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Equilibrium circulation and stress distribution in
viscoelastic creeping flow

Joseph. A. Bielloa, Becca Thomasesa,∗

aDepartment of Mathematics, University of California, Davis, CA 95616

Abstract

An analytic, asymptotic approximation of the nonlinear steady-state equations
for viscoelastic creeping flow, modeled by the Oldroyd-B equations with poly-
mer stress diffusion, is derived. Near the extensional stagnation point the flow
stretches and aligns polymers along the outgoing streamlines of the stagnation
point resulting in a stress-island, or birefringent strand. The polymer stress
diffusion coefficient is used, both as an asymptotic parameter and a regulariza-
tion parameter. The structure of the singular part of the polymer stress tensor
is a Gaussian aligned with the incoming streamline of the stagnation point; a
smoothed δ-distribution whose width is proportional to the square-root of the
diffusion coefficient. The amplitude of the stress island scales with the Wiessen-
berg number, and although singular in the limit of vanishing diffusion, it is
integrable in the cross stream direction due to its vanishing width; this yields a
convergent secondary flow. The leading order velocity response to this stress is-
land is constructed and shown to be independent of the diffusion coefficient in the
limit. The secondary circulation counteracts the forced flow and has a vorticity
jump at the location of the stress islands, essentially expelling the background
vorticity from the location of the birefringent strands. The analytic solutions
are shown to be in excellent quantitative agreement with full numerical simula-
tions, and therefore, the analytic solutions elucidate the salient mechanisms of
the flow response to viscoelasticity and the mechanism for instability.

Keywords: viscoelastic creeping flow; extensional flow; asymptotic analysis;
stress diffusion

1. Introduction

Viscoelastic flows are found in many important engineering and biological
systems. Despite the need to understand these flows in a variety of complex
situations, analysis of the equations of motion describing viscoelastic fluids,

∗Corresponding author
Email addresses: biello@math.ucdavis.edu (Joseph. A. Biello),

thomases@math.ucdavis.edu (Becca Thomases)

Preprint submitted to Elsevier September 6, 2018

ar
X

iv
:1

51
2.

03
34

0v
2 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

3 
Ja

n 
20

16



even in the low-Reynolds number regime, is very incomplete. There are many
different models depending on the rheology of the fluid, but little is known even
for the simplest closed continuum models. One popular model, the Oldroyd-B
model, can be derived from microscopic principles and represents “Boger” fluids,
dilute solutions of polymers immersed in a Newtonian solvent which exhibit
normal stress differences but not shear thinning. This model is used frequently
in simulations of viscoelastic fluids even though there is no mathematical well-
posedness theory for this system, i.e. it is not known if sufficiently smooth
solutions to this system exist for all time, bringing in to question the reliability
of any numerical simulation.

Flows at internal stagnation points (such as the four-roll mill flow or the
cross-slot or cross channel flow) pose a particular difficulty for both theoretical
investigation and numerical simulations of viscoelastic fluids, as polymers are
aligned and stretched, and can create fine features in the flow that are difficult
to resolve numerically. However it is precisely at these points in the flow that
interesting dynamics arise. Instabilities have been found in experiments at in-
ternal stagnation points [1, 2, 3, 4, 5], and related numerical instabilities are
found in similar geometries [6, 7, 8, 9, 10, 11]. It is unclear what is driving these
instabilities, but it is reasonable to conjecture that they are related to the large
polymer stresses and stress gradients which accumulate along the incoming and
outgoing streamlines of these internal stagnation points.

The elastic contribution to the total stress can be incorporated into the
equations of motion by assuming that the total stress on the fluid, σ = τ s+τ p,
comes from a solvent contribution τ s as well as a polymer contribution τ p. In
the case of a Newtonian solvent, the total stress is given by

σ = −pI + ηsγ̇ + τ p,

where ηs is the Newtonian solvent viscosity, and γ̇ =
[
∇u +∇uT

]
is the rate-

of-strain tensor. Assuming conservation of mass and incompressibility the fluid
velocity u satisfies

ρ
Du

Dt
= ∇ · σ + f , ∇ · u = 0,

for density ρ, and body force f , or in the inertialess regime,

∇ · σ + f = 0, ∇ · u = 0. (1)

In the Oldroyd-B model, the symmetric polymer stress tensor, τ p, is advected
via the upper-convected derivative and relaxes with a characteristic relaxation
time λ :

τ p + λ
∇
τ p= ηpγ̇. (2)

Here ηp is the polymer viscosity, and the upper-convected derivative is defined
by

∇
A≡ ∂A

∂t
+ u · ∇A−

(
∇u ·A+A · (∇u)T

)
, where (∇u)ij =

∂ui

∂xj
.
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While Boger fluids are used in many experiments of viscoelastic phenom-
ena, it is not immediately clear that the Oldroyd-B model is a good choice for
modeling more general complex fluids. We choose to work with this model due
to the generic nature of the upper-convected derivative. This represents a ten-
sorial material derivative and hence will be found in continuum models which
advect a macroscopic elastic stress tensor. Some other variants to the Oldroyd-B
model include the Giesekus [12], Phan-Thien-Tanner (PTT) [13], and FENE-P
models [14]. These models arise from different microscale models of the poly-
mers. All of them introduce a nonlinear relaxation of stress which results in
shear-thinning behavior. All of the above-mentioned macroscopic models con-
tain the upper-convected derivative, the dominant source of nonlinearity in the
equations, which leads to many of the difficulties and interesting phenomena
associated with the Oldroyd-B model [15, 16, 8, 9, 17]. Oldroyd-B is the “sim-
plest” of these models making it a good model for our theoretical work.

A simple modification to the Oldroyd-B model, which will yield smooth and
bounded stresses [18, 19], is to add polymer stress diffusion. The addition of
stress diffusion can be derived from the kinetic theory of dumbbells [15, 20], but
the stress diffusion coefficient is proportional to the square of the ratio of the
bead diameter (or polymer radius of gyration) to the flow length-scale, which
even in the context of micro-fluidics is minute (on the size of 10−6 at most)
[21]. To be useful as a regularization in numerical simulations, artificially large
polymer stress diffusion is typically needed [22, 18]. However it is useful to note
that there is an analytical result [19] which proves that any amount of polymer
stress diffusion will maintain a smooth and bounded polymer stress. In this
manuscript we use polymer stress diffusion to derive an asymptotic expansion,
in orders of the square-root of the stress diffusion coefficient, for solutions to
the Oldroyd-B model (at zero Reynolds number) in a simple extensional flow
geometry. This solution provides information about the effect of the large stress
islands, or birefringent strands, on the resultant flow field. In particular, we
are able to take the limit as the diffusion goes to zero and recover information
about the effect of these stress islands on the flow. Therefore we can determine
the first order effect of the stress island on the velocity in the Stokes-Oldroyd-B
system.

An important structure of the momentum equation, which we use to guide
us, is that at zero-Reynolds number the velocity is one degree smoother than
the stress. This implies that at extensional points in the flow, where the stress
accumulates, the exact value of the stress is not needed to determine the effect on
the velocity. Only the integral of the stress affects the velocity field. The stress
island can be approximated by a smoothed Dirac δ-distribution. Furthermore,
when stress diffusion is included in the model, a Gaussian becomes an exact
solution of the asymptotic approximation for the stress tensor.

