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a b s t r a c t 

Numerical simulations of viscoelastic fluids in the Stokes limit with a four-roll mill background force were per- 
formed at a range of Weissenberg number (non-dimensional relaxation time). For small Weissenberg number the 
flow is steady and symmetric but upon increasing the Weissenberg number (corresponding to increased elasticity 
or flow memory time), the flow becomes unstable leading to a variety of temporal evolutions to different peri- 
odic and aperiodic solutions. These dynamics were analyzed using a Proper Orthogonal Decomposition (POD) 
that extracted elastic modes in terms of their contribution to the energy of the system. The temporal behavior of 
the system, captured by the decomposition, indicates that the motion of the stagnation points drives the different 
flow transitions. In particular, a transition to an asymmetric state occurs when the extensional stagnation points 
lose their pinning to the background forcing. A further transition to higher frequency modal dynamics occurs 
when the stagnation points that were initially tied by the forcing to the centers of the rolls, begin to move. The 
relative frequencies of the motion of these stagnation points is a critical factor in determining the complexity 
of the flow, measured by the number of modes needed to capture most of the energy in the system. Even when 
the flows are more complex a small number of modes is sufficient to capture the time evolution of these flows, 
demonstrating the usefulness of the POD applied to viscoelastic fluids at zero Reynolds number. 

1. Introduction 

Instabilities in viscoelastic fluids in the low Reynolds number regime, 
where viscous effects dominate inertia, have been studied for many 
years; see [1–10] . These instabilities are connected to increased flow 

resistance [11] , the creation of secondary vortex flows [12] , and can 
lead to a flow state referred to as “elastic turbulence ” [13–16] . Insta- 
bilities and turbulence in low Reynolds number viscoelastic fluids also 
can yield high levels of mixing which is typically difficult to achieve in 
micro-fluidics or at low velocities [17] . 

Numerical simulations have proven to be a useful tool to study elas- 
tic instabilities [16,18–25] , with both the cross-slot and the 4-roll mill 
geometry allowing the study of the onset of complex dynamics near 
steady extensional points. There has been some theoretical work re- 
garding transitions to turbulence and criteria for instabilities, [5,26,27] . 
However, there is much left to understand regarding the development 
of “elastic turbulence ”, and the nature of the flows in these high Weis- 
senberg number (or long relaxation time) low Reynolds number fluids. 

Nearly singular solutions in the Oldroyd-B model of a viscoelastic 
fluid were identified in [19] at extensional points in a flow with a sim- 
ple four-roll mill background force. It was shown that the polymer stress 
concentrates into thin “stress islands ” that are symmetric along the axis 
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of extension. Beyond a critical Weissenberg number (Wi) the polymer 
stress grows exponentially in time (or faster) at the extensional point. 
With some numerical regularization it was shown that complex dynam- 
ics emerge beyond a critical Wi when the flow is highly stretched at 
the extensional point [23,24] . There are two transitions upon increas- 
ing Wi, first to an asymmetric state, and second to time-dependence. 
The transitions are similar to those identified in experiments [9] at an 
extensional point in a cross-slot flow. Experiments that are closer to the 
4-roll mill periodic geometry of the simulations were done in [28] where 
a 4x4 checkerboard of rotating disks drives a flow of a thin layer of a 
dilute polymer solution. In this experiment a transition to asymmetry 
was found for a critical Wi, next they observe a three dimensional insta- 
bility driving the free surface to buckle but for sufficiently large Wi the 
flow does become oscillatory. Simulations also uncovered interesting 
dynamics with the same numerical set-up from [23,24] using an alter- 
nate method to find periodic solutions [29] and a bifurcation diagram 

was mapped out locally around that solution. 
Here we will introduce a Proper Orthogonal Decomposition (POD) 

of numerical solutions to the Oldroyd-B model for viscoelastic fluids at 
zero Reynolds number. POD has been a useful tool for analyzing insta- 
bilities and turbulent flows in Newtonian fluid dynamics for many years, 
see for example [30–37] . The review [37] gives a thorough overview of 
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modal decomposition with particular applications to fluid mechanics. 
Despite the frequent use of POD for Newtonian fluid dynamics, the only 
application to the Oldroyd-B model appeared in [38] to analyze vis- 
coelastic fluids in the high Reynolds number regime. A difficulty with 
applying the techniques of POD to complex fluids arises because there 
is no natural inner-product space on the set of symmetric, positive def- 
inite tensors, and the elastic energy in the system (for the Oldroyd-B 
model) comes from the integral of the trace of the conformation ten- 
sor [39] . This is addressed in [38] by defining a POD on the unique 
symmetric square-root of the elastic stress tensor, and we employ this 
technique here as well. Another method to decompose the conformation 
tensor was recently introduced in [40] as a method to study turbulence 
in viscoelastic fluids. 

In what follows we will first describe the numerical framework for 
our exploration, including an introduction to the POD for viscoelastic 
fluids at zero Reynolds number. The main part of the paper describes the 
results of the viscoelastic POD for the Oldroyd-B model at zero Reynolds 
number. We also describe some results obtained using the FENE-P model 
[41] , a macroscopic closure that enforces finite extension of polymeric 
coils at the micro-scale. 

