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a b s t r a c t

The effect of stress diffusivity is examined in both the Oldroyd-B and FENE-P models of a viscoelastic fluid
in the low Reynolds (Stokes) limit for a 2D periodic time-dependent flow. A local analytic solution can be
obtained when assuming a flow of the form u = Wi�1(x, � y), where Wi is the Weissenberg number. In this
case the width of the birefringent strand of the polymer stress scales with the added viscosity as m1/2, and
is independent of the Weissenberg number. Also, the ‘‘expected’’ maximum extension of the polymer
coils remains finite with any stress diffusion and scales as Wi � m�1/2. These predictions closely match
the full simulations. As many investigations of viscoelastic fluids incorporate both finite extension as well
as polymer stress diffusion we also investigate the FENE-P model with diffusion to see which effect dom-
inates for various model parameters. With this penalization the percent of maximum extension can be
predicted based on Wi, m, and b, the maximum extensibility length.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The inclusion of stress diffusivity is an important consideration
in viscoelastic flow simulations. Large scale simulations, for exam-
ple to understand turbulent drag reduction, require the use of
stress diffusion for convergent calculations [1–8]. Even in investi-
gations of micro-fluidic flows, say to study elastic turbulence
[9–11], some stress diffusion is added to limit gradient growth in
long-time simulations [12,13].

The potential for loss of smoothness of the stress tensor in the
Oldroyd-B model has been known for some time [14,15] and it
has been exhibited that these non-physical solutions arise in the
long-time limit in both a local analytic model and in simulations
of a simple four-roll mill background forcing [16]. A typical re-
sponse to these numerical difficulties is to add diffusion to the
advection equation of the polymer stress. This is not without phys-
ical justification as stress diffusion does arise in the physical model
[17,18]. When derived from the kinetic theory of dumbbells the
stress diffusion coefficient is proportional to the square of the ratio
of the bead diameter (or polymer radius of gyration) to the flow
length-scale and even in the context of micro-fluidics it is minute
(10�6 at most). Hence artificially large polymer stress diffusion is
introduced as a regularization parameter in numerical simulations.
The effect of artificially large stress diffusion was studied in [19]
where the authors concluded that the stress diffusion had a stabi-
lizing effect, in particular for large Reynolds number calculations.

The authors observe further that the diffusion did not have an
appreciable effect on the flow. In this article we make these conclu-
sions more precise in a special case. In particular we observe in our
simulations and with a local model that the inclusion of any
amount of polymer diffusion (m > 0) will yield a resultant stress
that is smooth and bounded.

The special case studied here is inspired by [16]. In that paper,
extensional points in the flow are created by fixing a steady back-
ground forcing which produces a four-roll mill geometry in a
purely Newtonian Stokes flow. These extensional points are main-
tained when the polymer stress evolves from isotropic initial data.
At these extensional points the authors find the emergence, expo-
nentially in time, of singular structures in the polymer stress which
closely match exact solutions they find for a local analytic model.
The regularity of the singular structures decreases as the
Weissenberg number increases. The velocity field rapidly ap-
proaches a steady-state that remains locally, about the central
extensional point, a simple straining flow. The modification in this
paper is the addition of polymer stress diffusion. With this we are
still able to construct a local model which agrees well with the
simulations and which has a closed form solution. This enables
us to make some quantitative predictions about the effect of stress
diffusion on the flow.

1.1. Equations of motion

We study numerically the two-dimensional equations of visco-
elastic flow in the zero-Reynolds number limit. Biperiodic bound-
ary conditions are assumed and persistent curvilinear flows are
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created by imposing a very simple body force. The system of equa-
tions governing the flow of a general viscoelastic fluid (in the zero-
Reynolds number limit) can be written in dimensionless form as

�rpþ Duþ br � T ¼ f; r � u ¼ 0; ð1Þ

where b = Gsf/l measures the relative contribution of the polymer
stress to momentum balance. Here G is the isotropic stress in the
polymer field in the absence of flow and sf = l/qL F the flow time
scale, set by F the dimensional scale of the forcing, l the solvent vis-
cosity, q the fluid density, and L the system size. In Eq. (1), T repre-
sents the viscoelastic contribution to the extra stress. For an
Oldroyd-B fluid, the extra stress tensor T is given in terms of the
conformation tensor S as