The Gaussian has a well-defined integral even in the limit of zero diffusion
which enables us to close the asymptotic expansion and give a well defined solu-
tion for the velocity. The result of the transversely narrow and sharply peaked
stress distribution is a dip in the velocity whose magnitude is independent of
the stress diffusion. Such a dip in the velocity field has been observed experi-
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mentally [23, 24] and provides a possible mechanism for the instabilities seen in
numerical simulations [6, 7, 8, 9, 10, 11]. Simply stated, the instability mecha-
nism is due to the fact that at extensional points in the flow the vorticity is low.
In the low vorticity region, the stress can grow and where the stress is large the
vorticity is expelled, leaving a larger area for the stress to begin to oscillate and
become unstable. Boundary layer approximations near extensional stagnation
points that depend on the polymer extension length and relaxation time were
presented in [25, 26].

In what follows we will describe the model and assumptions and derive an
asymptotic expansion for the stress and velocity to first order in the stress
diffusion coefficient. We conclude by showing that the solutions to our model
agree extremely well with numerical simulations. The model captures both the
leading order velocity response, as well as the amplitude of the stress in the
birefringent strands.

1.1. Model

To perform the analysis it is simpler to write Eqs. (1)-(2) in terms of a
conformation tensor, S, defined by

S = Wiξ−1τ p + I. (3)

The addition of a polymer stress diffusion term, ν∆S is added to the stress ad-
vection equation. This is necessary to our analysis, and we perform the asymp-
totic expansion in orders of the stress diffusion coefficient ν. In non-dimensional
form we write the Stokes-Oldroyd-B equations with polymer diffusion as

∆u−∇p+ ξWi−1∇ · S + f = 0, and ∇ · u = 0, (4)

Wi
∇
S +(S− I) = ν∆S. (5)

The Weissenberg number, Wi = λ/τf , is the ratio of the elastic relaxation time
to the characteristic flow time-scale, set by f which we set to unity, and ξ = ηp/ηs
is the ratio of polymer to solvent viscosity.

1.2. Outline of solution strategy

The objective of this work is to find an analytic, asymptotic approximation
of Eqs. (1)-(2) at steady state. Our analytical strategy has a few key steps which
exploit both the structure of the upper convective derivative and the linearity of
the stress feedback on the Stokes equations. Our steps will proceed as follows.

1. We rescale the velocity field by Wi, yielding a factor of Wi which multiplies
the pressure and the force, f. After the rescaling, Wi does not appear in
the advection/diffusion equation for the stress.

2. In the rescaled variables, we choose a simple background flow, u, to drive
the dynamics of the upper convective derivative, without specifying the
force, f, which creates this flow. Crucially the flow we choose has the
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property ∂yu = 0 everywhere. Physically speaking, this is a flow whose
vorticity is zero near the maximum of the stress island. In constructing the
solution, we will see that the stress feedback on the flow also produces a
velocity field whose vorticity vanishes at the maximum of the stress island.
Additionally, the feedback flow tends to expel vorticity from the vicinity
of the maximum of the stress.

The flow we choose is only intended to describe the local structure
of a generic flow near a stress island. This allows us to solve the stress
equation because when the stress diffusion coefficient is small the stress
equation is essentially hyperbolic, and therefore local in the velocity field.

Mathematically, a flow with this structure causes the equation for the
conformation tensor to decouple into a hierarchy of three inhomogeneous,
non-constant coefficient linear PDEs. The first component of the confor-
mation tensor, S11, is forced by a constant. The second component, S12,
is forced by the solution for S11, and the third component, S22, is forced
by S12.

The Oldroyd-B model is most physically relevant in the limit of van-
ishing stress diffusivity, ν. This motivates an anisotropic scaling of the
spatial coordinates typical of boundary layer theories. The resulting lin-
ear PDE can then be solved analytically, thereby providing the profile of
the conformation tensor.

3. From the form of the Stokes’ equation, Eq. (4), the conformation tensor
feeds back onto the flow through its divergence, whose components we
define as Q1 and Q2 as follows:

Q1 ≡ ∂xS11 + ∂yS12

Q2 ≡ ∂xS12 + ∂yS22.
(6)

However, since the diffusion is small, and the equations for the components
of the tensor break up into a hierarchy of inhomogeneous equations, we
show that only Q1, the component of the stress divergence in the direction
of the axis of localization, is needed to compute the lowest order effect of
the stress on the flow.

We use Q1 to compute the velocity field which arises as a response to
the stress. For this problem, we use the classical boundary layer matching
techniques whereby the flow is computed in the outer and inner regions
separately, and then the two solutions are matched. The inner region
corresponds to the layer where the stress divergence, Q1, is concentrated.

4. At this point, having prescribed the total velocity (at least locally near
the stress island), the conformation tensor and the velocity field induced
by the conformation tensor are computed. Since the components of the
conformation tensor are sharply localized in stress islands, they are there-
fore only affected by the velocity field in the vicinity of this localization.
By requiring that the total velocity - that due to the forcing plus that
due to the stress response - be consistent along the axis of localization of
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the stress tensor, we are able to establish a simple linear equation for the
saturated amplitude of the conformation tensor.

2. Asymptotic approximation of stress islands and their induced flow

We will first perform all of the calculations in the case of a single stress
island in a domain which is infinite in y and periodic in x. The essence of
the calculation is captured by this example, which can easily be generalized to
doubly periodic domains for purposes of comparison to numerical simulations in
the 4-roll mill geometry. We assume periodicity in x for simplicity and consider
an extensional flow centered at the origin, with incoming streamlines aligned
along the y−axis and outgoing streamlines aligned along the x−axis. In order
to create a stress island of finite length along the x-axis, it is necessary that the
flow turn around at some |x| > 0, and then point away from the x-axis; this will
certainly hold in any physical flow. Furthermore, by choosing a functional form
which is separable in (x, y) the calculation for obtaining the dependence of the
conformation tensor, S on x, becomes straightforward.

2.1. Rescaling the velocity

In order to simplify the presentation of our calculation it is convenient to
rescale the velocity field by Wi. Let ũ = Wi u, and p̃ = Wi p, then the steady
state system of equations becomes

∆ũ−∇p̃+
1

2
∇ · S + Wi f = 0, with ∇ · ũ = 0, (7)

ũ · ∇S−
(
∇ũ S + S ∇ũT

)
+ (S− I) = ν∆S. (8)

We have set the viscosity ratio ξ to 1/2, for convenience. Since equation (7) is
linear we can split the velocity ũ = uf + us where uf solves

∆uf −∇pf + Wi f = 0 (9)

i.e. uf is the response of the flow field to the background forcing. and us solves

∆us −∇ps +
1

2
∇ · S = 0 (10)

so us is the stress response. Rather than specify f, we prescribe the total flow,
ũ, independent of Wi. Clearly from (9), the background flow, uf , is linear in
Wi, while the induced flow is linear in the amplitude of the conformation tensor.