2. Model 

We use the Oldroyd-B model of a viscoelastic fluid at low Reynolds 
number, with explicit polymer stress diffusion, given in dimensionless 
form by 

Δ𝐮 − ∇ 𝑝 + 𝛽∇ ⋅ 𝐒 = 𝐟 , (1) 

∇ ⋅ 𝐮 = 0 (2) 

𝜕 𝑡 𝐒 + 𝐮 ⋅ ∇ 𝐒 − 
(
∇ 𝐮𝐒 + 𝐒 ∇ 𝐮 𝑇 

)
+ Wi −1 ( 𝐈 − 𝐒 ) = 𝜈𝑝 Δ𝐒 , (3) 

for u the fluid velocity, p the fluid pressure, and S , the (symmetric) con- 
formation tensor, a macroscopic average of the polymer orientation and 
stretching that is related to the polymer stress tensor by 𝝉𝑝 = 𝛽( 𝐒 − 𝐈 ) . 
The parameters, 𝛽, the non-dimensional polymer stiffness, and Wi, the 
Weissenberg number, or non-dimensional relaxation time, are defined 
by 

𝛽 = 
𝐺𝐿 

𝜇𝑈 
, Wi = 

𝜆𝑈 

𝐿 
, (4) 

for 𝜇 the solvent viscosity, 𝜆 the fluid relaxation time, G the polymer 
elastic modulus, L the system size, and U a characteristic velocity scale. 
Note that the Oldroyd-B model has 𝜈𝑝 = 0 in Eq. (3) . The polymer stress 
diffusion term, 𝜈p ΔS , for 𝜈p small, is included in the right-hand side 
of Eq. (3) as a numerical regularization, and this modification to the 
Oldroyd-B model will be described in detail in the next section. 

The background force is given by: 

𝐟 = 

( 
2 sin 𝑥 cos 𝑦 

−2 cos 𝑥 sin 𝑦 

) 

, (5) 

which in a Newtonian Stokes flow ( 𝛽 = 0 ) corresponds to a four-roll ve- 
locity field 𝐮 = − 

1 
2 
𝐟 . The Stokes solution sets the characteristic (inverse) 

time scale 𝑈∕ 𝐿 = 1 . 

2.1. Numerical details and parameters 

The system Eqs. (1) –(3) are solved in a 2D periodic domain, [0, 2 𝜋) 2 

with 𝑁 = 256 grid points in each direction, giving dx ≈0.025. We use 
a spectral method to solve the Stokes equations and time-step the ad- 
vection equation for the conformation tensor in Fourier space using a 
second order Adams–Bashforth method with time step 𝑑𝑡 = 0 . 0025 . This 
is the same numerical set-up used in [23,24] where the flow transitions 
that are discussed here were first observed. Some of the dynamics in this 

problem occur on very long time-scales and to capture the slow dynam- 
ics we run our simulations until at least 𝑡 = 1200 Wi , and in some cases 
longer. To compute the solutions we start from a random perturbation 
of the low Fourier modes from isotropic initial polymer stress S = I . A 
similar approach was used in [24] , but in this study the same random 

initial condition was used for all the simulations. 
The quantity 𝛽 ·Wi is the ratio of the polymer viscosity to solvent 

viscosity, so that given a particular working fluid the ratio is fixed in- 
dependently of experimental conditions. In our simulations 𝛽 ⋅Wi = 0 . 5 

is fixed. This value is consistent with the fluids used in experiments of 
dilute polymer solutions with highly viscous solvents, Boger fluids, (see, 
for example, [9] ). 

It is known that the Oldroyd-B model with the four-roll mill forc- 
ing has numerical difficulties associated with the lack of scale de- 
pendent diffusion and without adding some numerical regularization 
Eq. (1) –(3) (with 𝜈𝑝 = 0 ) will form a singularity (perhaps at infinite 
time) [19,42,43] . Therefore, we include scale dependent polymer stress 
diffusion to the right-hand side of Eq. (3) , of the form 𝜈𝑝 = 𝑐( 𝑑𝑥 2 ) and 
𝑐 = 1 . 66 . Scale dependent polymer diffusion will regularize the solutions 
so that long-time solutions are smooth [44] and upon grid refinement 
the solutions converge to the Oldroyd-B model. Analytically it has been 
shown that global solutions to the Stokes–Oldroyd-B model with diffu- 
sion exist for any c > 0 [45] , but for 𝑐 = 0 , this is still an open question 
even in 2D. 

2.2. Viscoelastic proper orthogonal decomposition 

The main tool we employ to analyze the solutions from our simula- 
tions is the Proper Orthogonal Decomposition (POD), also known as the 
Karhunen–Loève analysis, or principal component analysis. This method 
provides an algorithm to decompose a set of data into a minimal num- 
ber of basis functions or modes to capture as much energy as possible. 
Furthermore, the obtained modes are ordered in terms of the percent of 
energy contained in each mode. 

See [33,37] for a review of decomposition methods in fluid dynam- 
ics, and [38] for an application of this method to viscoelastic flows at 
non-zero Reynolds number. To our knowledge this is the first applica- 
tion of a POD analysis of a viscoelastic flow at zero Reynolds number. 
We sketch the algorithm below and set up the notation for what follows. 

We consider the POD for a vector 𝐪 ( 𝝃, 𝑡 ) ∈ ℝ 𝑛 that is a function of 
spatial variables 𝝃, and time t . In our application we will assume a sep- 
aration of space and time and look for a decomposition around the tem- 
poral mean, �̄� , of the form 

𝐪 ( 𝝃, 𝑡 ) − ̄𝐪 ( 𝝃) = 
∑

𝑗 

𝑎 𝑗 ( 𝑡 ) 𝝓𝑗 ( 𝝃) , (6) 

where a j ( t ) are the (scalar) temporal coefficients and 𝝓j ( 𝝃) are the spatial 
or geometric modes. To compute any POD, we consider a time-interval 
𝑡 ∈ 𝑡 0 − 𝑡 end in equally spaced time increments Δt . In what follows we 
will give the time-interval and increments that we use in each POD (note 
it is not necessary to use the same grid refinement or time-resolution 
for the POD as the original simulation). The vector we decompose is 
the unique symmetric square-root, b , of the symmetric conformation 
tensor 𝐒 = 𝐛 2 , this choice is made so that the energy in the system can 
be written in terms of the stored elastic energy, as will be explained 
further below. To give an ordering for b as a vector we write 

𝑞 𝑗 ( 𝝃, 𝑡 ) = 

⎡ 
⎢ ⎢ ⎣ 

( 𝑏 11 ) 𝑗 ( 𝑥, 𝑦, 𝑡 ) 

( 𝑏 12 ) 𝑗 ( 𝑥, 𝑦, 𝑡 ) 

( 𝑏 22 ) 𝑗 ( 𝑥, 𝑦, 𝑡 ) 

⎤ 
⎥ ⎥ ⎦ 
, (7) 

for 𝑗 = 1 , …, 𝑁 𝑡 , where N t is the number of snapshots of the data to in- 
clude, defined below. 

