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The role of body flexibility in stroke
enhancements for finite-length undulatory

swimmers in viscoelastic fluids

Becca Thomases1,† and Robert D. Guy1

1Department of Mathematics, University of California, Davis, CA 95616, USA

(Received 17 September 2016; revised 13 April 2017; accepted 30 May 2017;
first published online 19 July 2017)

The role of passive body dynamics on the kinematics of swimming micro-organisms
in complex fluids is investigated. Asymptotic analysis of small-amplitude motions of a
finite-length undulatory swimmer in a Stokes–Oldroyd-B fluid is used to predict shape
changes that result as body elasticity and fluid elasticity are varied. Results from the
analysis are compared with numerical simulations and the numerically simulated
shape changes agree with the analysis at both small and large amplitudes, even for
strongly elastic flows. We compute a stroke-induced swimming speed that accounts
for the shape changes, but not additional effects of fluid elasticity. Elasticity-induced
shape changes lead to larger-amplitude strokes for sufficiently soft swimmers in
a viscoelastic fluid, and these stroke boosts can lead to swimming speed-ups.
However, for the strokes we examine, we find that additional effects of fluid elasticity
generically result in a slow-down. Our high amplitude strokes in strongly elastic flows
lead to a qualitatively different regime in which highly concentrated elastic stresses
accumulate near swimmer bodies and dramatic slow-downs are seen.

Key words: biological fluid dynamics, micro-organism dynamics, viscoelasticity

1. Introduction
There has been an intense effort over the past 10 years to understand the effect of

fluid elasticity on micro-organism swimming. Experiments, analysis and simulations of
low Reynolds number swimming of micro-organisms in complex fluids, in particular
viscoelastic fluids, has led to a variety of results – some complimentary, some
apparently conflicting – on the effect of fluid elasticity on swimming speed. We
know that gait, body stiffness and nonlinear effects matter, but we still do not have
a clear understanding of how they interact during locomotion.

Early work quantifying the effect of fluid elasticity on swimming using a linear
constitutive law for the fluid and asymptotic analysis of small-amplitude motions
showed that elasticity had no effect on swimming speed but increased swimming
efficiency (Chaudhury 1979; Sturges 1981). However, in Lauga (2007a) a full
analysis of the classical Taylor swimming sheet for small-amplitude undulatory motion
showed that the nonlinearities of the viscoelastic fluid model must be included in a
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110 B. Thomases and R. D. Guy

computation of swimming speed, and found that swimming speed is always hindered
by fluid elasticity. Similar small-amplitude asymptotic analysis was done for waving
filaments and helices (Fu, Powers & Wolgemuth 2007; Fu, Wolgemuth & Powers
2009) also predicting slow-downs due to fluid elasticity. Riley & Lauga (2015) and
Elfring & Goyal (2016) have demonstrated the importance of the details of the
swimming gait in understanding the effect of fluid elasticity on swimming speed,
indeed showing that elastic speed-ups are possible for some gaits, which is further
highlighted by the analysis of three-sphere swimmers (Curtis & Gaffney 2013).

Biological swimmers have been shown to change their gait in response to changes
in rheology (Shen & Arratia 2011; Gagnon, Keim & Arratia 2014; Qin et al. 2015),
making it hard to interpret the mechanisms responsible for observed changes in
swimming performance. In more controlled physical models of swimmers in different
fluids a variety of results have shown that fluid elasticity can boost swimming
speed (Liu, Powers & Breuer 2011; Keim, Garcia & Arratia 2012; Espinosa-Garcia
et al. 2013) or retard swimming speed (Dasgupta et al. 2013; Godínez et al. 2015).
Swimmers with large amplitude motions have been theoretically investigated using
numerical simulations, and have added significant information about the response of
swimmers to fluid elasticity with a variety of swimming gaits (Balmforth, Coombs
& Pachmann 2010; Teran, Fauci & Shelley 2010; Zhu, Lauga & Brandt 2012;
Montenegro-Johnson, Smith & Loghin 2013; Spagnolie, Liu & Powers 2013; Li,
Karimi & Ardekani 2014; Thomases & Guy 2014; Li & Ardekani 2015; Salazar,
Roma & Ceniceros 2016). In addition, for recent reviews of swimming in complex
fluids, see Elfring & Lauga (2015) for a theoretical view and see Sznitman & Arratia
(2015) for an experimental view. These many studies have focused on different types
of swimmers, in different fluid rheologies and despite the wealth of results we still
lack an understanding of the underlying principles of swimming in complex fluids.

To try to isolate physical mechanisms that are significant in a variety of
biologically relevant problems, but simple enough to analyse, we focus here on
undulatory swimmers in an Oldroyd-B fluid. Even in this more restrictive setting,
we nevertheless still find apparently contradictory results and a lack of mechanistic
explanations for those differences. Asymptotic analysis of infinitely long, prescribed
shape, small-amplitude swimmers has shown that swimming is hindered by the
addition of elastic stresses (Lauga 2007a), although allowing for flexibility can
lead to enhancements (Riley & Lauga 2014). Biological experiments have shown a
viscoelastic slow-down for C. elegans (Shen & Arratia 2011), while simulations of
finite-length swimmers with large tail amplitudes (Teran et al. 2010; Thomases & Guy
2014) give a non-monotonic boost as fluid elasticity is varied. In Thomases & Guy
(2014) we concluded that shape changes due to body flexibility and fluid elasticity
are important, but those results did not explain the results from a physical experiment
which showed monotonic speed-ups due to fluid elasticity in swimmers with large tail
amplitudes (Espinosa-Garcia et al. 2013). Furthermore, recent numerical simulations
(Salazar et al. 2016) appear to contradict the speed-ups reported in Teran et al. (2010)
and Thomases & Guy (2014).

The relevance of body elasticity in viscoelastic speed enhancements was identified
for small-amplitude infinite-length swimmers in Riley & Lauga (2014), where the
authors attribute the speed enhancements to a viscoelastic ‘suction’ which results in
an amplitude boost. However, their analysis does not extend to finite-length large-
amplitude swimmers where the role of elasticity-induced shape changes has not been
addressed directly. The disparity of the results in Teran et al. (2010), Espinosa-Garcia
et al. (2013), Thomases & Guy (2014) and Salazar et al. (2016), all focusing on
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Flexible swimmers in viscoelastic fluids 111

large-amplitude, finite-length, undulatory swimmers in Oldroyd-B fluids, indicates that
something is missing in our understanding of the problem.

