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a b s t r a c t

The positive-definite symmetric polymer conformation tensor possesses a unique symmetric square root
that satisfies a closed evolution equation in the Oldroyd-B and FENE-P models of viscoelastic fluid flow.
When expressed in terms of the velocity field and the symmetric square root of the conformation tensor,
these models’ equations of motion formally constitute an evolution in a Hilbert space with a total energy
functional that defines a norm. Moreover, this formulation is easily implemented in direct numerical
simulations resulting in significant practical advantages in terms of both accuracy and stability.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Familiar models of viscoelastic polymeric fluids present chal-
lenging problems for both mathematical analysis and numerical
computations. One of the difficulties stems from the nature of the
stress evolution equations. Although there is indeed some stress
diffusion, the diffusion of polymers is typically orders of mag-
nitude smaller than that for non-polymeric molecules and so is
often neglected in direct numerical simulations. The difficulties
manifest themselves both in the form of loss of accuracy and sta-
bility in numerical schemes, and in the absence of effective a priori
estimates for analysis. Despite recent progress in the field, many
important problems remain open.

In this paper we focus on two models, Oldroyd-B and FENE-P.
It has proven to be a difficult task to devise numerical schemes
that are efficient, accurate, and stable at the same time. One way
to ease the numerical problems is to add artificially large stress
diffusion, and this has been done for a long time. Fattal and Kupfer-
man [1] proposed a log-conformation scheme directly evolving
the matrix logarithm of the positive definite conformation tensor
that, according to their reports, indeed helps with stability issues.

∗ Corresponding author at: Department of Mathematics, University of Michigan,
Ann Arbor, MI 48109-1043, United States.

E-mail address: doering@umich.edu (C.R. Doering).

Another method developed by Collins and co-workers [2] evolves
the eigenvalues of the conformation tensor. Lozinski and Owens [3]
also proposed to work with the deformation tensor, another of the
square roots of the conformation tensor.

We consider a square root method as well, but unlike any pre-
vious work we are aware of, we derive an evolution equation for
the positive-definite square square root by taking advantage of the
O (n) degeneracy in the matrix square root in n dimensions. This
turns out to be both theoretically and numerically convenient. On
the one hand it allows the dependent variables in the Oldroyd-B
and FENE-P models to take values in a vector space with a nat-
ural norm defined by the physical energy. On the other hand we
observe that, at practically no additional computational cost, this
formulation produces significant gains in both numerical stabil-
ity and numerical accuracy—without adding any artificial stress
diffusion—as compared to directly evolving the conformation ten-
sor. We note in particular that the flow studied in this paper has a
hyperbolic stagnation point and our simulations for the Oldroyd-B
model extend far beyond the Weissenberg number at which the
stress in the associated steady flow becomes infinite.

2. Mathematical framework

The nondimensional equations of motion are

∂u(x, t)
∂t

+ u · ∇u + ∇p = 1
Re

�u + ∇ · � + f(x, t), ∇ · u = 0, (1)

0377-0257/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jnnfm.2011.02.008
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with x ∈Rn (n = 2 or 3) and Reynolds number Re = U�/� where U and
� represent appropriate choices of velocity and length scales for the
problem under investigation. The externally applied body force is
denoted by f, and the polymer stress tensor �(x, t) is

� = − s

Re
s(c) (2)

where the symmetric positive-definite polymer conformation
(a.k.a. configuration) tensor c(x, t) evolves according to

∂c
∂t

+ u · ∇c = c∇u + (∇u)T c + s(c). (3)

The parameter s is a coupling constant proportional to the con-
centration of the polymers in the fluid, and the tensor s(c) takes
different forms in various non-Newtonian models. For the Oldroyd-
B model

s(c) = 1
Wi

(I − c) (4)

where the Weissenberg number Wi = U�/� is the product of the
polymer relaxation time � and the rate of strain U/�. For the FENE-P
model

s(c) = 1
Wi

(
I − c

1 − (trc/l2)

)
, (5)

where l2 is proportional to the square of the maximum polymer
length. For both models the total mechanical energy of the system
is the sum of the fluid’s kinetic energy and the elastic potential
energy of the polymers:

E(t) = 1
2

∫ [
|u(x, t)|2 + tr �

]
dx dy dz. (6)

This energy1 is formally conserved by the dynamics in the limits of
infinite Reynolds and Weissenberg numbers.