We employ the method of snapshots over a time-interval 𝑡 ∈ 𝑡 0 − 𝑡 end 
because often the number of snapshots of data needed to resolve the 
temporal behavior 𝑁 𝑡 = 

𝑡 𝑒𝑛𝑑 − 𝑡 0 
Δ𝑡 

is far less than the number of spatial vari- 

ables 𝑛 = 3 𝑁 2 , i.e. N t < < n . 
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Fig. 1. Solution for Wi = 5 at t = 6000 (a) Contours of tr S , (b) Vorticity contours, and (c) Stagnation points of vector field with threshold of 10 −4 . 

The POD is based on an eigenfunction decomposition of the system 

in the form 

𝑋 𝑇 𝑋 𝝍 𝑗 = 𝐸 𝑗 𝝍 𝑗 , for 𝝍 ∈ ℝ 𝑁 𝑡 , 

where 

𝑋 = 
[
𝐱 ( 𝑡 1 ) 𝐱 ( 𝑡 2 ) … 𝐱( 𝑁 𝑡 ) 

]
∈ ℝ 

𝑛 ×𝑁 𝑡 , 

and 𝐱 = 𝐪 − ̄𝐪 . The geometric modes are recovered from the 𝝍 via 

𝝓𝑗 = 𝑋 𝝍 𝑗 
1 √
𝐸 𝑗 

, for 𝑗 = 1 , ….𝑁 𝑡 . 

The eigenvalues E j represent how much of the original data is captured 
by each mode. The temporal coefficients are reconstructed by 

𝑎 𝑗 ( 𝑡 ) = 
(
𝐪 ( 𝝃, 𝑡 ) − ̄𝐪 ( 𝝃) , 𝝓𝑗 ( 𝝃) 

)
𝐸 

, 

where (,) E is the inner-product defining the energy space. 
Ordering the modes by the size of E j , we can retain modes that cap- 

ture as much of the original data (in an L 2 sense) as we like. In what 
follows we keep the number of modes to capture at least 95% of the 
original data, i.e. we keep r < < N t modes such that 

𝑟 ∑
𝑗=1 

𝐸 𝑗 ∕ 

𝑁 𝑡 ∑
𝑗=1 

𝐸 𝑗 > 0 . 95 . 

In terms of compression of data this can be a significant savings, for 
example in what follows we find that 𝑟 = 14 is the largest number of 
modes we need to keep to capture 95% of the energy in all the cases we 
consider. 

In fluid dynamics this technique is useful because if we choose 𝐪 = 𝐮 

to be the velocity of the fluid, then the relevant vector space has inner 
product 

( 𝐮 , 𝐯 ) 𝐸 = 
1 

𝑉 ∫𝑉 

1 

2 
𝜌𝐮 ⋅ 𝐯 𝑑𝑥 

and the kinetic energy per unit volume is 

𝐄 = 
1 

𝑉 ∫𝑉 

1 

2 
𝜌|𝐮 |2 𝑑𝑥 = ( 𝐮 , 𝐮 ) 𝐸 (8) 

In this case the eigenvalues will represent how much kinetic energy fluc- 
tuations in the system is captured by each mode. In a viscoelastic fluid 
modeled by the Oldroyd-B equations the conformation tensor represents 
the amount of stored elastic energy in a volume of fluid [41] , via 

𝐄 ve = 
1 

𝑉 ∫𝑉 

1 

2 
𝛽tr 𝐒 𝑑𝑥. 

This energy does not have a natural representation as an inner-product, 
in part because the set of symmetric positive definite matrices is not a 

vector-space [39] . However if we write S in terms of the unique sym- 
metric square-root [46] , 𝐒 = 𝐛 2 or 𝑆 𝑖𝑗 = 𝑏 𝑖𝑘 𝑏 𝑘𝑗 , then we can see that 
tr 𝐒 = tr ( 𝐛 2 ) = 𝑏 2 

𝑖𝑗 . Thus if we introduce the inner product 

(
𝐛 , 𝐛 ′

)
ve = 

1 

𝑉 ∫𝑉 

1 

2 
𝛽 𝑏 𝑖𝑗 𝑏 

′
𝑖𝑗 𝑑𝑉 , (9) 

we have 𝐄 ve = ( 𝐛 , 𝐛 ) ve . A POD using this inner product will lead to 
eigenvalues that measure fluctuations in the stored elastic energy per 
unit volume. In the case of the Oldroyd-B model this energy is the me- 
chanical energy, and although this is not strictly true for other models 
(such as FENE-P) this energy still gives a POD formulation of other sys- 
tems. 

For each Wi, we will compute a POD as described above on some 
specified temporal domain 𝑡 ∈ [ 𝑡 0 − 𝑡 end ] with a given Δt . We will retain 
the minimum number of modes to capture 95% E ve . The POD will give a 
set of modes 𝝓k ( x, y ) and temporal coefficients a k ( t ) along with energy 
levels E k that weight the modes in terms of the amount of energy they 
contribute. 

3. Flow dynamics 

Our computational set-up is similar to that used in [23,24] , and as 
we saw there we have several different flow regimes depending on Wi. 
In this paper we have studied cases for 4 ≤ Wi ≤ 12 in increments of 0.25. 
For each case, we categorize the flow dynamics and show how the use of 
POD can aid in our understanding of the solutions as well as the catego- 
rization of the dynamics. For Wi ≤ 5 the long time behavior of the flow 

is steady with two symmetries, left-right, and up-down, see Fig. 1 for ex- 
ample. For 5.25 ≤ Wi ≤ 6 the flow loses one symmetry and the transient 
behavior includes oscillations that eventually are damped out, but the 
long time behavior of the flow is steady with one symmetry. For higher 
Wi the transient oscillations remain and the flow is unsteady. Both peri- 
odic and aperiodic behaviors are observed and we further characterize 
the types of behavior in terms of the dominant modes in the POD. 