There remains a gap between our understanding from analysis and what we see in
computational, biological and physical experiments. Here we combine analysis with
numerical simulations of finite-length large-amplitude swimmers to show how fluid
elasticity induces shape changes in finite-length flexible swimmers and how those
shape changes can lead to speed boosts. We show how shape changes depend on both
body stiffness as well as fluid elasticity and analyse the effect that shape changes
alone have on swimming speed.

2. Effect of passive body dynamics
2.1. Methodology

We follow the computational framework in Thomases & Guy (2014) and Guy &
Thomases (2015), where the swimmer is modelled as an inextensible flexible sheet of
finite-length L immersed in a two-dimensional (2-D) fluid. We describe the undulatory
motion of the swimmer by a curvature of the form

κ0(s, t)= (At(L− s)/L+ Ahs/L) sin(2πt/T +πs), (2.1)

where s∈ [0, L] is the body coordinate. Here At is the curvature amplitude at the ‘tail’
(s= 0) and Ah is the curvature amplitude at the ‘head’ (s= L) of the swimmer.

We use the immersed boundary method to solve for the coupled motion of the fluid
and the swimmer (Fauci & Peskin 1988). Both inextensibility and shape are imposed
(approximately) by forces that are designed to penalize extension and deviation from
the prescribed target curvature. These forces are derived from the variation of bending
and extension (stretching) energy functionals. For example, the bending energy is

Eb = B/2
∫
Γ

(κ − κ0)
2 ds, (2.2)

where B is the bending stiffness, κ is the curvature of the sheet, Γ is the swimmer
body and κ0 is the prescribed target curvature. One can interpret the model as an
active sheet with bending stiffness B driven by an active body moment density Bκ0.
We scale forces relative to viscous forces so that for B� 1, the realized shape of the
swimmer is very close to the prescribed shape. For B∼ 1, the realized shape is the
result of fluid–structure interaction; i.e. passive body dynamics influences the resulting
stroke.

The viscoelastic fluid is described by the Oldroyd-B model at zero Reynolds
number (Bird et al. 1980), regularized by stress diffusion (Sureshkumar & Beris
1995; Thomases 2011). The system of equations describing the fluid are

∆u−∇p+ ξ∇ · τp + f = 0, (2.3)
∇ · u= 0, (2.4)

De
(
∂τp/∂t+ u · ∇τp −∇u τp − τp ∇uT

)
+ τp = γ̇ +De ε∆τp, (2.5)

where u is the fluid velocity, p is the pressure, τp is the viscoelastic stress, γ̇ is the
rate of strain tensor and f is the elastic force density generated by the swimmer. Here
ξ is the polymer to solvent viscosity ratio, De=λ/T, the Deborah number is the ratio
of elastic relaxation time to stroke period and ε� 1 is the stress diffusion coefficient.

The system is solved in a 2-D periodic domain of size [0, 2] × [0, 2], with
L = 1, dt = 10−3 and dx = 2−8. We fix ξ = 0.5, consistent with Teran et al. (2010),
and ε= 0.0015 which provides a regularization to control large stress gradient growth
(Thomases 2011). We enforce inextensibility with a dimensionless stiffness constant
of 2500.
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FIGURE 1. (Colour online) (a) Swimming speed (normalized by Newtonian swimming
speed) as a function of De for different bending stiffness B. Here we fix the period,
T = 1. (b–d) Normalized swimming speed as a function of De. Adaptations from the
literature: (b) from Espinosa-Garcia et al. (2013), a physical model of a swimmer with
a flexible tail. (c) From Teran et al. (2010) and Thomases & Guy (2014), two different
numerical simulations for a soft stroke with a large-amplitude tail. (d) From Thomases &
Guy (2014), numerical simulations for a stiff stroke with a large-amplitude tail.

2.2. Varying body stiffness
To understand the role of body elasticity, we use our simulations to calculate the
Stokes-normalized swimming speed while varying B and De for a fixed period (T= 1).
We use a stroke defined by (2.1) with At= 5, and Ah= 2. This gives a high-amplitude
stroke as in Teran et al. (2010) and Thomases & Guy (2014). In figure 1(a) we
plot normalized swimming speed as a function of De for three characteristic stiffness
values of B= 0.1, 1.0, 10.0, which we refer to as very soft, moderately soft and stiff,
respectively. For very soft swimmers we see a monotonic boost in swimming speed,
with a greater than 50 % boost for high De.

This response is similar to what was reported in Espinosa-Garcia et al. (2013) using
a physical model of a swimmer with a flexible tail (figure 1b). For moderately soft
swimmers, we see a non-monotonic speed-up, including a smaller speed boost over the
Newtonian speed, followed by a slow-down at larger De. This type of non-monotonic
speed-up was first reported in Teran et al. (2010) and again in Thomases & Guy
(2014) for a soft stroke with high amplitude (figure 1c). Finally, for stiff swimmers we
see non-monotonic behaviour but no boost over the Newtonian speed, again followed
by a slow-down at larger De. This type of slow-down was reported in Thomases &
Guy (2014) for a stiff kicker (figure 1d).

In contrast to stiff, or rigid, swimmers, the dynamics of flexible swimmers involves
an additional time scale. In a viscous fluid, rigid swimmers move with a velocity
proportional to the beat frequency (the only time scale in the problem). The problem
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FIGURE 2. (Colour online) Dimensional swimming speed in a Newtonian fluid for stiff,
B= 10.0, and moderately soft, B= 1.0, swimmers over a range of frequencies T−1. Inset
figures show shapes of swimmer over a period at the highest computed frequency for both
soft and stiff swimmers.

of a rigid swimmer in a viscoelastic fluid has two time scales, the beat frequency
and the relaxation time, whose ratio is the dimensionless relaxation time De. The
swimming speed of soft swimmers depends nonlinearly on the frequency because
the shape changes with the frequency. Figure 2 shows the swimming speed in a
Newtonian fluid for both a stiff swimmer, B= 10.0, and a moderately soft swimmer,
B = 1.0, over a range of beating frequencies. We see a linear response in the case
of a stiff swimmer and a nonlinear response for the moderately soft swimmer. Inset
swimmer shapes show how the shape changes as a function of the stiffness in the
high frequency case.

To illustrate the significance of multiple time scales for flexible swimmers in
viscoelastic fluids we compute the Stokes-normalized swimming speed as a function
of De varied two ways: by varying the relaxation time for a fixed period and by
varying the period for a fixed relaxation time. Both simulations are performed with
the same bending stiffness, B = 1.0, where passive body dynamics is significant.
Results are shown in figure 3(a) for a swimmer with the same stroke from figure 1,
and the two curves show remarkable qualitative differences. For a rigid swimmer
these would give equivalent results. Thus this third time scale, arising from body
flexibility, needs to be explicitly included in any discussion of swimming in elastic
fluids. A more complete picture of how the swimming speed depends on both the
relaxation time and period when the body is soft is shown in figure 3(b). Contours
of constant De= 1− 5 are overlaid in black and the effect of body stiffness is clearly
evident as the swimming speed varies significantly along any of the contours. The
dashed lines denote the locations of the data in figure 3(a).