T ¼ ðS� IÞ; ð2Þ

and for a FENE-P fluid, the extra stress tensor T is

T ¼ S
1� trS

b

� I

 !
: ð3Þ

The parameter b is proportional to the maximum polymer length.
The evolution equation for the conformation tensor with diffusion
is given by

Wi
@S
@t
þ u � rS� ruSþ SruT

� �� �
¼ �Tþ mDS; ð4Þ

here Wi = sp/sf is the Weissenberg number, with sp the polymer
relaxation time. The quantity b �Wi is the ratio of polymer to sol-
vent viscosity so that given a particular working fluid, its value is
fixed independent of experimental conditions. In the work of Arra-
tia et al., [20] the value b �Wi � 0.5 which is used in the majority of
our simulations. We will make some comments regarding other val-
ues of b �Wi at the end of Section 2. The independent parameter m is
the polymer stress diffusion coefficient, as arises when including
the effect of center of mass diffusion of polymer coils. The dimen-
sionless stress diffusivity is defined as m/Wi = Ds/(UL) where Ds is
the stress diffusion coefficient.

The scale of the force f is used to set the flow time-scale, the
time-scale of transport to be order one. The background force is gi-
ven by

f ¼
�2 sin x cos y

2 cos x sin y

� �
: ð5Þ

In a purely Newtonian Stokes flow this forcing yields a four vortex
‘‘mixer’’ in each [�p,p]2 cell.

The trace of S is an important physical quantity representing the
amount of stretching of polymer coils. In [21] it was shown that
global solutions to a FENE-P model with polymer diffusion exist
as long as tr S is bounded and S is sufficiently smooth. Subsequent
blow-up criteria (similar to the Beale–Kato–Majda criteria for the
Euler equations [22]) for the Oldroyd-B model have been derived
and show that as long as the L1 norm of the extra stress is integra-
ble in time solutions will exist [23,24].

The numerical simulations for this work employ the square-
root method for evolving the symmetric square root of the
conformation tensor introduced in [25]. In that work an evolution
equation which is equivalent to Eq. (4) is derived for b such that b
is symmetric and bTb = S. In [25] improved accuracy and stability
was shown for a pseudo-spectral application of the square-root
method. One advantage of the square-root method is that the con-
formation tensor will be inherently symmetric positive definite.
We find that for sufficiently large Wi or sufficiently small m the
square-root method is preferred and adds no major cost.

Our simulations are done with a pseudo-spectral method [26].
The square-root of the conformation tensor is evolved using a sec-
ond-order Adams-Bashforth Crank-Nicholson method. The initial
data (symmetric positive definite) for b is prescribed, and given
S = bTb, the Stokes equation, Eq. (1), is inverted in Fourier space
for u. Given u, the nonlinearities of the polymer stress evolution,
Eq. (4), are evaluated and a smooth filter is applied in Fourier space
before the quadratic terms are multiplied in real space; see [27] for
details. The solutions are well resolved (due to the smoothness of
the solutions and the choice of a spectral method) and spatial res-
olutions of N2 = 2562 are used in the simulations. In the following
simulations initial data is isotropic b(0) = I. The flow relaxes to
steady state after several multiples of Wi, and here all steady-state
simulations are shown at t = 10 �Wi.

2. Extensional flow

In [16] it was observed that for isotropic initial data S(0) = I, the
velocity field approached a steady-state, locally near the exten-
sional stagnation point at the origin, which could be approximated
by an extensional flow of the form

u ¼ ðu; vÞ ¼ aðWiÞðx;�yÞ

While this remains true in the simulations with m > 0, we observe
something slightly different here. In Fig. 1(a) we show the first com-
ponent of the velocity along the axis of extension, u(x,0), after
reaching steady state for simulations with Wi = 5, 10, 15, 20, and

(a) (b)

x

u(x,0)
1

Wi maxx u(x,0 )