When the flow is time dependent the POD is very convenient for 
defining and understanding the different dynamics of the flows. Note 
here that the time range over which a POD is computed will effect the 
outcome of the decomposition. In particular if a flow has a transient 
from an unstable steady state to another state it is possible to include 
the transient to see the dynamics of the transition or exclude it to focus 
on the long-time dynamics. We will explore these different views of the 
solution for the cases we consider. 

3.1. Steady solution (two symmetries): Wi ≤ 5 

For Wi ≤ 5 the flow evolves to a steady symmetric solution after a 
very short transient, 𝑡 ≈ 20 − 50 . This transient arises in all the numeri- 
cal experiments since the initial condition (a perturbation from isotropic 
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Fig. 2. First temporal mode, a 1 , for the cases Wi = 5 . 25 (left) and Wi = 7 (right). 

stress) is not a solution of the governing equations. This transient does 
not affect the long-time dynamics that we are categorizing. By choos- 
ing a fixed initial condition we are limiting the dynamics that we will 
explore to the stable solutions that arise from the chosen initial condi- 
tion. A more complete exploration of this dynamical system is beyond 
the scope of this work. We will henceforth ignore this initial transient 
in our discussion of the solutions. 

Fig. 1 (a) shows contours of tr S for Wi = 5 at 𝑡 = 6000 . The trace of 
the conformation tensor tr S represents the amount of stretching of the 
immersed polymers, and is the strain energy density of the flow. The 
extensional point at the center creates symmetric stress islands that are 
elongated in the direction of stretching (horizontal) and concentrated 
in the direction of compression (vertical). There are two symmetries, 
about the lines 𝑥 = 0 and 𝑦 = 0 . We include axes labels ( x, y ) as well as 
the domain [0, 2 𝜋) × [0, 2 𝜋) in this figure, but suppress these axes and 
axes labels for all future figures with contours of the stress and vorticity 
as they have the same domain. 

Fig. 1 (b) shows a snapshot of the vorticity at the same instant clearly 
demonstrating the 4-roll pattern characteristic for this problem config- 
uration for small Wi number. Counter-vortices arise in the opposite di- 
rection along the direction of stretching to balance the stress. There are 
8 stagnation points ( 𝐮 = (0 , 0) ) in the domain, plus periodic copies. For 
small Wi these stagnation points are either pure extension ( type 1 in 
Fig. 1 (c)) or pure rotation ( type 2 in Fig. 1 (c)). For higher Wi the dy- 
namics of the flow are connected with the movement of these stagna- 
tion points (as was seen in [24] ). In what follows we highlight (in pink) 
a somewhat coarse threshold, 𝑢 2 + 𝑣 2 ≤ 10 −4 , to visualize regions near 
the stagnation points and track those regions through the complex flows 
that arise. When identifying the frequency of the stagnation points we 
trace the centroid of 𝑢 2 + 𝑣 2 and track the frequency of those points. 

A POD decomposition is unnecessary when the flow is steady be- 
cause the temporal mean is subtracted before computing the modes (see 
Eq. (6) ) and deviations from the temporal mean are negligible. 

3.2. First transition: Movement of extensional stagnation points, type 1 

One of the main advantages of the POD is that the modes are ex- 
tracted in the order of energy that they represent. For Wi ≥ 5.25 as the 
temporal evolutions evolve, the first mode of the POD of the entire 
time series always displays a jump when the temporal evolution first 
appears. This jump does not give information about what type of be- 
havior will evolve, but indicates the onset of time-dependent solutions. 
As an example, Fig. 2 shows this first temporal mode for two different 
types of solutions. On the left, Wi = 5 . 25 , the mode has a constant value 
until some time where a jump occurs and the mode continues with a 

Fig. 3. Onset time ( t s ) of time-dependence (normalized by Weissenber number 
Wi) as a function of Weissenberg number. 

different constant value. On the right, for Wi = 7 , the mode clearly shows 
oscillatory behavior after the jump. 

We can use the onset time of the time dependent behavior as a pa- 
rameter to “see ” the bifurcation to time-dependent states beyond Wi ≈5. 
We calculate the onset time of time-dependence, t s , by selecting a change 
of 5% of the early time value of the dominant mode. Fig. 3 shows the 
starting time of the time-dependent solutions for the different Wi stud- 
ied scaled with the relaxation time. In the bifurcation diagram, we see 
clearly how t s /Wi diverges as Wi ↘5. 

Some of the cases we consider are more complicated to characterize 
than others, and they will be described further in the following sections 
using not only the first mode but all the relevant modes. A summary 
of the different solutions we find is presented in Table 1 which gives a 
flavor of the complexity of the problem. For each group of states, the 
required number of modes to capture 95% of the energy is calculated 
using different time intervals for the POD: considering the all the sim- 
ulated time, and the late time of the flow once the long-time dynamics 
are established. 

3.2.1. Steady solution (one symmetry): 5.25 ≤ Wi ≤ 6.00 
We use data for Wi = 6 to represent the behavior in this range of Wi. 

Initially the flow is symmetric and qualitatively similar to the Wi = 5 

case above, see Fig. 4 (a), however now this symmetric solution is not 
stable. The loss of stability as Wi increases may be related to the fact 
that the maximum of the conformation tensor grows linearly with Wi 
[44,47] . At around t ≈1980 ( t ≈330Wi) this unstable solution evolves to 
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Table 1 
Categorization of flow states and number of modes needed to capture 95% of the energy 
over different time periods. 