3. Analysis of shape changes
The effect of body stiffness on swimming kinematics has been previously studied

for viscous fluids (Wiggins & Goldstein 1998; Lauga 2007b). Shape changes in
viscoelastic fluids have been examined (Fu, Wolgemuth & Powers 2008), but the
relationship between shape changes and swimming speed has not been examined for
finite-length swimmers. Here, we review the theory and compare it with numerical
simulations.
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FIGURE 3. (Colour online) (a) Normalized swimming speed as a function of De. Curves
generated by varying only relaxation time (for fixed period T = 1) or stroke period (for
fixed relaxation time λ= 0.5). Body stiffness is fixed: B= 1.0. (b) Normalized swimming
speed as a function of both λ and T, with contours overlaid for constant De values.
Dashed lines correspond to the locations of the data in (a).

3.1. Linear theory: Newtonian fluids
We begin by considering small-amplitude displacements of a finite-length thin elastic
rod in a Newtonian fluid driven by prescribed curvature, κ0(s, t), (equivalently,
prescribed moments) along the body with free ends. The theoretical analysis is
similar in two and three dimensions, however, we will make note of the differences
when we compare with the numerical simulations in two dimensions. We proceed with
the analysis in three dimensions for simplicity. The shape of the rod is determined
by the balance between elastic forces and viscous drag. The vertical displacement,
y(s, t) satisfies

ζ⊥yt =−B(yss − κ0)ss, (3.1)
yss − κ0 = 0, (yss − κ0)s = 0, at s= 0, L. (3.2)

Here ζ⊥ is the perpendicular drag coefficient and B is the bending stiffness of
the rod. Note that the use of new notation B, is intended to distinguish this
(dimensional) bending stiffness we use in the linear theory from our previously
defined (non-dimensional) bending stiffness, B which we use in our numerical
simulations.

Non-dimensionalizing (3.1) using the body length L and the period of the driving
force T results in the dimensionless parameter we call the body response time:

G=
T

B−1ζ⊥L4
=

period of motion
elasto-hydrodynamic beam relaxation time

. (3.3)

We note that G−1 could be called a body relaxation time. The same non-dimensional
group has appeared previously, but has been interpreted differently. In Shelley & Ueda
(2000) a quantity similar to G was considered an ‘effective viscosity’ of growing
elastic filaments. The Sperm number (Sp=G−1/4) is the ratio of the body length to the
viscous decay length (Wiggins & Goldstein 1998; Fu et al. 2007). This interpretation
is natural when considering filaments driven at one end rather than along the body as
we do here.
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We change variables from displacement to curvature deviation

c(s, t)= κ(s, t)− κ0(s, t) (3.4)

to facilitate comparing with large-amplitude simulations. For small displacements
yss(s, t)≈ κ(s, t) and (3.1) (non-dimensionalized) becomes

ct =−Gcssss −
∂κ0

∂t
, (3.5)

c= 0, cs = 0 at s= 0, 1. (3.6a,b)

For a given κ0, we use an orthogonal function expansion to solve the non-dimensional
equations for c(s, t). We let the driving curvature be given as

κ0(s, t)=
∞∑

k=1

α∞k e2πiµk tΨk(s), (3.7)

and solve the eigenvalue problem,

µΨ (s)=−Ψssss, (3.8)

Ψ = 0, Ψs = 0 at s= 0, 1, (3.9a,b)

for eigenvalues µk and eigenfunctions Ψk(s). The expansion coefficients of the realized
curvature, κ , are then

αk = α
∞

k

(
1−

(
1−

Gµk

2πi

)−1
)
. (3.10)

From this solution we can see that as the rod is stiffened (G→∞), the resultant
curvature tends to the prescribed curvature, αk → α∞k . We also see that for softer
rods, i.e. smaller values of the body response time G, the amplitude of the curvature
decreases and there is a phase lag relative to the prescribed shape.

As mentioned above, we use intrinsic coordinates and curvature deviations, to allow
us to consider large prescribed curvatures. However we note that (3.5) lacks terms
coming from geometric nonlinearities and inextensibility that may not be small when
the prescribed curvature is large (Goldstein & Langer 1995; Camalet & Jülicher 2000).
In §§ 3.3 and 4.2 we compare our simulations to theoretical analysis using (3.5), and
in appendix A we show that the influence of the additional terms is in fact small for
the amplitudes we consider.

3.2. Linear theory: viscoelastic fluids
We can modify the linear theory for elastic rods to include fluid elasticity. This is
similar to what was done in Fulford, Katz & Powell (1998) and Fu et al. (2008). In
Fulford et al. (1998) modifications to linear rod theory to include linear viscoelastic
fluid effects were presented, and the authors concluded that while fluid elasticity
does not change swimming speed, it reduces total work and thus can boost efficiency.
However, it was pointed out in Lauga (2007a) that it is essential to use a nonlinear
elasticity model in these types of calculations because the swimming speed itself is
second order in amplitude, where the nonlinear effects are relevant. We note that
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with these higher-order terms Lauga (2007a) shows that swimming speed is always
hindered by fluid elasticity for the case considered – infinite-length low-amplitude
swimmer with sinusoidal undulations. In Fu et al. (2008) the authors analysed shape
changes induced by fluid elasticity in a linearly elastic fluid. Unlike swimming speed,
shape changes due to fluid elasticity come in to the asymptotic expansion at first
order in amplitude, and hence it is reasonable to use a linearly elastic fluid to look
at shape changes. Fu et al. (2008) did not make conclusions about how these shape
changes affect swimming speed. Here we perform a similar analysis as in Fu et al.
(2008), but by applying the analysis to deviations in curvature we are able to study
shape changes in low- and high-amplitude finite-length flexible rods. In § 4 we discuss
how these shape changes affect swimming speed.

As in (3.1) we can write a force balance relation between the force on a fluid and
from the beam as

ffluid −B(yss − κ0)ss = 0, (3.11)

where the ffluid represents the normal force on the rod from the viscoelastic fluid. If
we define the fluid force to be based on the total deviatoric stress τ = γ̇ + τp then
(upon linearization) using (2.5):

De ḟfluid + ffluid = (1+ ξ)fvis +De ḟvis, (3.12)

where fvis is the viscous drag force. Note that given the form of the system in
(2.3)–(2.5), we have assumed a total viscosity of 1+ ξ . The swimmer motion is time
periodic so we take the Fourier transform in time of (3.12) to solve for viscoelastic
modifications to the fluid drag. This yields, f̂fluid = ((1+ ξ + 2πiDe)/(1+ 2πiDe)) f̂vis.