Equation (8) is linear in S and, because of the re-scaling of the velocity
field, the Weissenberg number does not appear in this equation. Therefore
the forced portion of the flow must add to the stress induced portion of the
flow to give a total scaled flow (ũ) which is independent of Wi near the region
where S is localized. This means that the re-scaled flow near the stress island is
universal, independent of Weissenbeg number. We are free to choose a form of
the velocity field, ũ, in equation (8) which is valid locally near the stress island,

6



determine the stress profile generated by this velocity field and then determine
the flow, us, induced by this velocity field. The induced velocity, us, will be
exponentially localized near the stress island and its functional form will coincide
with uf there. According to equation (9), uf is linear in Weissenberg number.
Therefore, the requirement that ũ is independent of Weissenberg number near
the stress island will yield a linear relation for the amplitude of the conformation
tensor in terms of the Weissenberg number.

We will write the rescaled total velocity as ũ = uî+ vĵ, so that the equation
for the upper convected derivative of the stress (8) is written explicitly as

[u∂x + v∂y] S−
[

2 (∂xuS11 + ∂yuS12) ∂xv S11 + ∂yuS22

∂xv S11 + ∂yuS22 2 (∂xv S12 + ∂yv S22)

]
+(S− I) = ν∆S.

(11)

2.2. The total velocity field

An incompressible 2-D flow can be described in terms of a stream function
ũ = u î+ v ĵ = −∂yψ î+ ∂xψ ĵ with vorticity ω = ∂xv − ∂yu = ∆ψ. Taking the
curl of (10), the vorticity induced by the stress satisfies the Poisson equation

∆ωs =
1

2
(∂yQ1 − ∂xQ2) (12)

where the induced vorticity, velocity and stream function are related through
ωs = ∂xvs − ∂yus = ∆ψs.

Consider the simple stream function

ψ = −y sin(x) (13)

whose velocity field is [
u
v

]
=

[
sin(x)
−y cos(x)

]
. (14)

The salient properties of the flow (14) are that it has an extensional point at
(x, y) = (0, 0), its vorticity is proportional to the stream function

ω = y sin(x), (15)

(which vanishes along the x-axis) and its deformation tensor is[
∂xu ∂yu
∂xv ∂yv

]
=

[
cos(x) 0
y sin(x) − cos(x)

]
. (16)

The flow (14) is not an exact solution of the stationary Stoke-Oldroyd-B
equations, but it is a useful canonical flow if one considers how a stress island is
generated. A circulation like (14) moves fluid toward the origin along the y-axis
and away from the origin along the x-axis. As a consequence of this flow, a
stress island is formed along the x-axis. Since the stress diffusion, ν, is small,
the stress island is confined to a thin layer around the x-axis. Through the
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Stokes equations, the stress island generates a secondary circulation which, in
the vicinity of the stress island, tends to counteract the original flow. However,
since the stress island is strongly confined to the x-axis, it only responds to the
primary (uf ) and secondary (us) circulation in its vicinity. The flow in (14) is
simply the first term in the Taylor series in y (near y = 0) and a Fourier series
in x of any general flow, which is also periodic in x. Therefore, locally about
the x-axis, any periodic flow would have a leading order term proportional to
(14).

The choice of a periodic function in x is also not arbitrary. If the flow was
instead (u, v) ∝ (x,−y), it would not recirculate, and the resulting stress island
would be infinitely long and invariant along the x-axis.

2.3. Solution of the conformation tensor equations

Substituting the velocity field in (14) to the equations in (11), the equations
for the conformation tensor become

sin(x) ∂xS11 − y cos(x) ∂yS11 + [1− 2 cos(x)]S11 − 1 = ν∆S11

sin(x) ∂xS12 − y cos(x) ∂yS12 + S12 − y sin(x)S11 = ν∆S12

sin(x) ∂xS22 − y cos(x) ∂yS22 + [1 + 2 cos(x)]S22 − 2y sin(x)S12 − 1 = ν∆S22

(17)

These equations have a simple structure, three aspects of which are very illu-
minating. They each have an inhomogeneity, the S11 equation has a constant,
1, the S12 equation has y sin(x)S11 and the S22 equation has 2y sin(x)S12 − 1.
The first order y-derivatives on the left hand sides are multiplied by y, with
no other functional dependence on y. Therefore, there is no additional y scale
associated with transport and stretching: however, there is a y scale associated
with stress diffusion. The antisymmetry of the inhomogeneities coupled with
the symmetry of the linear operator results in S11 and S22 being symmetric and
S12 being antisymmetric about the y-axis.

2.3.1. Anisotropic scaling of coordinates

In the limit that ν → 0 we can approximately solve the conformation tensor
equations (17) by stretching the y-coordinate

y√
ν

= Y =⇒ ∂

∂y
=

1√
ν

∂

∂Y
(18)

where we assume that derivatives with respect to Y are O(1). As in boundary
layer theories the x-coordinate is not rescaled. This is tantamount to assuming
that y-derivatives are O(ν−

1
2 ) larger than x-derivatives.

Performing the rescaling on equations (17) and retaining the lowest order
terms in ν removes second derivative terms in x and we find the equation for
S11 is a linear, inhomogeneous PDE independent of S12 and S22,

sin(x) ∂xS11 − Y cos(x) ∂Y S11 + [1− 2 cos(x)]S11 − ∂2Y Y S11 = 1. (19)
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The equation for S12 is also linear, with an inhomogeneity which depends on√
νS11,

sin(x) ∂xS12 − Y cos(x) ∂Y S12 + S12 − ∂2Y Y S12 = Y sin(x)
√
νS11. (20)

Finally, the equation for S22 is also linear, with an inhomogeneity which depends
on
√
νS12,

sin(x) ∂xS22 − Y cos(x) ∂Y S22 + [1 + 2 cos(x)]S22 − ∂2Y Y S22

= 2Y sin(x)
√
νS12 + 1.

(21)

This is typical of boundary layer scaling, and implies that the stress tensor will
be elongated along the x-axis.

It is clear that a solution of the system (19) - (21) results in an asymptotic
ordering

O(S12) ∼
√
ν O(S11) and O(S22) ∼ ν O(S11). (22)

However, it is the derivatives of Sij , i.e. Q1 and Q2 from Eq. (12), that drive
the response of the fluid to the induced stress. Since partial derivatives with
respect to y are a factor of ν−

1
2 greater than partial derivatives with respect to

x, we estimate the order of Q1 (Eq. 6) by

O(Q1) ∼ O(S11) + ν−
1
2 O(S12)

∼ O(S11) + ν−
1
2 ν

1
2 O(S11)

∼ O(S11),

(23)

which is to say that both terms which define Q1 contribute at the same order
of magnitude (in ν) to the stress induced velocity field. Similarly for Q2

O(Q2) ∼ O(S12) + ν−
1
2 O(S22)

∼ ν 1
2O(S11) + ν−

1
2 ν O(S11)

∼ ν 1
2O(S11),

(24)

which is to say that both terms which define Q2 are of the same order, that
being

√
ν smaller than Q1.

Comparing the terms on the right hand side of (12) we find

O (∂xQ2 − ∂yQ1) ∼ O(Q2) + ν−
1
2O(Q1)

∼ ν 1
2O(S11) + ν−

1
2O(S11)

∼ ν− 1
2O(S11),

(25)

which means that the Q2 contribution to the torque is a factor of ν smaller than
the Q1 contribution in the vorticity equation (12). So it suffices to compute

∂yQ1 = ∂2xyS11 + ∂2yyS12 (26)
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in order to calculate ωs, i.e.