Wi range # Flow Long-time dynamics # a modes # a modes 
transitions all times late times 

Wi = 4 . 00 − 5 . 00 0 Steady 2 symmetries 0 0 
Wi = 5 . 25 − 6 . 00 1 Steady 1 symmetry 1–2 0 
Wi = 6 . 25 − 7 . 75 1 Periodic (oscillatory) 3–6 4–5 
Wi = 8 . 00 − 8 . 75 1 Periodic (loop) 6–8 6 
Wi = 9 . 00 − 10 . 25 2 Aperiodic 9–14 11–13 
Wi = 10 . 50 − 12 . 00 2 Periodic (dominant vortex) 6 4 

Fig. 4. Time evolution of Wi = 6 . tr S in the first row and vorticity superimposed with the stagnation points in the second row. 

an oscillatory state. As the symmetric solution loses stability the exten- 
sional stagnation points ( type 1 ) begin to oscillate in the ± y direction. 

The stagnation points are shown in pink in Fig. 4 in the second row 

superimposed on contours of the vorticity. Fig. 4 (b) is a snapshot at the 
time of the first peak of the oscillation, and it is possible to see the oscil- 
lation by examining the location of the stagnation points in the vorticity. 
We also see that the center island in tr S is bent to the right and oscillates 
in the vertical direction. The oscillations decrease in time and eventu- 
ally the solution converges to a new steady state which has only one 
spatial symmetry (in the vertical direction). Details can also be seen in 
the supplementary information online where movies for tr S and vortic- 
ity of all the representative cases are included. We ran this simulation 
until 𝑡 = 2000 Wi to ensure that it has converged to a steady state. We 
see the same symmetry in the vorticity with the stagnation points high- 
lighted in Fig. 4 . During the transient the 4-rolls lose symmetry in the 
𝑦 − direction. The loss of up-down symmetry is dependent on the initial 
conditions, thus rotations of this case are possible for other initial con- 
ditions. This type of symmetry breaking instability was first observed 
experimentally near the extensional stagnation point in a cross-slot ge- 
ometry [9] . 

We use a POD to characterize the time-dependent motion for Wi = 6 

over three different time ranges with Δ𝑡 = 5 in each case: 𝑡 = 0 − 1200 Wi , 
𝑡 = 1000 Wi − 1200 Wi , and 𝑡 = 1800 Wi − 2000 Wi . First, we describe the 
POD over the entire time series. Two modes are sufficient to capture 
95% of the energy in this case, see Fig. 5 (a). The first mode, a 1 , is 
steady in the initial symmetric period with a jump at the onset of the 
time-dependence, meanwhile the time-dependent damped oscillations 
are captured by the second mode, a 2 . We also find that the frequency 

associated with the second mode is the same frequency as the vertical 
displacement of the extensional stagnation points of type 1 . This can be 
seen in Fig. 5 (b) where we plot mode a 2 (right axis) as well as the ver- 
tical position of the center stagnation point, y c (left axis) over the same 
time period. 

We get a different view of the solution by doing a POD for later times. 
Now we perform the decomposition for 𝑡 = 1000 Wi − 1200 Wi . Again two 
modes are required to capture 95% of the energy, but in this case there is 
no transient. The percent of the energy in each of the modes is shown in 
Fig. 6 (a), and the temporal structure of the modes is shown in Fig. 6 (b). 

We turn now to the spatial information in the POD. Recall that the 
spatial modes are given in terms of b ij , but the conformation tensor in- 
volves the square, 𝐒 = 𝐛 2 . For example we have 

tr 𝐒 = 𝑏 2 𝑖𝑗 = 𝑏 2 
11 + 2 𝑏 2 

12 + 𝑏 2 
22 . (10) 

Thus (from Eq. (6) ) one needs information from all of the components 
of b as well as the mean to reconstruct tr S . We display the mean and 
the two modes for each component of b in Fig. 7 . We remark that the 
geometric modes have roughly the same spatial complexity as the stress 
at an instant in time. We can quantify this by examining how many 
Fourier modes are needed to represent the solution to some level of ac- 
curacy and find that a comparable number of Fourier modes are needed 
for the geometric modes and for the full solution at some instant in time. 

Since the temporal mode is oscillatory, the oscillations we saw in 
tr S in Fig. 4 come from the periodic addition and subtraction of the b ij 
modes to the mean. The first mode clearly shows vertical oscillations, 
and the second mode represents (much smaller in energy) left/right os- 
cillations. 
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Fig. 5. (a) Temporal modes for Wi = 6 obtained with POD in the range 𝑡 = 0 − 1200 Wi , with Δ𝑡 = 5 , (b) position of the central stagnation point (left axis) and a 2 
mode (right axis) of Wi = 6 obtained with POD in the range 𝑡 = 0 − 1200 Wi , with Δ𝑡 = 5 . 

Fig. 6. Features obtained from the POD for 
Wi = 6 for times between 1000 Wi − 1200 Wi , 
with Δ𝑡 = 5 . 

The long-time behavior in this case is steady and hence a POD at 
sufficiently long times will not generate any modes since the difference 
between the flow and the mean are negligible. In this case we used 
𝑡 = 1800 Wi − 2000 Wi . 

3.2.2. Periodic solution (oscillatory): 6.25 ≤ Wi ≤ 7.75 
We look at Wi = 7 as a representative solution in this regime. For 

Wi = 6 we saw an initial symmetric long time transient which became 
unstable with damped oscillations that eventually died out leading to a 
long time steady case with one symmetry. For Wi = 7 oscillations do not 
get damped, and the long-time behavior of the solution is periodic. Fur- 
thermore, the oscillations are observably both in the vertical direction 
and the horizontal direction. 

Fig. 8 shows snapshots of tr S and vorticity over one period once the 
flow has converged to a periodic state. The flow for Wi = 7 has lost 
both the vertical and horizontal symmetry and now over a period we 
see oscillations between near up-down symmetry with two dominant 
vortices in the left cells and near left-right symmetry with two dominant 
vortices in the top cells. This flow is stably periodic although it has 
similarities with the single symmetry flow for Wi = 6 . In particular the 
flow state in Fig. 8 (a) is similar to that from Fig. 4 (d). 