As in the viscous theory, we can solve for modifications to the curvature from body
stiffness and use the modifications to the fluid drag to account for the fluid elasticity:

αk = α
∞

k

(
1−

(
1−

Gµk

ζve2πi

)−1
)
, with ζve =

1+ ξ + 2πiDe
1+ 2πiDe

. (3.13)

The coefficients in (3.13) give an analytical expression for the modifications to the
rod shapes relative to the prescribed shapes as fluid and body elasticity are varied.

3.3. Elastic shape changes: theory and numerical comparison
The analysis in the previous sections made use of resistive force theory which relates
the drag force and velocity on a long thin cylindrical object. More generally, for small
amplitudes the vertical displacement satisfies

yt =MFy, (3.14)

where M is the mobility operator and F is the linearized bending force operator.
Resistive force theory makes the approximation M ≈ 1/ζ⊥. Our analysis of shapes
(3.13) contains the quantity Gµk, where G depends on the drag coefficient, ζ⊥, (3.3).
To use the more general linear theory in our analysis one can identify µk/ζ⊥ = µ

MF
k ,

where µMF
k denotes the kth eigenvalue of the operator MF. We relate Gµk to the

dimensionless bending stiffness, B used in our simulations, through

Gµk =
TB

L4ζ⊥
µk =

(
TB
L4

)(
µk

ζ⊥

)
= BµMF

k . (3.15)
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Mode (k) µF
k µMF

k ζk

1 −4.97× 102
−1.53× 101 32.55

2 −3.77× 103
−8.79× 101 42.94

3 −1.45× 104
−2.65× 102 54.69

4 −3.96× 104
−5.93× 102 66.84

TABLE 1. Eigenvalues of the discretized operators F and MF using 1s= 0.002, and the
effective drag coefficient ζk =µ

F
k /µ

MF
k for the first four non-trivial modes.

De

0.9

1.0

0 1 2 3 4
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FIGURE 4. (Colour online) (a) Normalized amplitude of the first mode, |α1|/|α
∞

1 |, from
(3.13), for the flexor at low A= 0.5 and high A= 4.0 amplitude over a range of bending
stiffness B. Linear theory is shown in solid lines and simulation data are indicated by
markers. (b,c) Data from (a) renormalized by Newtonian (De= 0) data, as a function of
both B and De.

To compare the linear analysis with our two-dimensional simulations we numerically
approximate (3.14). For small deviations to the vertical displacement, M is the integral
operator which is the convolution of the vertical force with the fundamental solution
to Stokes equations. We approximate M using the method of regularized Stokeslets
(Cortez 2001), which is a numerical method based on a regularized Greens function
for the Stokes equations. We can also numerically approximate µF

k , the kth eigenvalue
of the bending force operator F, using a second-order finite difference, and we find
that with point spacing 1s = 0.002, the eigenvalues of F are within 1 % of the
eigenvalues of the continuous operator. We give the eigenvalues for the first four
non-trivial modes in table 1. Note that to compute µMF

k we assume a viscosity of one.
Also in table 1, we give the first four (mode dependent) drag coefficients computed
as ζk =µ

F
k /µ

MF
k .

In order to compare the predicted shape changes given by (3.13) with our numerical
simulations we prescribe a curvature of the form

κ0(s, t)= A sin(2πt), (3.16)

in our model equations (2.3)–(2.1). The prescribed standing wave of constant curvature
corresponds to a motion through circular arcs with peak curvature A. By symmetry,
this motion does not result in any horizontal translation of the body. We refer to these
non-translating ‘swimmers’ as flexors. We consider both low- and high-amplitude
curvatures, A= 0.5 and A= 4.0. The shapes are shown inset in figure 4(a).

In figure 4 we plot the theoretical predictions from (3.13) (solid lines) along with
values computed from numerical simulations; low amplitude (A = 0.5) are indicated
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by hollow markers, and high amplitude (A = 4.0) are indicated with filled markers.
In figure 4(a) we plot the normalized amplitude of the first mode (|α1|/|α

∞

1 |) to see
how the amplitude deviates from the prescribed amplitude as a function of bending
stiffness B. We see that generically the amplitude of the flexor decreases as the flexor
is softened for fixed De. For sufficiently soft flexors (B . 1) viscoelasticity increases
the amplitude monotonically with De, but for stiffer swimmers the amplitude changes
non-monotonically with fluid elasticity.

In figure 4(b,c) we renormalize the data by the amplitude in a viscous fluid to
see the effects of viscoelasticity more clearly. Again we see that fluid elasticity can
increase the amplitude significantly for a soft flexor, but that effect is lost as the
flexor is stiffened. When we plot the amplitude as a function of De for the very
soft, moderately soft and stiff cases we see again that three qualitatively different
regimes emerge. For very soft flexors the amplitude is monotonically increased by
elasticity, for moderately soft flexors the response is non-monotonic, and can decrease
or increase the amplitude, and for stiff flexors there is little change in the amplitude
due to fluid elasticity. It is notable that the linear theory does such a good job
predicting shape changes for low and high amplitude and for low and high Deborah
number. In appendix A we derive the theory for both the limit of small amplitude
and the limit of high stiffness. We see in figure 4(a,b) that the largest differences
are for moderate stiffnesses at high amplitude. We note that we are showing results
only for the first mode. For higher modes the trends are similar but the transition
from stiff to soft behaviour occurs at lower values of B because the eigenvalues µk

increase with k.

4. Analysis of swimming speed

In a viscous fluid, increasing the stroke amplitude will increase the swimming speed,
and we can infer from § 3 that soft swimmers in a viscoelastic fluid sometimes obtain
an amplitude boost over the corresponding swimmer in a Newtonian fluid. However,
when comparing swimmers in a viscoelastic fluid to those in a viscous fluid, even with
an amplitude boost the viscoelastic swimmer may not swim faster than the viscous
swimmer due to additional fluid elastic forces that the swimmer will encounter. Thus
the effect of elasticity-induced shape changes is difficult to decouple from the overall
effect of fluid elasticity. Analytical expressions for swimming speed can be obtained
in certain limits, or for specialized swimmers, but even in these cases we see that the
effect of fluid elasticity depends on many factors. For example infinite-length small-
amplitude undulatory swimmers show that a slow-down is generically expected for
stiff swimmers in a viscoelastic fluid (Lauga 2007a), but allowing for body flexibility,
shape changes can lead to speed boosts (Riley & Lauga 2014).