Fig. 1. (a) Velocity along axis of extension, u(x, 0), at steady state for Wi = 5, 10, 15, and 20, m = .01. Amplitudes are decreasing in Wi. (b) Absolute error in approximation of the
amplitude of u in the direction of extension: j1/Wi �maxxu(x,0)j.
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m = .01 (the amplitudes are decreasing with increasing Wi). Solu-
tions to Eq. (1) with no polymer stress (S = 0) give u(x,0) = sinx
and we see that the polymer stress appears to modify the flow along
the axis of extension by changing the amplitude of the sine function
u(x, 0) � a(Wi)sinx. There do appear to be corrections to the sine
function (most noticeably near x = 0 for higher Wi) however, the
primary behavior is a change in amplitude of the S = 0 flow. We take
a(W i) = maxxu(x,0). Fig. 1(b) shows the result of comparing the
simulation result a(Wi) = maxxu(x,0) with 1/ Wi for a wide range
of Weissenberg number. For the range of Wi we are most interested
in, 5 < Wi < 30, the error in this approximation is Oð10�3Þ, therefore
it seems reasonable to assume a local (near (x,y) = (0,0)) extensional
flow of the form

u ¼ 1
Wi
ðx;�yÞ: ð6Þ

In Fig. 2(a) a plot of max tr S for Wi = 5, 10, 15, and 20 as a function
of t/Wi demonstrates the first qualitative difference between the re-
sults of simulations of the system for m = 0 (from [16]) and for m > 0.
We see that when m > 0, the maximum value of the stress ap-
proaches a steady state for all Wi (our simulations include 0 <
Wi 6 50). In [16] with m = 0 and Wi sufficiently large, the stress
was shown to grow exponentially at extensional stagnation points,
while here there is an initial period of growth followed by decay to a
finite steady value. We investigate this value (which in Fig. 2(a) ap-
pears to grow linearly in Wi) further in Section 3. Fig. 2(b–d) dis-
plays contour plots of vorticity, tr S, and S12 for Wi = 10 at steady
state. The origin is an extensional point in the flow and in its neigh-
borhood we see that tr S concentrates in thin islands (birefringent
strands) along the direction of extension. The additional vortices
seen in Fig. 2(b) were also seen in the Oldroyd-B model with no dif-
fusion [16].

Now we discuss the consequences of assuming a steady velocity
field of the form given in Eq. (6). When this steady flow is used
with the Oldroyd-B constitutive model from Eqs. (2) and (4) the

evolution equation for the conformation tensor decouples and is
independent of Wi. In this case the steady-state equations to solve
become

x@xS11 � y@yS11 � S11 ¼ 1þ mDS11; ð7Þ
x@xS12 � y@yS12 þ S12 ¼ mDS12; ð8Þ
x@xS22 � y@yS22 þ 3S22 ¼ 1þ mDS22: ð9Þ

There is an exact solution for the stress tensor of the form:

S11 ¼ �1þ Ae�
y2

2m ; ð10Þ
S12 ¼ 0; ð11Þ

S22 ¼
1
3
: ð12Þ

This solution is chosen to match the behavior seen in the simula-
tions, namely compression along the y � axis. We refer to the solu-
tion for S11 given in Eq. (12) as the approximate (Gaussian) solution
and call it c(y) for convenience. Hence

cðyÞ ¼ �1þ Ae�
y2

2m

For m > 0 c is bounded and smooth, and in the limit m ? 0 c ap-
proaches the delta function which matches the local solution in
[16]. Next we examine the simulations and compare them to the
Gaussian solution c.

3. Numerical results for Oldroyd-B

Fig. 3 shows results of the simulation of S11(0,y) for m = .01,
ranging in Weissenberg number, 1 6 Wi 6 20, at t = 10 � Wi, by
which time solutions have reached steady state. We observe that
max S11(0,y) occurs at y = 0 (and periodically due to the boundary
conditions). These solutions appear to be nearly Gaussian with an
inner-scale independent of Wi. Futhermore, maxS11(0,y) appears to

50

100

150

200

250
(c) (d)

(b)

0 5 10
0

200

400

600

800

1000

1200

t/Wi

Increasing in
Wi

(a)

Fig. 2. (a) max tr S for Wi = 5, 10, 15, and 20 (m = .01) plotted versus t/Wi, by t = 10 �Wi solutions have reached steady state. (b–d) contour plots of vorticity, tr S, and S12 for
Wi = 10 at steady state.
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grow linearly in the Weissenberg number. We analyze both of
these conjectures now.