We show results of a POD using temporal data over 5 periods of the 
long-time behavior in Fig. 9 . Here 5 modes capture 95% of the energy 
with the first mode having about 67% E ve . The next 4 modes come in 
pairs with modes 2&3 having about 10% E ve each and 4&5 having about 
5% E ve each. We plot the time-series of the first 3 modes in Fig. 9 (b) and 
see that the modes all have the same frequency. 

Fig. 10 shows the temporal mean and three geometric modes for b ij . 

The first mode shows a left-right oscillation in b 11 and a up-down 
oscillation in b 22 . The b 12 mode contributes to rotations. The pairs of 
modes 2&3 will represent traveling structures and there are symmetries 
in these modes as well, e.g. mode 2 of b 11 reflected by 𝑥 = 𝑦 axis and 
displaced by 𝜋 gives mode 3 of b 22 and similarly between mode 3 of b 11 
and mode 2 of b 22 . 

3.2.3. Periodic solution (loop): 8.00 ≤ Wi ≤ 8.75 
Like Wi = 7 , the solutions for 8.00 ≤ Wi ≤ 8.75 are also periodic, but 

now the flow has transitioned again. We describe the flow for Wi = 8 as 
a representative from this group. In this case there is an initial transient 
where the solution behaves like Wi = 7 , but eventually a new periodic 
state evolves where the dominant vortex “loops ” around all 4-rolls, ro- 
tating clock-wise (in this case). Fig. 11 shows the time evolution of the 
vorticity in a period where the loop can be seen. Note that the period is 
very long, T ≈1210. 

A POD is performed over 5 periods, and the energy in the modes is 
shown in Fig. 12 (a). Now the first two modes contribute equally (each 
about 35%) to the energy. Note that pairs of modes typically repre- 
sent traveling structures, and in this case we see the vortices and other 
flow features rotating through the quadrants. The time-series, Fig. 12 (b) 
shows that these two first modes are periodic with the same period, with 
a phase-lag. The higher modes also have the same frequency. 

The temporal mean of all the b components is shown in Fig. 13 first 
column. Again we find a symmetry where one can obtain the mean of 
b 22 from b 11 with a shift and reflection over 𝑦 = 𝑥. Note that in this case 
that the relative difference between b 11 and b 22 (modulo the symmetry) 
is less than 1%. Modes 1 and 2 also have such symmetries. 
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Fig. 7. Features obtained from the POD for Wi = 6 for times between 1000 Wi − 1200 Wi , with Δ𝑡 = 5 . 

Fig. 8. Time evolution of Wi = 7 . tr S in the first row and vorticity superimposed with the stagnation points in the second row. 

3.3. Second transition: Movement of rotational stagnation points, type 2 

For cases with Wi ≥ 9 the flow presents a new kind of solution. The 
temporal evolution can be described as follows. There is a transient sim- 
ilar to the Wi = 5 solution, after which there is a change in behavior 
associated with the displacement of the extensional stagnation points 

( type 1 ) (starting in the center of the domain). Later there is a second 
transition associated with the movement of the rotational stagnation 
points ( type 2 ) (moving from the centers of the quadrants). The frequen- 
cies of the motion of the stagnation points now leads to two qualitatively 
different types of flows, described below. 
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Fig. 9. Features obtained from the POD de- 
composition of Wi = 7 using five periods, 
T ≈815, with Δ𝑡 = 5 . 

Fig. 10. Features obtained from the POD decomposition of Wi = 7 using five periods, T ≈815, with Δ𝑡 = 5 . 

3.3.1. Aperiodic solution: 9 ≤ Wi ≤ 10.25 
We use Wi = 10 to represent the flows for this range of Wi. After 

the transient, a big dominant vortex is created in the bottom left cor- 
ner (again other possible orientations are possible from different initial 
conditions) at t ≈1300, and later, around t ≈3600 higher frequency os- 
cillations arise in the flow. The flow is not periodic and the POD demon- 
strates this clearly with many more modes needed to capture the energy 
and aperiodicities in the temporal coefficients. For example, when com- 
puting a POD over the time 𝑡 = 0 − 1200 Wi we see that 13 modes are 
needed to capture 95% of the energy, see Fig. 14 (a). However, much of 
the relevant information can be obtained by using the first four modes 

which capture 83% E ve . In Fig. 14 (b) we plot the first 3 temporal modes 
a 1 , a 2 , and a 3 for a POD computed over the time 𝑡 = 0 − 1200 Wi (mode 
a 4 is similar to a 3 ). As we saw for all Wi ≥ 6 the first mode is the shift 
mode representing the initial transient from symmetric to asymmetric. 
Mode a 2 shows the onset of the oscillations of type 1 when the symmetry 
break occurs. The higher frequency oscillations occur around t ≈3600 
when the stagnation points of type 2 being to move, and these oscilla- 
tions are captured by a 3 . 

Focusing now on the long-time behavior, we can define a near-period 
of the flow for Wi = 10 by looking at the POD of the flow after the second 
transition, for example for 𝑡 = 1000 Wi − 1200 Wi , and using an approxi- 
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Fig. 11. Time evolution of vorticity superimposed with the stagnation points for Wi = 8 . 

Fig. 12. Features obtained from the POD 
decomposition of Wi = 8 using five periods, 
T ≈1210, with Δ𝑡 = 5 . 

Fig. 13. Features obtained from the POD decomposition of Wi = 8 using five periods, T ≈1210, with Δ𝑡 = 5 . 
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Fig. 14. Features obtained from the POD de- 
composition for Wi = 10 . (a)-(b) POD over 
𝑡 = 0 − 1200 Wi , with Δ𝑡 = 5 , (c)-(d) POD over 
5 T mode1 , with T mode1 ≈314, with Δ𝑡 = 0 . 1 . 

mation of the period of the highest energy mode at these late times in 
the flow, obtaining T mode 1 ≈314. We then use this T mode 1 to compute 
the POD over 5 T mode 1 , and show the energy in the modes in Fig. 14 (c). 