In regimes that are more challenging for analysis such as the large-amplitude,
finite-length swimmers considered here, it is more difficult to attribute speed boosts
or slow-downs to specific swimmer attributes. For large-amplitude finite-length
undulatory swimmers, it was conjectured (Teran et al. 2010) that speed boosts
were related to large tail stresses, and in Thomases & Guy (2014) stroke asymmetries
were correlated with both slow-downs and speed-ups. Here we will compute a
stroke-induced swimming speed that isolates the effect of fluid elasticity on shape
changes, and how those shape changes affect swimming speed in a Newtonian fluid.
We then compare that analysis with the full nonlinear numerical simulations where
the effect of shape changes is coupled with the fluid elasticity.
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High amp

First mode Sum of first two modesSecond mode
Low amp

FIGURE 5. (Colour online) Shapes for first, second and sum of first two modes for ‘two-
mode’ swimmer defined by (4.1). Snapshots of one period for low- and high-amplitude
strokes.

4.1. Swimming speed: two-mode swimmer
To keep the analysis simple we define a gait whose swimming speed in a viscous
fluid we can compute analytically. We define a ‘two-mode swimmer’ given by the
curvature:

κ(s, t)= A1 cos(2πt/T + φ1)Ψ1(s)+ A2 cos(2πt/T + φ2)Ψ2(s), (4.1)

where the Ψi(s) for i= 1, 2, are the first and second bending modes. The modulation
of a single mode results in a standing wave and will not translate in a Newtonian
fluid. We use a sum of the first two modes with a phase difference to generate a
non-reciprocal motion. Shapes of the first, second and sum of the first and second
modes are plotted in figure 5 for both low and high amplitudes.

Using resistive force theory one can derive the (time-averaged) swimming speed for
a given small-amplitude motion:

〈U〉 =
(
ζ⊥

ζ‖
− 1
)

1
LT

∫ T

0

∫ L

0
ysyt ds dt, (4.2)

where U is the swimming speed, y(s, t) is the vertical displacement of the swimmer
and ζ⊥ and ζ‖ are the perpendicular and parallel drag coefficients, respectively,
(Wiggins & Goldstein 1998; Lauga 2007b).

For small amplitudes, the shape of the swimmer (up to translation and rotation) is
given by integrating equation (4.1) twice in space to compute the swimming speed
via (4.2). The swimming speed (in a viscous fluid) for the two-mode swimmer is
proportional to the product of the amplitudes and the sine of the phase difference:

〈U〉 ∝ A1A2 sin(φ2 − φ1). (4.3)

With this expression and the theoretical prediction for shape changes, we define
a stroke-induced swimming speed which is the swimming speed in a Newtonian
fluid that depends on the shape changes due to fluid elasticity and body flexibility.
Specifically, for a given De and G, we compute αk from (3.13) (Aj = |αj|, and
φj = arg(αj)) and the stroke-induced swimming speed from (4.3). We parametrize the
shape changes due to changes in De using a parameter we call the stroke Deborah
number (Thomases & Guy 2014), StrokeDe. In other words, StrokeDe represents the
value of De used in (3.13) to compute the stroke-induced swimming speed via (4.3).
Our analytical expression for the shape changes is based on a linearly elastic fluid,
but because the nonlinear elastic effects and swimming speed are both second order
in amplitude, we do not expect the stroke-induced swimming speed to capture the true
viscoelastic swimming speed. An analytical expression for the swimming speed in a
nonlinear viscoelastic fluid, as was computed in Lauga (2007a), is not tractable in the
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FIGURE 6. (Colour online) (a) Theoretically predicted stroke-induced swimming speed
(computed using (4.3)) normalized by the Newtonian stroke-induced swimming speed. (b)
Stokes-normalized swimming speed in simulations with the two-mode swimmer. (c) Ratio
of speed to stroke-induced speed for low- and high-amplitude strokes. (d) Ratio of high-
to low-amplitude swimming speed. (Dashed lines are for graphical interpretation.)

finite-length case, because translational invariance, which facilitates the calculation
for infinite-length swimmers, is lost.

We plot the stroke-induced swimming speed for the two-mode swimmer over
a range of StrokeDe, and as with the flexor, we see the emergence of three
regimes dependent on the body stiffness, see figure 6(a). Shape changes boost
the stroke-induced swimming speed if the swimmer is very soft, a smaller boost is
obtained for the moderately soft swimmer and additionally there is a non-monotonic
response to increasing elasticity including a regime where shape changes slow-down
the swimmer, and finally if the swimmer is stiff there is a negligible effect.

4.2. Swimming speed: theory and numerical comparison
We simulate a two-mode swimmer of both low and high amplitude by prescribing
a curvature of the form given in (4.1) with A1 = 0.8A, A2 = 0.6A, φ2 − φ1 = π/2,
for A = 0.5 (low) and 4.0 (high). These values come from projections of the stroke
used to generate figure 1. The Stokes-normalized swimming speeds for a very soft,
moderately soft and stiff swimmer at both low (hollow markers) and high (filled
markers) amplitude are plotted in figure 6(b). We note that the three regimes seen in
figure 6(a) still emerge from these simulations, but for this two-mode swimmer the
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FIGURE 7. (Colour online) Amplitudes |α1|, |α2| and sin(φ2 − φ1), for the two-mode
swimmer, equation (4.1). Linear theory is shown in solid lines (dependence on B, and
De coming from (3.13)) and simulation data are indicated by markers for high amplitude
A= 4.0, and De= 0.5 (a), De= 4.0 (b).

simulation swimming speeds are always slower than the stroke-induced swimming
speeds. The ratio of swimming speed to stroke-induced swimming speed is shown
in figure 6(c). This quantity can be interpreted as the effect of fluid elasticity that is
not related to shape changes. It is notable that these curves collapse onto a single
curve for the low-amplitude swimmers at all stiffnesses as well as the high-amplitude
swimmer in the very soft regime. This additional elastic fluid effect on swimming
speed is likely to be highly stroke dependent.

The additional effects of fluid elasticity are fundamentally different for the
large-amplitude, large De regime. In figure 6(d) we plot the ratio of swimming
speeds for the high-to-low amplitude strokes, and see that for De> 1 (for sufficiently
stiff swimmers) a significant difference in swimming speed arises. This difference
is not related to shape changes because, like the flexor, the elasticity-induced shape
changes predicted by the theory for the two-mode swimmer agree very well with
the simulation results, for all De, at low and high amplitudes; see figure 7. At low
amplitude (not shown) the relative error between theoretical and numerical predictions
is less than 1 %, and for high amplitude the error at low De is at most 5% and
at high De the error is at most 9 %. These results indicate that the theoretically
predicted shape changes and their isolated effects on swimming speed can be well
approximated by the analytical results for the amplitudes simulated and the range of
De considered. A mechanistic understanding is lacking to explain what causes the
dramatic slow-downs of swimmers in the high-amplitude, high De regime.