We would like to compare the steady state profile of S11(0,y)

with the Gaussian solution cðyÞ ¼ �1þ Ae�
y2

2m . We compare the full
width at half maximum for c (in this case this value is 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2m
p

Þ
with the simulation. The relative error in this comparison is shown
in Fig. 4(a) varying both m and Wi. The error decreases as m ? 0 and
for all m the error is smallest (around 15–20%) for moderate Weiss-
enberg 5 6Wi 6 10.

Next we look at the conjecture that S11(0,0) grows linearly in
Wi. Fitting log(Wi) with log(S11(0,0)) for each m = .003, .005, .01,
.02, .05 yields exponents of the equation S11(0,0) = CWiq to be
q = 1.074, 1.02, 0.99, 1.04, and 1.12 indicating that as m gets suffi-
ciently small a linear fit with Wi is quite reasonable. Fig. 4(b) shows

the values of S11(0,0) at steady state for Wi = 5 � 10, 12, 15, 20 for
m = .005, .01, .02, the dotted lines are linear fits to the data for
Wi = 5 . . . .20.

To further probe the amplitude for the approximate solution c,
we observe that the integral IS ¼

R p
�p S11ð0; yÞdy shows only slight

dependence on m. Fitting log(IS) with log(m) for Wi = 5 . . . 20 yields
exponents of the equation IS = Cmq to be.070 6 q 6 .092. Fig. 4(c)
shows IS as a function of m on a log scale for Wi = 5 � 10 (increasing
in Wi). In order for c to be independent of m we must have c scale
with m�1/2. Fig. 4(d) shows the relative error in the approximation
of S11(0,0):

S11ð0; 0Þ � CWim�1=2

S11ð0; 0Þ

				
				;

(a) (b) (c)

Fig. 3. Plot of S11(0,y) (log scale) with m = .01 for (a) Wi = 1, 2, 3, 4 (increasing in Wi); (b) Wi = 5, 6, 7, 8, 9; (c) Wi = 10, 12, 15, 20.
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where C is a constant, independent of Wi,m. Again we notice that this
approximation improves as m ? 0 and the error is less than 5% for
m 6 .005 and 5 6Wi 610.

These numerical tests combined with the local analysis gives us
confidence that

S11ð0; yÞ � �1þ CWim�1=2e�y2=2m

is a reasonable approximation for the first component of the poly-
mer stress near extensional points in the flow. This gives us the
behavior of the stress as m ? 0 and indicates that adding polymer
stress diffusion will yield a smooth and bounded polymer stress
for all m > 0.

Finally we make some comments regarding the dependence of
the steady solutions on b. Fig. 5(a) shows the velocity u(x,0) for
b � Wi = .5, 1, .25 which we refer to as b0, 2b0, .5b0 (here we fix
Wi = 10, m = .01). Changing b does not appear to change the velocity
significantly and in fact the maximum difference between ub0 and
u2b0 or u:5b0 is .034. Fig. 5(b) shows the first component of the con-
formation tensor (rescaled for comparison) for b �Wi = .5, 1, .25. It
appears that when b �Wi is doubled (resp. halved) the conforma-
tion tensor is roughly halved (resp. doubled) to compensate. This
is also consistent with the fact that the advection equation for
the conformation tensor (Eq. (4)) is nearly homogeneous in S and
the Stokes equation (Eq. (1)) is linear in S. For the stress we have
that the relative maximum difference between Sb0 and 2S2b0 or
:5S:5b0 is 10%. Although there is not a significant change in the flow
upon changing b, as b ? 0 the polymer stress is increasing as well
making numerical simulations more difficult as the stress and
stress gradients grow. If we let b �Wi = n we can modify our scaling
of max tr S to include n as

max tr S � C=2Wim�1=2n�1

4. Finite extension

We turn now to the FENE-P model and investigate what can be
learned from our local model when finite extensibility is enforced.
The FENE-P model differs from the Oldroyd-B model by employing
the extra stress tensor given in Eq. (3). This consists of substituting

Sfp ¼ S
1� trS

b

ð13Þ

for S in Eq. (2). In FENE-P Sfp will diverge as the maximum of the
trace of the conformation tensor approaches the extension parame-
ter b. This penalization keeps tr S bounded away from b in simula-
tions. In [16] it was numerically demonstrated that without another
diffusion mechanism this penalization is not sufficient to keep the

stress smooth. Large stress gradients and corners form in the stress
for sufficiently large Wi. Therefore there is still a need for a smooth-
ing mechanism as is gained by adding the diffusion term m > 0.