While 13 modes are needed to capture 95% of the energy, the flow 

is now dominated by the first 3 modes, this time capturing 76% E ve . 
The temporal evolution of these modes over late times, is shown in 
Fig. 14 (d). For this long-time behavior the shift mode does not appear. 
Now we find that the frequencies of the first two modes are the same 
as the frequencies of the oscillations of the stagnation points of type 1 
and type 2 . We find T mode 1 ≈314 and T mode 2 ≈57, these two frequen- 
cies are not multiples of each other, and this creates the aperiodicity in 
the flow. Note that the POD decomposition was computed with a very 
small time interval Δ𝑡 = 0 . 1 to avoid any imprecision caused by calculat- 
ing the POD decomposition with Δ𝑡 = 5 , with little change in the result. 
We conclude that it is not possible to represent this kind of solution with 
periodic modes. 

Fig. 15 shows snapshots of contours of tr S over time. The initial tran- 
sient shows oscillations in the stress concentration with a dominant vor- 
tex in the bottom left corner. The second temporal transition has led to a 
qualitatively different flow state where the stress concentration appears 
to rotate within the dominant vortex with a period that is not a multiple 
of the oscillations. The snapshots are plotted at fractions of T mode 1 , and 
we can see that the motion is not periodic. 

The temporal mean and first three geometric modes of b are shown 
in Fig. 16 . These modes display the same features associated with os- 
cillations and rotations as have been seen previously. It is the temporal 
structure of the modes, i.e. the frequencies are not multiples of one an- 
other, that causes the flow complexity. 

3.3.2. Periodic solution (dominant vortex): 10.5 ≤ Wi ≤ 12. 
In this range we find that the solutions are once again periodic, 

here we use Wi = 12 to represent the solutions in this range. The 
temporal evolution of this solution has an initial transient with two 

symmetries followed by oscillations in the stagnation points of type 1 . 
Unlike Wi = 10 , these oscillations decay nearly to zero leading to an un- 
stable asymmetric steady state. This is followed later by another tran- 
sition when the stagnation points of type 2 oscillate. In this case, the 
oscillations in the stagnation points of type 1 and type 2 have the same 
frequency, and the solution is periodic. We show snapshots of tr S over 
a period in Fig. 17 . 

In this case we present results of the POD over 5 periods of the long- 
time behavior. For this periodic flow, four modes capture 95% of the 
energy as it is shown in Fig. 18 (a). The modes come in pairs with a 1 and 
a 2 having the same energy as do a 3 and a 4 . The temporal behavior is 
shown in Fig. 18 (b). We see that modes a 3 , a 4 have double the frequency 
of modes a 1 , a 2 . 

In Fig. 19 we plot the geometric modes and we can see again how 

the full solution can be constructed out of minimal information. We note 
that Δ𝑡 = 1 was used in this case to get the appropriate temporal resolu- 
tion since the frequency of the motion is high. Due to the simplicity of 
this flow, only 6 modes are needed to represent the full solution includ- 
ing both transients. 

4. Spatio-temporal error in approximation with POD 

The POD is an approximation of the solution in terms of the energy, 
but here we consider a measure of the error in the approximation of the 
solution in both space and time. The viscoelastic POD at zero-Reynolds 
number gives the elastic modes for b , and the modes for S involve the 
squares of the modes of b . For each b ij , 1 ≤ i ≤ j ≤ 2, we define an approx- 
imation for b ij with r modes: 

�̃� 𝑟 𝑖𝑗 = �̄� 𝑖𝑗 ( 𝑥, 𝑦 ) + 

𝑟 ∑
𝑘 =1 

𝑎 𝑘 ( 𝑡 ) 𝑏 
𝝓𝑘 
𝑖𝑗 ( 𝑥, 𝑦 ) , (11) 
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Fig. 15. Time evolution of tr S for Wi = 10 , non-periodic solution. 

Fig. 16. Features obtained from the POD decomposition of Wi = 10 using five T mode1 ≈314, with Δ𝑡 = 0 . 10 . 

where 𝑏 𝝓𝑘 
𝑖𝑗 is the geometric mode for b ij coming from 𝜙k , and �̄� 𝑖𝑗 ( 𝑥, 𝑦 ) is 

the temporal mean of b ij . With this we define 

�̃� 𝑟 𝑖𝑗 = ̃𝑏 𝑟 
𝑖𝑘 �̃� 

𝑟 
𝑘𝑗 . (12) 

to be the approximation of S ij , with r modes. 

We compare the approximate solution tr ̃𝐒 𝑟 using r modes (i.e. the 
number of modes needed to capture 95% E ve ) with the full solution tr S , 
and define the relative error in this approximation as 

Rel. error = mean time 
‖tr 𝐒 − tr ̃𝐒 𝑟 ‖

‖tr 𝐒 ‖ , (13) 
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Fig. 17. Time evolution of tr S for Wi = 12 , periodic solution. 

Fig. 18. Features obtained from the POD de- 
composition of Wi = 12 using 5 periods of the 
last temporal behavior, T ≈66 with Δ𝑡 = 1 . 

Fig. 19. Features obtained from the POD decomposition of Wi = 12 using five periods, T ≈66 with Δ𝑡 = 1 . 

where ‖ · ‖ is the L 2 norm. In each case we reconstruct using a POD 

over 𝑡 = 0 − 1200 Wi with Δ𝑡 = 5 . The errors are listed in Table 2 . In all 
cases the error is around 10%, largest for Wi = 8 which has the large- 
scale traveling vortices. It is also quite small for the case Wi = 6 which 

only involves a transient between two steady cases. This shows that the 
energy decomposition gives a reasonably good approximation for the 
flow over the time series in terms of differences at a fixed point in space 
and time. 
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Fig. 20. Features obtained from the POD de- 
composition using 5 T mode1 of the last tem- 
poral behavior. (a) FENE-P for Wi = 12 , with 
T mode1 ≈250. (b) Oldroyd-B for Wi = 10 , with 
T mode1 ≈314. 

Table 2 
Relative error for tr ̃𝐒 , and the number of 
modes needed to capture 95% E ve over the 
whole time series 0 − 1200 Wi using Δ𝑡 = 5 . 