∆ωs =
∂yQ1

2
+O(ν). (27)

The equation for Q1 is constructed by taking the x-derivative of (19) plus the
y-derivative of (20)

sin(x) ∂xQ1 − Y cos(x) ∂YQ1 + [1− cos(x)]Q1 − ∂2Y YQ1 = − sin(x)S11, (28)

a PDE whose inhomogeneity is a function of S11 and whose solution has Q1 ∼
O(S11).

2.3.2. Solution of S11

In order to calculate ũs, we must compute Q1, and therefore must explicitly
compute S11 from (19). Here we show that equation (19) has an exact solution
in the form

S11(x, Y ) = G(x)e−
F (x)Y 2

2 +H(x) (29)

so that

∂Y S11 = −Y GFe−FY
2

2

∂Y Y S11 = −GF
[
1− Y 2F

]
e−

FY 2

2

∂xS11 =

[
Gx −

Y 2FxG

2

]
e−

FY 2

2 .

(30)

Substituting (29) into (19) we find three ODEs for F,G,H. The equation for
H decouples from the rest and absorbs the homogeneous term

sin(x)Hx +H [1− 2 cos(x)]− 1 = 0. (31)

The equation for F arises by setting the coefficient of Y 2e−
FY 2

2 to zero

F 2 − cos(x)F +
sin(x)Fx

2
= 0. (32)

This is a nonlinear, inhomogeneous, first order equation for F (x). By setting

the coefficient of e−
FY 2

2 to zero we arrive at a first order linear equation for
G(x)

sin(x)Gx + [1− 2 cos(x)]G+ FG = 0. (33)

H(x) will contribute a term to the solution of Q1 but, since it is independent
of x, it will not contribute to the vorticity equation, (26); we do not record its
solution. We can see by inspection that the solution to (32) is

F (x) =
1 + cos(x)

2
= cos2

(x
2

)
. (34)
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Note that the equation (33) is linear, meaning that any multiple of a solution
remains a solution. We can write (33) in the form

d(ln(G))

dx
=

3(cos(x)− 1)

2 sin(x)
= −3

2
·

2 sin2
(
x
2

)
2 sin

(
x
2

)
cos
(
x
2

) = −3

2
tan

(x
2

)
(35)

with antiderivative
ln(G(x)) = C + 3 ln

(
cos
(x

2

))
(36)

yielding

G(x) = S0 cos3
(x

2

)
. (37)

So we conclude that the asymptotic form of the primary component of the
conformation tensor is

S11(x, Y ) = S0 cos3
(x

2

)
e−

1
2 cos2( x2 )Y 2

+H(x). (38)

2.3.3. Solution of Q1

Substituting S11 from (38) into equation (28) we now solve

sin(x) ∂xQ1 − Y cos(x) ∂YQ1 + [1− cos(x)]Q1 − ∂2Y YQ1 =

− sin(x)
[
S0 cos3

(x
2

)
e−

1
2 cos2( x2 )Y 2

+H(x)
]
.

(39)

Again we seek a solution of the form

Q1 = M(x)e−
1
2 cos2( x2 )Y 2

+N(x). (40)

It is remarkable that the simple form (40) provides an exact solution of (39), and
we provide the details in order to convince the reader. After substituting (40)
into (39), we find that the terms which are independent of Y give an equation
for N(x)

sin(x) ∂xN + [1− cos(x)]N = − sin(x)H(x) (41)

the solution of which requires H(x) from (31). Again, N(x) is not needed since
it does not affect the flow.

The partial derivatives of the Gaussian terms are

∂xQ1 =

[
Mx +

1

2
Y 2M cos

(x
2

)
sin
(x

2

)]
e−

1
2 cos2( x2 )Y 2

∂YQ1 =− YM cos2
(x

2

)
e−

1
2 cos2( x2 )Y 2

∂2Y YQ1 =M
[
Y 2 cos4

(x
2

)
− cos2

(x
2

)]
e−

1
2 cos2( x2 )Y 2

.

(42)

11



Substituting the derivatives from (42) into equation (39) and collecting the
coefficients of the Gaussian, we find

sin(x)

[
Mx +

1

2
Y 2M cos

(x
2

)
sin
(x

2

)]
+ cos(x)Y 2 cos2

(x
2

)
M

+ [1− cos (x)]M +M cos2
(x

2

)
− Y 2M cos4

(x
2

)
=

− sin(x)S0 cos3
(x

2

)
.

(43)

Simplifying with some trigonometric identities, equation (43) becomes

2 sin
(x

2

)
cos
(x

2

)
Mx + Y 2M

[
cos
(x

2

)
sin
(x

2

)]2
+

Y 2M
[
cos4

(x
2

)
− sin2

(x
2

)
cos2

(x
2

)]
+ 2 sin2

(x
2

)
M+

cos2
(x

2

)
M − Y 2M cos4

(x
2

)
=

−2S0 sin
(x

2

)
cos4

(x
2

)
.

(44)

The terms multiplying Y 2 cancel one another, resulting in a linear equation for
M(x)

2 sin
(x

2

)
cos
(x

2

)
Mx +

[
1 + sin2

(x
2

)]
M = −2S0 sin

(x
2

)
cos4

(x
2

)
. (45)

whose solution is surprisingly simple,

M(x) = −S0 sin
(x

2

)
cos2

(x
2

)
. (46)

Therefore, the dominant component of the stress divergence is

Q1 = −S0 sin
(x

2

)
cos2

(x
2

)
e−

1
2 cos2( x2 )Y 2

+N(x), (47)

where we emphasize that the stretched variable is defined to be Y = y/
√
ν. The

solutions (38) and (47) show that the stress and stress divergence are localized
within

√
ν of the x-axis. In the far field, they are weighted Dirac δ-distributions.

2.4. Solving for the stress induced velocity, us

Substituting Q1 from (47) into the vorticity equation (12) and using ∆ψS =
ωS , the induced stream function solves the bi-laplacian equation

∆2ψS =
1

2
∂yQ1 +O(ν) (48)

where
∆2 =

(
∂2yy + ∂2xx

)2
. (49)

We will solve this equation in two different ways for the two different regions.
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1. In the far field, we approximate the right hand side as the derivative of a
δ-distribution and invert the bi-Laplacian on this source.

2. In the near field, we use an anisotropic scaling of the derivatives to simplify
the operator on the left hand side. The lowest order terms retain only Y -
derivatives.