The effect of diffusion and finite extension are two distinct
modifications to the model which arise from different microscopic
origins and have different effects on the flow in general. For exam-
ple; the FENE model results in shear-rate-dependence in the nor-
mal stresses at high Wi, whereas the numerical diffusivity of the
Oldroyd-B model does not affect the quadratic scaling with Wi in
homogeneous flows. However in many simulations of viscoelastic
flows both a FENE-P cut-off and numerical diffusion are employed
and we believe it is worth some investigation to see which effect
dominates for various model parameters.

Fig. 6(a) (and zoom in (b)) shows Sfp
11ð0; yÞ for Wi = 10 and

m = .005 for b = 25, 49, 225, 625. We see that Sfp
11ð0; 0Þ appears to

be converging to a finite value (as b ?1) and increasing b further
confirms this. As b ?1 the FENE-P model converges to the
Oldroyd-B model so it is reasonable to assume that the value
Sfp

11ð0; 0Þ will approach is the value one would obtain from the Old-
royd-B simulation. With Wi = 10,m = .005, Oldroyd-B yields
Sob

11ð0; 0Þ ¼ 370 at steady state, which is quite close to the value
seen here for b = 625 where Sfp

11ð0; 0Þ ¼ 392.
We can couple our prediction of max tr Sob = C Wim�1/2 coming

from the local analytic model with the fact that for b sufficiently
large Sfp ? Sob to predict the percent of extension (or fraction of
b) the FENE-P simulation will yield at extensional points in the
flow. We suppose that the maximum of the conformation tensor
extends to some fraction of the maximum extension parameter,
i.e. max tr S = rb for some 0 < r < 1 and using monotonicity and
Eq. (13) we have that

max tr Sfp ¼ r
1� r

b: ð14Þ

Now as b ?1 the FENE-P model approaches the Oldroyd-B model,
so for sufficiently large b, it is reasonable to assume that the effect
of diffusion on max tr Sfp will dominate the effect of finite extensi-
bility. In that case we assume that max tr Sfp � CWim�1/2. Therefore
we can predict the percent extension r in Eq. (14) in terms of m, Wi, b
as

r ¼ CWim�1=2b�1

1þ CWim�1=2b�1

The quantity CWim�1/2b�1 can be used to measure which effect (dif-
fusion or finite extension) is dominating the problem. If CWim�1/

2b�1� 1 diffusion will be responsible for setting the scale of
max tr Sfp and if C Wim�1/2b�1� 1 polymers will extend near to
the enforced FENE-P cut-off. These limits are consistent with our

(b)(a)

Fig. 5. (a) u(x,0) for b �Wi = .5, 1, .25 with Wi = 10,m = .01 (b) First component of conformation tensor along direction of compression while varying b.
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understanding of the problem and the intermediate to high range of
this parameter is the most interesting. In Fig. 6(c) we plot the the-
oretical prediction for this percent of extension in the case where
Wi = 10, m = .01 as a function of the extension parameter b and com-
pare this with the simulated values of max tr Sfp/b. In these and
other simulations the relative error in the prediction of r varies from
<1% to 9% for Wi ranging from 10 to 20 and for m ¼ Oð10�2; 10�3Þ.

Fig. 7 shows results from simulations with higher Wi.
Fig. 7(a and b) displays contour plots of tr Sfp and vorticity for
Wi = 50, b = 1024, m = .01 while Fig. 7(c and d) shows the same plots
for an order of magnitude smaller diffusion. For m = .01 and Wi = 50
the Oldroyd-B amplitude prediction would be A = 1253, and with
b = 1024, we have a predicted extension percent of r = 0.55. In

the simulations at steady state max tr S = 575 = 0.56 � b, a relative
error in our prediction of 2%. We notice that in this simulation
max tr Sfp no longer occurs at the origin but has shifted to (±5/
8p,0), though the reason for this is not clear. For m = .001 we have
A = 3963 which gives r = 0.79. In the simulations at steady state
max tr S = 837 = 0.81 � b, a relative error in our prediction of 3.5%.