We conjecture that the slow-downs in the high-amplitude, high De regime must be
attributed in part to the large localized stresses that accumulate near the body (Teran
et al. 2010; Thomases & Guy 2014). To explore this conjecture, in figure 8(a) we
plot the average elastic to viscous stress ratio, computed as the time average over
one period of ‖τp‖/‖∇u‖ where ‖ · ‖ is the Frobenius norm, over a range of body
stiffness B for both low- (hollow markers) and high-amplitude (filled markers) strokes
for De= 0.5, 4.0. There is a notable transition in the stress ratio in the high De, high-
amplitude swimmer as the body is stiffened, while this stress ratio is flat for both low-
amplitude and low De swimmers. Stiff swimmer shapes along with the elastic–viscous
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FIGURE 8. (Colour online) (a) Average elastic–viscous stress ratio in a two-mode
swimmer over a range of bending stiffness B for both low- and high-amplitude strokes
and low and high De. (b) Colour field of the magnitude of the elastic–viscous stress ratio
around stiff swimmers (B= 10) at low and high De and low and high amplitudes. (c) Tail
amplitudes over a range of bending stiffness B, measured as the maximum displacement
at the tail over a period, for both low- and high-amplitude strokes and low and high De.

stress ratio are plotted on a log scale in figure 8(b). The low-amplitude strokes are
surrounded by elastic stresses that are at least two orders of magnitude smaller than
the high-amplitude strokes, but even at large amplitude the low De swimmer still has
relatively low stress near the body. Lastly, we plot the tail amplitude, as one measure
of the swimmer stroke, in figure 8(c). We see that for sufficiently soft swimmers the
‘high-amplitude’ stroke has a lower amplitude, which explains why in figure 6 the
very soft high-amplitude swimmer behaves like the low-amplitude swimmers. For the
high-amplitude strokes it is only in the large-amplitude and large De regime where
significant stress accumulates near the swimmer.

5. Conclusions

In Thomases & Guy (2014) we showed that stroke related speed-ups depend on
body stiffness, and the analysis from this paper shows explicitly how the stroke
changes depend on body stiffness and fluid elasticity through two dimensionless
‘relaxation times’: the fluid relaxation time, De and the body relaxation time, G−1.
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When we look at apparently contradictory results from the literature, we see that
calculating G will determine which regime the swimmer falls into.

In Espinosa-Garcia et al. (2013) the Sperm number is reported to be between
0.5–2.5, but even with the awareness that these are soft swimmers, the authors
‘conjecture that the effect [due to shape changes] is not significant’. We use their
reported parameters (L = 25 mm, cross-sectional radius a = 62.5 µm, Young’s
modulus E = 80 GPa, viscosity µ = 2.7 Pa s. For moment of inertia I = πa4/4,
we get B = EI = 9.6 × 10−7, ζ = 4πµ/ln(L/a), and thus G = (BT/ζL4) =
((9.6× 10−7 ln(400))/(4π · 2.7(25× 10−3)4)) ≈ 0.43.) and a characteristic frequency
of 1 s−1, and find G≈ 0.43. We cannot directly conclude that this value lies in the
very soft regime (B ≈ 0.1) due to differences between two and three dimensions
as well as the way that the micro-swimmer is driven (it is a flexible tail with a
magnetically driven head). In appendix B we repeat the calculation from § 4.1 to
compute an equivalent stroke-induced swimming speed for a flexible filament driven
at one end. This calculation shows that speed boosts still arise for sufficiently soft
swimmers, despite the difference in driving mechanism. The most significant boost in
speed from viscoelastic shape changes occurs for G≈ 0.1, but for G≈ 0.43 it would
be reasonable to conclude that the significant speed-ups observed in the experiment
are related to shape changes.

In Salazar et al. (2016) the parameter reported for what they consider to be a soft
swimmer is B= 2. However their swimmer length is L= 0.6 mm (with characteristic
length 1 mm) hence an equivalent dimensionless body response time G must be
multiplied by L−4

≈ 7.7. This pushes their ‘soft’ simulations into the stiff regime
where there are no speed-ups from shape changes, also agreeing with their results.
Furthermore, in Salazar et al. (2016) it is conjectured that stress diffusion, used to
regularize the simulations in Teran et al. (2010) and Thomases & Guy (2014), is the
source of the speed-ups, but the speed-ups we see are theoretically predicted, and
realized in our simulations, even in the low-amplitude regime where no regularization
is necessary.

In our analysis we quantify the effect of body and fluid elasticity-induced shape
changes on swimming speed. We see that the shape change analysis holds for the
amplitudes simulated and the range of De considered, and in this case we see an
additional elastic slow-down that is reminiscent of the type of slow-down predicted
by asymptotic analysis of infinite-length small-amplitude undulatory swimmers (Lauga
2007a). It may be tractable to apply asymptotic analysis (Riley & Lauga 2014; Elfring
& Goyal 2016) to determine the form of the elastic slow-down for low-amplitude
finite-length swimmers. A fundamentally different regime arises for large-amplitude
swimmers in highly elastic fluids. A different approach is needed to understand the
mechanisms that cause large localized stresses and their effect on swimming.
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Appendix A. Derivation of partial differential equations (PDE) for rod dynamics
In this appendix we give the derivation for the equation of motion for a thin

filament in a viscous fluid which includes terms arising from inextensibility and
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geometric nonlinearities. For more details on similar calculations see for example
Goldstein & Langer (1995) and Camalet & Jülicher (2000).