2.4.1. The outer approximation

We define an intermediate variable ψs = ∂yφ and solve the equation

∆2φ = −S0

2
sin
(x

2

)
cos2

(x
2

)
e−

y2 cos2(x/2)
2ν (50)

using the original coordinate y in the far field. The y length scale in the Gaussian
is

L ∼
√

2ν

cos
(
x
2

) , (51)

which is O(
√
ν) outside of ||x| − π| <

√
ν. Hence for almost all x, with y > L,

the right hand side of (50) is small. Near x = ±π, L is no longer small and
the following approximations will fail. However, for (almost all) points outside
these turning points, we define the mollified Dirac δ- distribution,

δL(y) =
e−y

2/L

√
π L

. (52)

The smoothed δ-distribution has the property that its integral is 1. Multiplying
and dividing by

√
π L we write the φ equation as

∆2φ =− S0

√
π ν

2
sin
(x

2

)
cos
(x

2

)
δL(y)

=− S0

2

√
π ν

2
sin (x) δL(y),

(53)

and solve for φ in the limit L→ 0. Now we can seek a separable solution

φ(x, y) = −S0

2

√
π ν

2
sin (x) Φ(y), (54)

where (
d2

dy2
− 1

)2

Φ = δ0(y). (55)

The solution to equation (55) has Φ and its first two partial derivatives contin-
uous at y = 0. The jump in the third derivative at y = 0 is

[Φyyy] = 1, (56)

which is solved by

Φ =
[1 + |y|]

4
e−|y|, (57)
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so that
Φy = −y

4
e−|y|, (58)

and

ψs =
S0

8

√
π ν

2
sin (x) ye−|y|. (59)

Therefore, the induced velocity field is[
us
vs

]
= −S0

8

√
π ν

2

[
sin(x) (1− |y|)
−y cos(x)

]
e−|y|. (60)

The original hypothesis was that the induced velocity field, us should have
the same functional form as the total velocity field, ũ near where the stress
is maximum. Clearly (60) and (14) do not have the same form everywhere.
However, the stress is sharply localized in a layer of width L ∼

√
ν � 1 near

y = 0, where the induced velocity is approximately[
us
vs

]
≈ −S0

8

√
π ν

2

[
sin(x)
−y cos(x)

]
+ ... (61)

which is proportional to ũ from (14).

2.4.2. The inner approximation

In order to get the correct solution of the velocity near and within the stress
island, we must consider this boundary layer region again using the scaled y
variable. Upon substituting equation (47) into (48), using the definition of Y ,
retaining the largest terms on the left hand side, and integrating once with
respect to y, we find

1

ν3/2
∂3Y Y Y ψs = −S0

2
sin
(x

2

)
cos2

(x
2

)
e−

1
2 cos2( x2 )Y 2

. (62)

Defining a scaled boundary layer variable

z =
cos
(
x
2

)
√

2
Y, (63)

and the stream function equation becomes

d3

dz3
ψs = −S0

√
2ν3 tan

(x
2

)
e−z

2

. (64)

After integrating three times, we arrive at the solution

ψs = −S0

√
2ν3 tan

(x
2

){√π
8

[
2z2 + 1

]
erf(z) +

z

4
e−z

2

+ c1z

}
, (65)

where c1 is constant with respect to Y , although not necessarily with respect
to x. In order to match the y-dependence of ψs, we evaluate ψs from the outer
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solution in equation (59) in the limit y → 0, compare it to ψs in the inner

solution, and substitute the definition z =
cos( x2 )y√

2ν
.

The large z limit of the near field solution is

lim
z→∞

ψs = −S0

√
2ν3 tan

(x
2

){√π
4
z2 + c1z

}
= −S0

√
2ν3 tan

(x
2

){√π
4

cos2
(
x
2

)
2ν

y |y|+ c1
cos
(
x
2

)
√

2ν
y

}

= −S0

√
2ν3 sin

(x
2

){√π
4

cos
(
x
2

)
2ν

y |y|+ c1y√
2ν

}
.

(66)

The term which is quadratic in y matches the outer solution automatically. The
linear term in y matches the outer solution if

c1 = −
cos
(
x
2

)
4

√
π

2ν
. (67)

Near y = 0, the near field approximation yields the horizontal velocity

us = −∂yψs

= −
cos
(
x
2

)
√

2ν
∂zψs

≈ S0ν sin
(x

2

){1

4
+

1

4
+ c1

}
≈ S0ν sin

(x
2

){1

2
−

cos
(
x
2

)
4

√
π

2ν

}

≈ −S0

8

√
πν

2

[
sin (x)− 4

√
2ν

π
sin
(x

2

)]
.

(68)

Notice a few features of the near field horizontal velocity. First, we have only
retained terms independent of y because we only need to study us on the axis.
Next, the first term matches the first term in the far field approximation and is
the leading order term in the near field, while the second term is O(

√
ν) smaller.

The second term describes a shrinking of the horizontal extent of the horizontal
velocity by O(

√
ν), i.e. the zonal velocity is zero on y = 0 at x∗ where

cos
(x∗

2

)
=

√
8ν

π
=⇒ x∗ ≈ π − 4

√
2ν

π
. (69)

This further implies that a line of stress islands along y = 0 will be drawn to
one another by their tendency to pull their endpoints toward their centers.
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2.4.3. Stress islands on a periodic domain

The stream function in (59) accounts for stress islands on an x-periodic, but
not y-periodic, domain. In order to account for y−periodicity, we need to solve
(55) with a periodized δ function. Solutions to the periodic version of (55) on
0 < y < 2π are exponentials and y times exponentials, which can be written

Φ = A cosh(y−π)+B(y−π) sinh(y−π)+C sinh(y−π)+D(y−π) cosh(y−π).
(70)

The function is centered at y = π in order to exploit the symmetry around this
point. In fact, Φ should be symmetric around this point (two derivatives of Φ
are proportional to u) so we can simplify the expression

Φ = A cosh(y − π) +B(y − π) sinh(y − π). (71)

Establishing periodicity in the y-direction requires

Φ(2π) = Φ(0), Φyy(2π) = Φyy(0),

Φy(2π) = Φy(0), Φyyy(2π) = Φyyy(0)− 1.
(72)

The choice of symmetric Φ means that its second derivative automatically satis-
fies the periodicity conditions, and one need only use the first and third deriva-
tive conditions. The first derivative is

Φy = (A+B) sinh(y − π) +B(y − π) cosh(y − π), (73)

which, when enforcing periodicity results in

A = −B(1 + π coth(π)), (74)

so that

Φ = B [(y − π) sinh(y − π)− (1 + π coth(π)) cosh(y − π)]

Φy = B [(y − π) cosh(y − π)− π coth(π) sinh(y − π)]

Φyy = B [(1− π coth(π)) cosh(y − π) + (y − π) sinh(y − π)]

Φyyy = B [(2− π coth(π)) sinh(y − π) + (y − π) cosh(y − π)] .