Wi Rel. error # of modes for 95% E ve 

6 3.4% 2 
7 9.07% 6 
8 13.15% 8 
9 8.78% 9 
10 9.43% 13 
11 9.44% 6 
12 9.81% 6 

5. FENE-P model 

The results in the previous sections are calculated for a fixed grid 
with added polymer stress diffusion to regularize the solutions. We have 
checked that upon refinement if we fix the stress diffusion we obtain 
the same solution dynamics, but the dynamics do change quantitatively 
(and may change qualitatively) when the diffusion is grid-dependent. 
However, when the stress diffusion is fixed independently from the grid, 
the set of equations does not converge to the Stokes–Oldroyd-B system 

as dx →0. Fixed diffusion as a numerical regularization will set a length- 
scale for max tr S , as well as for the width of the stress islands that con- 
centrate in the direction of compression (at least in the symmetric tran- 
sient of the solution [44,47] ). The influence of artificially large stress 
diffusion on the dynamics of elastic turbulence is considered in a recent 
paper [48] . There are many other types of numerical regularizations 
that have been used to make solutions of the Stokes-Oldroyd-B equa- 
tions more robust (see [8] for a nice review of numerical method for 
viscoelastic fluids). In addition there are many other models that one 
can use to enforce finite extension, such as FENE-P or other FENE mod- 
els [41,49,50] , and many different models with some sort of nonlinear 
relaxation term that will effect how the stress grows at extensional points 
such as the Giesekus [51] or PTT models [52] . In the case of a steady 
extensional flow such as the 4-roll mill geometry considered here, some 
numerical regularization is still necessary in the FENE-P, Giesekus, and 
PTT models [19,53] to obtain long-time solutions. However, in the 4-roll 
mill geometry, beyond the transition to unsteady solutions, no artificial 
diffusion was needed to simulate the flow dynamics with FENE-P using 
the square-root method [46] . 

To demonstrate that with other models we can recover qualitatively 
similar results to those described above, we run simulations with the 
FENE-P model and perform a POD of the obtained data. The FENE-P 
model is given by 

Δ𝐮 − ∇ 𝑝 + 𝛽∇ ⋅ 𝐒 = 𝐟 , (14) 

∇ ⋅ 𝐮 = 0 (15) 

𝜕 𝑡 𝐂 + 𝐮 ⋅ ∇ 𝐂 − 
(
∇ 𝐮𝐂 + 𝐂 ∇ 𝐮 𝑇 

)
+ Wi −1 ( 𝐈 − 𝐒 ) = 0 . (16) 

Here the conformation tensor C , is related to the stress tensor S , via 

𝐒 = 
𝐂 

1 − 
(
tr 𝐂 ∕ 𝓁 2 

) , (17) 

where 𝓁 2 is the parameter to enforce maximum extension of polymer 
coils. We use initial data for the conformation tensor from a Stokes- 
Oldroyd-B solution for Wi = 12 at a time that is beyond the second tem- 
poral transition when the flow is well into the periodic regime. We run 
a simulation of FENE-P from this initial data for 𝑡 = 1600 time units with 
diffusion set to 𝜈p ≈0.0006, and a length cut off 𝓁 2 = 400 . After this flow 

reaches a new near-periodic state we set the diffusion to zero and con- 
tinue the simulations. A POD of the data for this simulation of FENE-P at 
Wi = 12 is performed and we find the behavior to be strikingly similar 
to the Wi = 10 case for Stokes-Oldroyd-B explained in Section 3.3.1 . In 
particular we need 10 modes to capture 95% E ve and the first 3 modes 
capture 78% E ve , (compared to 76% E ve for Wi = 10 , Oldroyd-B) with the 
second and third mode in pairs. The period of the highest energy mode is 
approximately 𝑇 mode 1 = 250 . We show the first 4 temporal coefficients 
of the POD over 5 T mode 1 for FENE-P at Wi = 12 in Fig. 20 (a) to make 
a comparison with the temporal structure of the solution for Oldroyd-B 
at Wi = 10 , plotted in Fig. 20 (b). 

6. Conclusion 

We have analyzed the dynamics for the Stokes-Oldroyd-B system of 
a viscoelastic fluid at zero Reynolds number in a 2D periodic geometry 
with a 4-roll mill background force. The system demonstrates multi- 
ple bifurcations and an underlying complex dynamical system. As the 
Weissenberg number is increased, in the range 4 ≤ Wi ≤ 12, the system 

transits from steady solutions to periodic solutions to aperiodic solu- 
tions and back again to periodic solutions. Some of these dynamics are 
complicated, and we have used POD to examine them. We define an 
energy based on the square-root of the conformation tensor to perform 

the POD in terms of the elastic energy of the system. This technique 
has previously only been used to examine high Reynolds number elastic 
turbulence. 

The POD gives a low mode representation to the system which is con- 
nected to essential dynamics of the flow, and easily demonstrate tran- 
sitions in the flow. We have found that we need at most 14 modes to 
capture 95% of the energy of the system using the POD, which is a fairly 
small set of modes. Furthermore, in our examples we have shown that 
the POD is able to capture both the long-time dynamics of the system 

or the transients from different solution types depending on what time- 
series of data is used in the decomposition. Either representation may 
be useful depending on the application. 

Another advantage of using a POD is the ability to approximate the 
temporal behavior of the flow with only a few time-independent geo- 
metric modes and scalar temporal coefficients or modes. This small set 
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of spatial and temporal modes replaces numerous snapshots, and still is 
able to capture the flow dynamics with reasonable accuracy. We found 
that we could reconstruct the time evolution of tr S with ≈10% relative 
error in space and time (except for Wi = 8 ). Using the POD as an approx- 
imation provides a significant savings in data storage. The true benefit 
of the compression capability of the POD would be seen for 3D simu- 
lations or simulations with very long channel flow geometries. These 
more computationally expensive geometries are where physical purely 
elastic instabilities have been experimentally measured [15,54] , and the 
POD provides a new way to analyze the dynamics in these geometries. 
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