A.1. Geometric relations
Consider an inextensible thin rod whose centreline position is given by X(s, t), where
s is arclength coordinate. We suppose that the deformation of the rod is planar. Let
τ̂ and n̂ be the tangent and normal vectors, ψ be the tangent angle and κ be the
curvature. We have the following relationships between these quantities:

ψs = κ, τ̂s = κn̂, n̂s =−κ τ̂ , τ̂t = n̂ψt, n̂t =−τ̂ψt. (A 1a−e)

A.2. Equation of motion
Let F(s, t)=F⊥n̂+F‖τ̂ be the force density along the rod. Using resistive force theory,
the motion of the rod is given by

Xt =
1
ζ⊥

F⊥n̂+
1
ζ‖

F‖τ̂ , (A 2)

where ζ⊥ and ζ‖ are the normal and tangential drag coefficients, respectively. Taking
the derivative of this equation with respect to arclength gives

∂tXs =

(
1
ζ⊥
∂sF⊥ +

1
ζ‖

F‖κ
)

n̂+
(

1
ζ‖
∂sF‖ −

1
ζ⊥

F⊥κ
)

τ̂ . (A 3)

Because Xs = τ̂ , the left-hand side of the above equation can be expressed as ∂tXs =

τ̂t = n̂ψt, and thus the normal terms give ψt and the tangential terms must be zero:

ψt =
1
ζ⊥
∂sF⊥ +

1
ζ‖

F‖κ, (A 4)

1
ζ‖
∂sF‖ −

1
ζ⊥

F⊥κ = 0. (A 5)

Equation (A 5) represents a constraint on the forces that must be satisfied to maintain
inextensibility. The evolution equation for the curvature is obtained by differentiating
(A 4) with respect to arclength to obtain

κt =
1
ζ⊥
∂ssF⊥ +

1
ζ‖
∂s
(
F‖κ
)
. (A 6)

A.3. Expression for elastic forces
The elastic forces are obtained from the variation of an elastic energy functional. The
total elastic energy is the sum of a bending term from (2.2) with an energy associated
with inextensibility:

E =
∫ L

0

B
2
(κ − κ0)

2
+
Λ

2
Xs ·Xs ds, (A 7)
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where Λ is a tension used to enforce inextensibility. The force comes from the
variation of the energy

F=−
δE
δX
. (A 8)

Using the natural free boundary conditions

κ = κ0, κs = ∂sκ0, Λ= 0, (A 9a−c)

the force is

F=
∂

∂s

(
−B(κ − κ0)sn̂+ (Λ+Bκ (κ − κ0)) τ̂

)
. (A 10)

We define the total tension in the rod as

T =Λ+Bκ(κ − κ0), (A 11)

and the expression for the force is

F =
∂

∂s

(
−B(κ − κ0)sn̂+ T τ̂

)
(A 12)

= (−B(κ − κ0)ss + κT) n̂+ (Bκ(κ − κ0)s + Ts) τ̂ . (A 13)

The normal and tangential force densities on the rod are thus

F⊥ = −B(κ − κ0)ss + κT, (A 14)
F‖ = Bκ(κ − κ0)s + Ts. (A 15)

With these forces, the evolution equation for the curvature (A 6) and the inextensibility
constraint which determines the tension (A 5) are

κt =
1
ζ⊥

(
−B(κ − κ0)ssss + (κT)ss

)
+

1
ζ‖

(
B(κ2(κ − κ0)s)s + (κTs)s

)
, (A 16)

1
ζ‖

Tss −
1
ζ⊥
κ2T +

1
ζ‖

(
Bκ(κ − κ0)s

)
s +

1
ζ⊥

Bκ(κ − κ0)ss = 0. (A 17)

These equations together with the boundary conditions at the ends of the rod

κ = κ0, κs = ∂sκ0, T = 0, (A 18a−c)

determine the motion.

A.4. Asymptotic expansions
We examine the leading-order behaviour in two different limits: (i) small-amplitude
motion in which κ→ 0 and (ii) high stiffness, B→∞, in which κ→ κ0. Note that for
soft bodies with large κ0 the realized amplitude, κ , is in fact small. Thus we expect
the largest discrepancy between the asymptotic solutions at large κ0 at intermediate
stiffness. In fact this is what we see in figure 4 for the flexor and figure 7 for the
two-mode swimmer.
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A.4.1. Small amplitude
In the limit of small curvature, we see from (A 17) that the size of the tension is

like the square of the curvature. At leading order the tension is zero, and the equation
for the curvature is

κt =−
B
ζ⊥
(κ − κ0)ssss. (A 19)

Changing to curvature deviation, c = κ − κ0, and non-dimensionalizing gives (3.5)
analysed in the main text.

A.4.2. Large stiffness
In the limit B→∞, κ→ κ0. We introduce the variable

c= κ − κ0 (A 20)

to denote the deviation from the prescribed curvature. For increasing stiffness, c→ 0.
Changing variables from κ to c and linearizing about small c gives

ct + ∂tκ0 =
1
ζ⊥

(
−Bcssss + (κ0T)ss

)
+

1
ζ‖

(
B(κ2

0 cs)s + (κ0Ts)s
)
, (A 21)

1
ζ‖

Tss −
1
ζ⊥
κ2

0 T +
1
ζ‖
B (κ0cs)s +

1
ζ⊥

Bκ0css = 0, (A 22)

and the boundary conditions are

c= 0, cs = 0, T = 0. (A 23a−c)

These equations contain many terms that are absent for small curvatures. However,
as demonstrated in the text by comparing with numerical results, the low curvature
equations appear to give a reasonable approximation at the amplitudes tested. Below
we show why the two approximations are similar.

For simplicity we consider the flexor in which κ0 is only a function of time. With
this simplification, equations (A 21)–(A 22) become

ct + ∂tκ0 =−
B
ζ⊥

cssss +
Bκ2

0

ζ‖
css + κ0

(
1
ζ⊥
+

1
ζ‖

)
Tss, (A 24)

1
ζ‖

Tss −
1
ζ⊥
κ2

0 T +Bκ0

(
1
ζ‖
+

1
ζ⊥

)
css = 0. (A 25)

These equations can be solved by orthogonal function expansion. First we eliminate
the tension by solving the second equation. We express T as the series

T =
∞∑

m=1

βm(t) sin (mπs) . (A 26)

We then write the function T as

T(s, t)=Q−1β, (A 27)
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where β represents the sequence of coefficients and Q−1 is the orthogonal operator
which maps these coefficients to T , i.e. Q is like the Fourier transform operator. Using
this expansion, the operator applied to T in (A 25) diagonalizes, and the solution is

T =Bκ0

(
1
ζ‖
+

1
ζ⊥

)
Q−1

(
1
ζ‖

M2
+

1
ζ⊥
κ2

0

)−1

Qcss, (A 28)

where M is a diagonal matrix with elements mπ on the diagonal. After using this
expression to eliminate T in (A 24), after some simplification, we get the equation for
the curvature deviation as

ct + ∂tκ0 =−
B
ζ⊥

cssss +
Bκ2

0

ζ‖
Q−1DQcss, (A 29)

where D is a diagonal matrix with elements on the diagonal

Dmm = 1−

(
1+

ζ‖

ζ⊥

)2

(
1+

ζ‖

ζ⊥

κ2
0

m2π2

) . (A 30)