(75)

Lastly, using the third derivative condition yields

B =
−1

4 sinh(π)
. (76)

Using Φy to construct ψP (P is used to denote “periodic”) we find

ψP =
S0 coth(π)

8

√
πν

2
sin(x)

[
(y − π)

cosh(y − π)

cosh(π)
− π sinh(y − π)

sinh(π)

]
, (77)

on 0 < y < 2π. It must be periodically extended outside of this domain, for
example to −2π < y < 0,

ψP =
S0 coth(π)

8

√
πν

2
sin(x)

[
(y + π)

cosh(y + π)

cosh(π)
− π sinh(y + π)

sinh(π)

]
. (78)
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(a) trS, log scale (b) velocity, u (c) vorticity

Figure 1: 4−roll mill simulations on [0, 2π]2 with ν = 0.00025, Wi = 20

2.4.4. Multiple stress islands on a doubly periodic domain

In [27, 18], a doubly periodic 4-roll mill type geometry was studied on
[0, 2π]× [0, 2π]. The background force f = (2 sinx cos y,−2 cosx sin y) prescribed
a flow with an extensional point at the origin, stretching in the x-direction and
squeezing in the y-direction. The results of numerical simulations of this flow
for Wi = 20, ν = 0.00025 are plotted in in Fig. 1 after a time t = 5Wi when
the flow has equilibrated. Fig.1 (a) shows contours of the trace of the confor-
mation tensor S11 + S22, on a log-scale, (b) shows the first component of the
velocity u, and (c) the vorticity ∂xv − ∂yu. Unlike our theoretical background
flow, here there are four stress islands contributing to the flow in the domain
0 < x < π, 0 < y < π. In order to compare our theoretical predictions with this
flow geometry we need to account for all of these stress islands, we will show
results of the comparison in Sec. 3

For the island oriented parallel to the x-axis located at (x1, y1) = (π, π), we
need to use the expression in (78), but shift its location,

ψ1 =
S0 coth(π)

8

√
πν

2
sin(x− x1)[

(y − y1 + π)
cosh(y − y1 + π)

cosh(π)
− π sinh(y − y1 + π)

sinh(π)

]
= − S0 coth(π)

8

√
πν

2
sin(x)

[
y

cosh(y)

cosh(π)
− π sinh(y)

sinh(π)

]
.

(79)

The other two islands are rotated by π/2, which is effected by the replace-
ment (x, y)→ (y,−x). The island along the y-axis is located at (x2, y2) = (0, π)
and from its perspective, the first quadrant is “below” it, so we again use the
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expression in (78). Therefore

ψ2 =
S0 coth(π)

8

√
πν

2
sin(y − y2)[

(−(x− x2) + π)
cosh(−(x− x2) + π)

cosh(π)
− π sinh(−(x− x2) + π)

sinh(π)

]
=
S0 coth(π)

8

√
πν

2
sin(y)

[
(x− π)

cosh(x− π)

cosh(π)
− π sinh(x− π)

sinh(π)

]
.

(80)

Finally we consider the island at (x3, y3) = (π, 0); from the perspective of this
stresslet the first quadrant is “above” it, meaning that the expression in (77) is
relevant,

ψ3 =
S0 coth(π)

8

√
πν

2
sin(y − y3)[

(−(x− x3)− π)
cosh(−(x− x3)− π)

cosh(π)
− π sinh(−(x− x3)− π)

sinh(π)

]
= − S0 coth(π)

8

√
πν

2
sin(y)

[
x

cosh(x)

cosh(π)
− π sinh(x)

sinh(π)

]
.

(81)

Notice that each of the ψ expressions is positive in (x, y) ∈ [0, π] × [0.π],
which means that they are additive, i.e., the induced flow from each of the four
stress islands reinforce the flow from the others. Notice also that ψ1 and ψ2 are
the same expression with x and y interchanged, as are ψ1 and ψ3.

The sum of the four expressions yields

ψtot =
S0 coth(π)

8

√
πν

2
[sin(x)M(y) + sin(y)M(x)] , (82)

where the function

M(x) ≡
[

(x− π) cosh(x− π)− x cosh(x)

cosh(π)
− π sinh(x− π)− sinh(x)

sinh(π)

]
. (83)

2.5. Calculating S0

Near y = 0, we expect the total velocity,[
u
v

]
=

[
sin(x)
−y cos(x)

]
(84)

to consist of an externally forced portion[
uf
vf

]
= Wi

[
sin(x)
−y cos(x)

]
, (85)

and a stress induced portion[
uS
vS

]
= (1−Wi)

[
sin(x)
−y cos(x)

]
. (86)
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We need to compare this form of the velocity field with the solution in equation
(82) evaluated near the origin. The function M(x) in equation (83) can be
approximated as 1.144 sin(x), near x = 0, so near the origin

ψtot ≈
S0 α

8

√
πν

2
sin(x) sin(y), (87)

where α = 2 coth(π)M ′(0) ≈ 2 coth(π) × 1.144 ≈ 2.297. Comparing (87) with
(86) we find

S0

8

√
π ν

2
α = Wi− 1 or S0 =

8 (Wi− 1)

α

√
2

π ν
. (88)

In Section 3 we will compare this theoretical prediction to simulations of the
Stokes-Oldroyd-B system. In the case of the singly periodic velocity field α = 1,
however we do not have any numerical simulations with which to compare this
result.

2.6. The correctly scaled velocity field.

The original rescaling of the velocity field by the Weissenberg number was
simply a computational convenience. We must remove this scaling in order to
get the actual velocity field

u =
ũ

Wi
. (89)

In the case of the singly periodic velocity field, the background velocity,[
uf
vf

]
=

[
sin(x)
−y cos(x)

]
(90)

is independent of the Weissenberg number, as it must be from equation (4).
The stress induced velocity field is[

us
vs

]
=

(
1

Wi
− 1

)[
sin(x) (1− |y|)
−y cos(x)

]
e−|y|, (91)

so that the total stream function is

ψ = −y sin(x)

[
1 +

(
1

Wi
− 1

)
e−|y|

]
. (92)

Near the stress island, the velocity scales as the reciprocal of Wi, but far away the
stress induced response decays. The same rescaling yields the stream function
for the doubly periodic example,

ψ = − sin(x) sin(y) +

(
1− 1

Wi

)[
sin(x)M(y) + sin(y)M(x)

2M ′(0)

]
. (93)
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3. Comparison to Numerical Simulations

We compare our theoretical results to numerical simulations of the Stokes-
Oldroyd-B system defined in Eqs.(4)-(5) where f creates a doubly periodic 4−roll
mill type geometry,

f = (2 sinx cos y,−2 cosx sin y). (94)

The system is solved in a doubly periodic domain using a pseudo-spectral
method ([27, 18]). These simulations were performed with 4x = 2π/N, for
N = 29, with ν = 0.0125, 0.0025, 0.00125, 0.00025, where ν/(4x)2 ≈ 83, 17, 8,
2.

ν Wi = 10 Wi = 15 Wi = 20

0.01250 0.08250 0.04338 0.00613
0.00250 0.02542 0.01073 0.0035
0.00125 0.00785 0.01107 0.00575
0.00025 0.04153 0.00694 0.00322

Table 1: Relative difference in theoretical maximum, S11(0, 0), compared with
4−roll mill simulation.

In Table (1) we show the relative difference between the theoretical predic-
tion in Eq. (88) and the maximum of the first component of the stress tensor
at equilibration for the 4−roll mill simulations, using the value α = 2.297 ≈
2 coth(π)× 1.144, in our calculation of S0 from equation (88). The error in the
approximation is smallest for Wi = 10, 20 for ν = 0.00125, and for Wi = 15 is
smallest for ν = 0.00025, where the error . 1%. We see that we can get ex-
cellent matching between the theoretical prediction and the numerical solutions
when the diffusion is approximately 2− 8 times (4x)2.

