in the rate of passive-margin thermal subsidence.
Modeling of Laurentian passive-margin subsidence rates indicates the
change from high and rapidly decreasing subsidence (95 to 35 m/My) dur-
ing the Middle Cambrian, to much lower and slowly decreasing subsidence
(35 to , 10 m/My) for the Late Cambrian and Early Ordovician (Bond et
al. 1989). The decrease in subsidence rate was a consequence of the decline
in thermal subsidence caused by an increase in lithospheric rigidity due to
crustal cooling and thickening, and was coupled with a long-term sea-level
fall (Bond et al. 1988; Bond et al. 1989). The results of numerical modeling
by Reynolds et al. (1991) suggest that changing rigidities can influence
passive-margin stratigraphy by modifying the distribution of accommoda-
tion space generated by flexure or isostatic response of the lithosphere to
loading. Passive margins with low flexural rigidities have deposition re-
stricted to a narrow shelf characterized by the vertical distribution of ac-
commodation space produced by sediment loading (Reynolds et al. 1991).
These conditions favor the formation of Type 2 sequence boundaries, which
form when the rate of sea-level fall is lower than the rate of basin subsi-
dence (Van Wagoner et al. 1988). In contrast, the formation of Type 1
sequence boundaries, which are produced when the rate of sea-level fall
exceeds the rate of basin subsidence (Van Wagoner et al. 1988), is favored
on margins with high flexural rigidities where accommodation space gen-
erated by isostasy is broadly distributed along a much wider shelf (Reyn-
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FIG. 7.—Reconstruction of Cambrian passive-
margin setting (after Thomas 1991). A) Middle
Cambrian immature passive margin. Note the
position of the active intracratonic graben and
basement fault systems. B) Late Cambrian
mature passive margin. Note the cessation of
tectonic activity and lateral expansion of the
shelf.

olds et al. 1991). The presence of an intrashelf basin adjacent to a carbonate
platform on the narrow Middle Cambrian shelf (Figs. 2, 7A), and Type 2
sequence boundaries within the lower Conasauga Group (Kozar et al.
1990), is consistent with lower flexural rigidities of the Middle Cambrian
passive margin as compared to the Late Cambrian and Early Ordovician,
when the Maynardville–Copper Ridge carbonate platform expanded later-
ally towards the craton over the completely infilled intrashelf basin and
inactive graben system (Fig. 7B). In addition, the sequence boundary sep-
arating the Conasauga from the Knox Group has been interpreted as a Type
1 boundary (Kozar et al. 1990; Osleger and Read 1993). The reduction in
rate of early Paleozoic Laurentian passive-margin subsidence, resulting
from decay of the thermal anomaly, was augmented by the long-term sea-
level fall in the Late Cambrian and Ordovician (Bond et al. 1989). These
conditions favored the expansion of shallow-water carbonate platform sed-
imentation along the margins of Laurentia and can account for the simi-
larities between the Cordilleran and Appalachian stratigraphy. In the south-
ern Appalachians, deposition of the approximately 1000-m-thick, peritidal
carbonates of the Knox Group reflects the final establishment of a mature
passive margin, with sedimentation controlled by thermal subsidence and
eustatic sea-level changes.

CONCLUSIONS

Cambrian grand cycles of the Conasauga Group represent a complex
interplay between carbonate platform and intrashelf shale basin sedimen-
tation along the early Paleozoic passive margin of the southern Appala-
chians. The deposition of the Maynardville Formation (Upper Cambrian)
marks the end of grand-cycle deposition and a prominent change in the
style of passive-margin sedimentation. The Maynardville was deposited in
gently sloping, shallow subtidal ramp and localized shoal and lagoonal
environments that were laterally linked to a broad, semiarid tidal flat. The
succession of the Maynardville lithofacies reveals upward shallowing from
entirely subtidal, mixed carbonate and fine siliciclastic deposits to predom-
inantly peritidal dolostone in response to carbonate-platform aggradation
and westward progradation over the infilled intrashelf basin. The establish-
ment of shallow-water carbonate deposition was favored by the decreased
rate of thermal subsidence, augmented by the long term sea-level fall, and
by stabilization of the passive margin due to cessation of tectonic activity
in the Late Cambrian. The final stabilization of the passive margin is re-
flected in the deposition of the thick, laterally extensive peritidal carbonates
of the overlying Upper Cambrian to Lower Ordovician Knox Group. The
transition from the Maynardville to the Copper Ridge Dolomite (Knox
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Group) is within a conformable interval interpreted as a sequence boundary
zone correlative with the craton-wide late Steptoean (Dresbachian–Fran-
conian or Sauk II–Sauk III) unconformity. This boundary separates the
sedimentary successions of the Conasauga and the Knox Groups, which
were deposited in different tectonosedimentary settings that existed during
two distinct stages in the development of the passive margin. Similar tran-
sitions in sedimentary successions elsewhere may suggest a similar passive-
margin evolutionary history.
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