Because ζ‖ < ζ⊥, the values of Dmm can be bounded as −3 6 Dmm 6 1.
Equation (A 29) contains one additional term involving the second derivative that is

not present in the corresponding low-amplitude equation (3.5). Below we argue that
the additional term is small even when κ0 itself is not small. Our analysis in the main
text relied on performing an eigenfunction expansion using the eigenfunctions of the
beam equation. We use the same expansion here

c=
∞∑

k=1

αk(t)Ψk(s), (A 31)

and we relate c to its expansion coefficients by

c(s, t)= P−1α(t), (A 32)

where P−1 is the orthogonal operator that maps the expansion coefficients to c. We can
transform (A 29) into a system of differential equation for the expansion coefficients
as

dα

dt
+ P∂tκ0 =−

B
ζ⊥

N4α +
Bκ2

0

ζ‖
PQ−1DQP ′′α, (A 33)

where we define P ′′ so that P ′′α = css and −N4 is a diagonal matrix containing the
eigenvalues of the beam equation. That is, the kth diagonal entry of N , νk, is related
to the kth eigenvalue, µk, by µk=−ν

4
k . One expects that the contribution of P ′′ to the

kth equation to scale like ν2
k . As argued above the norm of Q−1DQ is about 1, and

so we expect the additional terms relative to the bending terms to contribute ν−2
k . The

smallest eigenvalue is about ν4
1 ≈ 500, and thus we expect these additional terms to

be small.
In figure 9 we compare the expansion coefficients of the first mode of the

small-amplitude expansion and the high stiffness expansion for the high-amplitude
flexor (κ0 = 4) for a range of stiffnesses. In agreement with our numerical results,
the qualitative behaviour of the two expansions is the same, and at high and low
stiffnesses the quantitative behaviour is the same. The largest difference occurs for
moderately soft bodies where the difference is less than 25 %.
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FIGURE 9. (Colour online) (a) Normalized amplitude of first mode for a high-amplitude
flexor with amplitude κ0 = 4 as a function of stiffness B for the leading-order
low-amplitude expansion and the leading-order high stiffness expansion. The ratio of drag
was set to ζ‖/ζ⊥ = 0.75 for this computation. The results are relatively insensitive to this
value. (b) Magnitude of the difference of the two expansion coefficients.

Appendix B. Rod driven at one end

In this appendix we give the derivation for the shape-induced swimming speed of a
thin filament in a viscous or viscoelastic fluid which is driven by oscillations at one
end. This type of motion is akin to the experiments of Espinosa-Garcia et al. (2013),
and we perform the calculation to compute the swimming speed as a function of the
dimensionless body response time G and the fluid relaxation time De. We also show
the range of G where a viscoelastic speed-up is theoretically predicted for this type
of motion.

B.1. Shape of the swimmer
The problem we consider is a flexible filament with one free end and one clamped
end. The motion is driven by prescribing sinusoidal oscillations in the angle at the
clamped end. The shape of the filament satisfies

yt =−Gyssss, (B 1)
y(0, t)= 0, (B 2)

ys(0, t)= cos(2πt), (B 3)
yss(1, t)= 0, (B 4)
ysss(1, t)= 0. (B 5)

We now change variables using

y=w+ s cos(2πt)=w+Re(se2πit), (B 6)

so that w represents deviations from the infinitely stiff case of a straight rod. Letting
w be complex valued, the equation for w is then

wt =−Gwssss − 2πise2πit, (B 7)
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with homogeneous boundary conditions. This equation can be solved using an
expansion of eigenfunctions, Ψk(s), which satisfy

µΨ (s)=−Ψssss, (B 8)
Ψ (0)=Ψ ′(0)= 0, (B 9)
Ψ ′′(1)=Ψ ′′′(1)= 0. (B 10)

We express the function s using an eigenfunction expansion

s=
∑

k

α∞k Ψk(s), (B 11)

and look for a solution to the PDE of the form

w(s, t)= e2πit
∑

k

βkΨk(s). (B 12)

The transformation of the PDE yields

2πiβk =Gµkβk − 2πiα∞k , (B 13)

which gives

βk =
−α∞k

1−
Gµk

2πi

. (B 14)

We can then write the shape as

y(s, t) = Re

{
∞∑

k=1

(α∞k + βk)Ψk(s)e2πit

}
, (B 15)

= Re

{
∞∑

k=1

α∞k

(
1−

(
1−

Gµk

2πi

)−1
)
Ψk(s)e2πit

}
. (B 16)

Notice that the factor multiplying α∞k above is exactly the same as the one that
appears in the shape analysis of swimmers driven by active moments in (3.10). We
can express the shape as

y(s, t)=Re

{
∞∑

k=1

αkΨk(s)e2πit

}
, (B 17)

where αk is defined by (3.10). As in the main body of the paper, to add viscoelastic
effects, we simply use (3.13) in place of (3.10) to define the expansion coefficients.
Although these expressions are the same, we note that the eigenfunctions and
eigenvalues are different for this problem.
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FIGURE 10. (Colour online) (a) Shape-induced Stokes-normalized swimming speed as a
function of StrokeDe for a range of G. (b) Shape-induced Stokes-normalized swimming
speed as a function of G for low and high StrokeDe. (c) Shape-induced swimming speed
as a function of G for low and high StrokeDe.

B.2. Expression for swimming speed
The expansion for the shape of the swimmer can be written as

y(s, t)=
∞∑
k

Ak cos(2πt+ φk)Ψk(s), (B 18)

where

Ak = |αk|, (B 19)
φk = arg(αk). (B 20)

To compute the swimming speed, we average in space and time the product

ysyt =−2π
∑

n

∑
m

AnAm cos(2πt+ φn) sin(2πt+ φm)Ψn(s)Ψ ′m(s). (B 21)

Averaging the above expression by integration gives the swimming speed

〈U〉 ∝
∑

n

∑
m

AnAm sin(φn − φm)

∫ 1

0
Ψn(s)Ψ ′m(s) ds. (B 22)

We use this expression with the first six modes to compute the shape-induced
Stokes-normalized swimming speed; see figure 10. As with the problem from the
paper, for sufficiently soft bodies, we see an almost monotonic speed-up from the
shape changes. For sufficiently stiff swimmers (G> 1) we see a monotonic slow-down.
There is a transition range around 0.1<G<1. The location of this transition is evident
in figure 10(b) where we show the swimming speed as a function of G for low and
high StrokeDe. The qualitative results from the paper do not change in the sufficiently
soft regime, but this problem has a different driving mechanism and hence there is a
different effect in the stiff regime. As we see in figure 10(c) as the body is stiffened
the swimming speed goes to zero and viscoelasticity always slows the swimmer.
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