Decreasing the diffusion without increasing resolution will increase the error
in the numerical simulation since we need a grid size4x <

√
ν/C, for some num-

ber C > 2, which is independent of ν. On the other hand, increasing ν increases
the error in the asymptotic approximation. Therefore the asymptotic approx-
imation becomes more valid at small values of the stress diffusion - which is
precisely where high resolution is needed in numerical methods, thereby greatly
increasing computational time.

In our asymptotic solution, the maximum of the conformation tensor scales
with 1√

ν
. While we do not expect S11(0, 0) to converge as ν → 0 we do, however,

expect the conformation tensor to converge in an integral-norm; it is precisely
this integral quantity that is necessary to find the solution for the velocity.
Simulations in the 4−roll geometry show that the integral is converging. In Fig.
2 we plot the relative error in the L1−norm of the trace of the conformation
tensor, defined by

L1(trS) ≡
ˆ 2π

0

ˆ 2π

0

|trS| dx dy,
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Figure 2: Relative error in L1(trS) as a function of ν, comparing with solution
at ν = 0.00025.

where we use the solution with diffusion coefficient ν = 0.00025 as the “true”
solution. The maximum of the conformation tensor may be growing as ν → 0,
but the integral of this quantity converges as ν → 0, and in fact for the values
considered, the relative size is changing by less than one percent.

It is not just at the extensional stagnation point where we see good agree-
ment between theory and simulation. In a strip around the y−axis (and by
symmetry along all the directions of stretching and compression in the 4-roll
mill) the asymptotic theory captures the lowest order behavior of the velocity.
For example we compare the theoretically predicted horizontal velocity along

x
  0  : 2:

u(
x,

0)

-0.05

0

0.05
1

Wi sin(x)

u(x,0), simulation

Figure 3: Comparison of simulation u(x, 0) with theoretically predicted
1
Wi sin(x), simulations use Wi = 20, ν = 0.00025
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Figure 4: 4−roll mill simulations for Wi = 20, for ν = 0.0025, 0.00125, 0.00025
(a) principal component of conformation tensor along axis of compression
S11(0, y) (b) velocity u(π/2, y) (c) vorticity ω(x, π/2) (d)-(f) close-ups of (a)-(c)
respectively

y = 0 with the simulation. From equations 90–91, the former is given by

u(x, y)|y=0 = sin(x) +

(
1

Wi
− 1

)
sin(x) (1− |y|) e−|y| =

1

Wi
sin(x).

Figure 3 shows plots of both 1
Wi sin(x) and simulation results of u(x, 0) for

ν Wi = 10 Wi = 15 Wi = 20

0.01250 0.03878 0.03397 0.02847
0.00250 0.04802 0.04374 0.03299
0.00125 0.04814 0.04483 0.03823
0.00025 0.04577 0.03675 0.02927

Table 2: Relative difference between theoretical and simulation in u(π/2, 0)
compared with 4−roll mill simulation.

Wi = 20, ν = 0.00025. Results of relative error in the approximation at x = π/2
for a range of Wi, and ν are given in Table 2. This approximation is valid for
all ν in the asymptotically small limit since this solution does not depend on
diffusion. The error remains small in a strip around the axes of compression
and extension near the stagnation point for |y| . 0.1.

Now let us examine the dependence of the numerical solution on the stress
diffusion, ν, in the 4−roll mill numerical simulations. Figure 4 (a) shows the
first component of the conformation tensor along the y-axis, in the direction
of compression and Fig. 4 (d) is a close-up of (a). The Gaussian structure is
evident, and looking at the close-up of the conformation tensor (d) we see a
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sharp second derivative near the origin located where the solution transitions
from the singular behavior of the Gaussian, to the smoother behavior at the
center of the 4-roll mill (where the flow extension is weak).

Figure 4 (b) and close-up (e) show the horizontal velocity in a vertical cut
through the center of the 4-roll mill, x = π/2. Near y = π the stress tensor is
again singular. The dip in the horizontal velocity is distinctly evident in both
figures. As described above, this dip is due to the response of the horizontal
velocity to the stress island. The strength of the velocity at the center of the
stress island, (x, y) = (π/2, π) is not sensitive to ν and clearly attains the value
u = Wi−1 = .05 at the center of the dip, as is predicted in the asymptotic
theory.

Finally, Fig. 4 (c) and close-up (f), show that the vorticity has a jump which
is smoothed out by diffusion, but the magnitude of the jump converges with
decreasing diffusion and in the limit of ν = 0, the asymptotic model predicts

lim
x→π−

ω(x, π/2) =
(
1−Wi−1

) M ′′(0)

2M ′(0)
≈ −0.775. (95)

Extrapolating the numerically computed ω linearly to x = π− yields ω ≈
−0.725, in excellent agreement with the asymptotic prediction.

Matching the stress island to the center of the roll is a more difficult problem,
and since the 4−roll mill is a toy geometry, performing the detailed calculations
necessary to do the matching is unlikely to yield further insight. However, near
the center of the roll, the flow is purely rotational and is dominated by the
antisymmetric part of the velocity gradient matrix. Therefore, irrespective of
the Weissenberg number, the flow near the center of the 4-roll mill behaves like
the low Wi limit because the symmetric part of the deformation tensor, which
stretches the flow and creates the stress islands, is small.

We posit that the stress tensor can be written S = SR + SS where SR
denotes the regular solution, which dominates in the middle of the rolls, and SS
denotes the singular solution which describes the stress islands (and which we
have already discussed in detail). Using the intuition that the flow at the center
of the roll behaves like the low Wi flow locally, then SR ≈ I + Wi(∇u +∇uT )
[27]. Taking the curl of Eq. (4), and substituting S = SR + SS gives

∆ω = −∆ω

2
− 4 sin(x) sin(y). (96)

This gives a value for ∆ω at the center of the 4-roll mill,

−∆ω =
8

3
=⇒ −∆ω

2
=

4

3
. (97)

For all ν = 0.0125, 0.025, 0.00125, 0.00025 and Wi = 10, 15, 20 the error in
this value at the center of the roll is less than 0.04%. Although this solution is
obtained in the low Wi limit, it is valid for all Wi. Note that near the axes of
extension and compression this regular solution only has terms that are lower
order in our expansion and can be ignored.
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Finally, we make a comment about using diffusion to enforce finite-extension.
In the UCM model of viscoelastic fluids, an asymptotic scaling argument was
used to show that at extensional points the width of a birefringent strand in
the FENE-P model scales as 1

` + 1−ln `
2`

1
Wi +O( 1

Wi2
) [28]. As the Gaussian full

width at half-maximum given in S0 scales like
√
ν which in turn scales like 1

`2 ,
we see that the birefringent strand constructed using diffusion will be much
thinner than a corresponding strand using FENE-P. The FENE-P model still
requires some diffusion to evolve to steady state, in order to resolve the corners
that arise in the cut-off of tr S that arises at extensional stagnation points in
FENE-P [27]. It may be possible to use far less diffusion to regularize FENE-P
and obtain accurate solutions. An argument like we made above would be more
complicated in that case, but if possible, it would be an important result.

4. Conclusions

We have found an analytic, asymptotic approximation of the steady-state
equations for viscoelastic creeping flow in a neighborhood of an extensional stag-
nation point. This approximation uses polymer stress diffusion as a regulariza-
tion to find a solution in the form of a Gaussian for the principle component of
the polymer stress in the stretching direction.