Fig. 8 shows the vorticity for two FENE-P simulations with
Wi = 10, m = .001 and b = 4 panel (a) and b = 100 panel (b). We ob-
serve that the additional vortices seen in simulations for Old-
royd-B for sufficiently large Wi (as in Fig. 2(b)) and those seen in
panel (b) are suppressed in panel (a). We interpret this major qual-
itative difference in the solution to mean that b is too small and the
polymers are not allowed to extend sufficiently to create enough

(a) (b) (c)

Fig. 6. (a) Plot of Sfp
11ð0; yÞ for Wi = 10, m = .005 and b = 25, 49, 225, 625. (b) Zoom of (a) with same figure annotations. (c) Plot of comparison of the theoretical prediction with

the simulated values of the percent of extension for Wi = 10, m = .01.
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Fig. 7. (a and b) Contour plots of (a) tr Sfp and (b) vorticity for Wi = 50, m = .01, b = 1024 at steady state. (c and d) Contour plots of (a) tr Sfp and (b) vorticity for Wi = 50, m = .001,
b = 1024 at steady state.
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extra stress along the outgoing streamlines of the extensional
point. For fixed Wi,m one can choose b sufficiently small to be sure
that the cut-off mechanism is coming from the FENE-P penaliza-
tion, however if b is chosen too small than the response of the flow
is altered significantly from what is seen in the Oldroyd-B model or
the FENE-P model for larger b.

5. Conclusions

Based on numerical simulations we see that adding stress diffu-
sion keeps the conformation tensor bounded and smooth. Further-
more we observe that at extensional points in the flow the velocity
field is a local straining flow of the form u ¼ 1

Wi ðx; �yÞ. With this
assumption there is an exact solution for the stress tensor which
is Gaussian in y with the width scaling with the square root of
the diffusion. This implies that for any amount of diffusion the con-
formation tensor is bounded and smooth, though numerical diffi-
culties will still arise in resolving a solution with a physically
realistic level of stress diffusion. The amplitude of the exact solu-
tion can be approximated giving a scaling for max tr S �W im�1/2.

MHD flows driven by forcing such as (5) have been studied
extensively and the ‘‘birefringent strands’’ seen in Figs. 2(c) and
7(a and c) are reminiscent of flux tube structures in magneto-con-
vection. In particular the analytic solution given in Eq. (12) is anal-
ogous to the inner solution found in [28] for magnetic flux ropes. A
formal comparison between the Oldroyd-B equations in the high
Wi limit to the MHD equations in the large magnetic Reynolds
number limit was made in [29]. The author gratefully acknowl-
edges one of the referees for pointing out this connection and plans
to investigate it further.

When a FENE-P penalization term is added to enforce finite
extension of polymers we are able to use the scaling of the maxi-
mum of the conformation tensor to predict for a given Weiss-
enberg number, diffusion coefficient, and maximum extension,
the fraction of the maximum that the polymers will extend. This,
in turn, gives a prediction of whether the scale of the maximum
extension is determined by diffusion or if the polymers are allowed
to extend to a large percentage of the upper bound on extension.
The key parameter is

Wim�1=2b�1
;

if this value is small the simulation is diffusion dominated. We see
that keeping b small (relative to the diffusion) will ensure that poly-
mers will extend to a large percent of the upper bound, however
artificially keeping b small in order to enforce the FENE-P cut-off
does change the flow dynamics.

Both diffusion and FENE-P enforce a cut-off on the maximum of
the trace of the conformation tensor, but the physical effects are
significantly different. Diffusion acts by moving molecules away
from the extensional point and thereby reducing the overall effect
of the stretching from the flow. The FENE-P model simply cuts off
the trace of the conformation tensor and does not add any smooth-
ness. Without going to higher closures of the FENE model or the
full FENE model it appears that artificially large stress diffusion is
still necessary to numerically resolve the large stresses and stress
gradients that arise in the Oldroyd-B and FENE-P models.
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