At the extensional point, the stress becomes localized and highly stretched
in a region of the outgoing streamlines of the stagnation point. The Gaus-
sian structure of the solution was recognized in [18], but without including the
x−dependence in the solution it is not possible to get any information about the
feedback to the velocity. This paper used the special structure of the equations
that arises when uy = 0, which allows solutions to be obtained in orders of the
asymptotic parameter, ν. The singular solutions capture the behavior of the elas-
tic stress near the stagnation point, and can be used to find an approximation
for the velocity response near the stagnation point.

Due to the special structure of the equations this solution for the velocity
is independent of the diffusion parameter. This shows that the exact nature
of the elastic stress at the extensional point is not essential to determine the
behavior of the flow near the stagnation point. This is an important observation
since many of the modifications to Oldroyd-B that are designed to incorporate
finite extension or other rheological properties, such as FENE-P, Giesekus, PTT,
inherit the difficulties of Oldroyd-B near extensional points. This indicates that
a small amount of diffusion, chosen carefully to depend on both the parameters
of the flow and on how the flow turns around, can be used to determine an
appropriate grid-size and diffusion for the problem that will exhibit sufficient
smoothness as well as the ability to stretch to a physically valid length.

This solution also gives an essential theoretical piece of the physical ex-
planation for the instabilities in viscoelastic fluids that may lead to a deeper
understanding of elastic turbulence. We have shown that the velocity response
to large stress is to decrease the vorticity near the regions of large stress which
in turn leaves room for stress to grow. Thus stress expels vorticity, which in
turn creates stress.

24



J.A.B. was partially supported by NSF DMS 1009959 and 1313477.

References

[1] P. E. Arratia, C. Thomas, J. Diorio, J. Gollub, Elastic instabilities of poly-
mer solutions in cross-channel flow, Physical review letters 96 (14) (2006)
144502.

[2] J. Soulages, M. Oliveira, P. Sousa, M. Alves, G. McKinley, Investigating the
stability of viscoelastic stagnation flows in t-shaped microchannels, Journal
of Non-Newtonian Fluid Mechanics 163 (1) (2009) 9–24.

[3] B. Liu, M. Shelley, J. Zhang, Oscillations of a layer of viscoelastic fluid un-
der steady forcing, Journal of Non-Newtonian Fluid Mechanics 175 (2012)
38–43.

[4] S. Haward, G. McKinley, Instabilities in stagnation point flows of polymer
solutions, Physics of Fluids (1994-present) 25 (8) (2013) 083104.

[5] P. Sousa, F. Pinho, M. Oliveira, M. Alves, Purely elastic flow instabilities
in microscale cross-slot devices, Soft matter 11 (45) (2015) 8856–8862.

[6] O. Harris, J. Rallison, Start-up of a strongly extensional flow of a dilute
polymer solution, Journal of non-newtonian fluid mechanics 50 (1) (1993)
89–124.

[7] O. Harris, J. Rallison, Instabilities of a stagnation point flow of a dilute
polymer solution, Journal of non-newtonian fluid mechanics 55 (1) (1994)
59–90.

[8] R. Poole, M. Alves, P. Oliveira, Purely elastic flow asymmetries, Physical
review letters 99 (16) (2007) 164503.

[9] B. Thomases, M. Shelley, Transition to mixing and oscillations in a stoke-
sian viscoelastic flow, Physical review letters 103 (9) (2009) 094501.

[10] L. Xi, M. D. Graham, A mechanism for oscillatory instability in viscoelastic
cross-slot flow, Journal of Fluid Mechanics 622 (2009) 145–165.

[11] B. Thomases, M. Shelley, J.-L. Thiffeault, A stokesian viscoelastic flow:
Transition to oscillations and mixing, Physica D: Nonlinear Phenomena
240 (20) (2011) 1602–1614.

[12] H. Giesekus, Die elastizität von flüssigkeiten, Rheologica Acta 5 (1) (1966)
29–35.

[13] N. P. Thien, R. I. Tanner, A new constitutive equation derived from net-
work theory, Journal of Non-Newtonian Fluid Mechanics 2 (4) (1977) 353–
365.

25



[14] A. Peterlin, Streaming birefringence of soft linear macromolecules with
finite chain length, Polymer 2 (1961) 257–264.

[15] R. B. Bird, O. Hassager, R. Armstrong, C. Curtiss, Dynamics of Polymeric
Liquids, Vol. 2: Kinetic Theory, John Wiley and Sons, 1980.

[16] R. G. Owens, T. N. Phillips, Computational rheology, Vol. 2, World Scien-
tific, 2002.

[17] R. D. Guy, B. Thomases, Computational challenges for simulating strongly
elastic flows in biology, in: Complex Fluids in Biological Systems, Springer,
2014, pp. 361–400.

[18] B. Thomases, An analysis of the effect of stress diffusion on the dynamics of
creeping viscoelastic flow, J. Non-Newt. Fluid Mech 166 (2011) 1221–1228.

[19] P. Constantin, M. Kliegl, Note on global regularity for two-dimensional
oldroyd-b fluids with diffusive stress, Archive for Rational Mechanics and
Analysis (2012) 1–16.

[20] R. G. Larson, The structure and rheology of complex fluids, Vol. 2, Oxford
university press New York, 1999.

[21] A. W. El-Kareh, L. G. Leal, Existence of solutions for all Deborah numbers
for a non-Newtonian model modified to include diffusion, J. Non-Newton.
Fluid Mech. 33 (1989) 257.

[22] R. Sureshkumar, A. N. Beris, Effect of artificial stress diffusivity on the
stability of numerical calculations and the flow dynamics of time-dependent
viscoelastic flows, Journal of Non-Newtonian Fluid Mechanics 60 (1995) 53
– 80.

[23] A. Lyazid, O. Scrivener, R. Teitgen, Velocity field in an elongational poly-
mer solution flow, in: Rheology, Springer, 1980, pp. 141–148.

[24] K. Gardner, E. Pike, M. Miles, A. Keller, K. Tanaka, Photon-correlation ve-
locimetry of polystyrene solutions in extensional flow fields, Polymer 23 (10)
(1982) 1435–1442.

[25] Y. Rabin, F. S. Henyey, D. B. Creamer, Flow modification by polymers in
strong elongational flows, The Journal of chemical physics 85 (8) (1986)
4696–4701.

[26] O. Harlen, J. Rallison, M. Chilcott, High-deborah-number flows of di-
lute polymer solutions, Journal of Non-Newtonian Fluid Mechanics 34 (3)
(1990) 319–349.

[27] B. Thomases, M. Shelley, Emergence of singular structures in Oldroyd-B
fluids, Phys. Fluids 19 (2007) 103103.

26



[28] P. Becherer, A. N. Morozov, W. v. Saarloos, Scaling of singular structures
in extensional flow of dilute polymer solutions, Journal of Non-Newtonian
Fluid Mechanics 153 (2) (2008) 183–190.

27


	Equilibrium Circulation and Stress Distribution in Viscoelastic Creeping Flow
	Recommended Citation

	tmp.1706295365.pdf.z2c5f