Unlike the situation for Newtonian fluids modeled by the incom-
pressible Navier–Stokes (or Stokes) equations, the total energy does
not define a natural norm, or even a metric, in the phase space
of the dynamical fields u and c. Indeed, the (u, c) phase space is
not even a linear vector space. This mathematical awkwardness
results from the fact that a linear combination of positive matrices
is not necessarily positive. And even if we extend consideration to
all symmetric matrices, then the trace is not always positive. This
circumstance complicates analysis of these models and precludes
implementation of useful techniques including nonlinear (energy)
stability notions [4].

This problem can be circumvented, however, by reformulating
the models in terms of the (unique) positive symmetric square root
b(x, t) of the conformation tensor c(x, t). We write

cij(x, t) =
n∑

k=1

bik(x, t)bkj(x, t) with bij(x, t) = bji(x, t), (7)

so the polymer energy density is a quadratic function of the matrix
(Frobenius) norm of b,

‖b‖2 =
n∑

i,j=1

b2
ij = tr(bT b) = tr c. (8)

The work required to implement this proposal is to precisely artic-
ulate the dynamics of b, a not altogether trivial task due to the
inherent degeneracy of the matrix square root.

1 E does not include the entropic term that contributes to the free energy of the
system.

In the Oldroyd-B case solutions of differential equations of the
form(

∂

∂t
+ u · ∇

)
b = b∇u + ab + 1

2Wi
((bT )

−1 − b), (9)

where a(x, t) is any antisymmetric matrix, satisfy bTb = c point-
wise in space and time when the initial data satisfy bT(x, 0)b(x, 0) =
c(x, 0). Likewise, in the FENE-P case the evolution(

∂

∂t
+ u · ∇

)
b = b∇u + ab + 1

2Wi

(
(bT )

−1 − b
1 − ‖b‖2/l2

)
, (10)

produces such a square root of c when a(x, t) is any antisymmetric
matrix and bT(x, 0)b(x, 0) = c(x, 0). The key observation is that by
choosing a(x, t) properly we can tune the evolution Eqs. (9) and
(10)—and similar models with an upper convective derivative—to
preserve the symmetry of b. That is, starting with symmetric initial
data bT(x, 0) = b(x, 0), the subsequent evolution will preserve the
symmetry.

The (i,j)th entry of ∇u is denoted by uj,i = ∂ uj/∂ xi, i, j = 1, 2, 3 and

a =
(

0 a12 a13
−a12 0 a23
−a13 −a23 0

)
, (11)

in n = 3 spatial dimensions and

a =
(

0 a12
−a12 0

)
(12)

in n = 2 dimensions. Define

r = (rij) = b(∇u) + ab. (13)

We now show that we may choose the matrices a, depending on ∇u
and the symmetric matrix b pointwise in space and time, so that
r is a field of symmetric matrices, i.e., rij = rji. For n = 3 the explicit
formulas for the elements aij come from solving the system of 3
linear equations

(b11 + b22)a12 + b23a13 − b31a23 = w1, (14)

b23a12 + (b11 + b33)a13 + b12a23 = w2, (15)

−b13a12 + b12a13 + (b22 + b33)a23 = w3, (16)

where

w1=(b12u1,1−b11u2,1)+(b22u1,2−b12u2,2)+(b23u1,3−b13u2,3), (17)

w2=(b13u1,1−b11u3,1)+(b33u1,3−b13u3,3)+(b23u1,2−b12u3,2), (18)

w3=(b13u2,1−b12u3,1)+(b23u2,2−b22u3,2)+(b33u2,3−b23u3,3). (19)

In matrix notation, this is the system of equations(
b11 + b22 b23 −b13

b23 b11 + b33 b12
−b13 b12 b22 + b33

)(
a12
a13
a23

)
=
(

w1
w2
w3

)
. (20)

Then by swapping the first and the third columns of the coefficient
matrix (and hence, also a23 and a12), and subsequently swapping
the first and the third rows of the resulting coefficient matrix (and
hence, also w1 and w3), and finally multiplying the second row and
the second column of the resulting matrix by −1 (and hence, also
replacing a13 and w2 by −a13 and −w2, respectively), we obtain

(tr(b)I − b) ã = v, (21)

where

ã =
(

a23
−a13
a12

)
, v =

(
w3

−w2
w1

)
. (22)
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When b is symmetric at the point (x, t) there is an orthogonal matrix
p(x, t) such that

b = pT diag
{

�1, �2, �3
}

p, (23)

where �i are the eigenvalues of b. Thus, we have

trace(b)I − b = trace(b)I − pT diag
{

�1, �2, �3
}

p (24)

= pT (trace(b)I − diag
{

�1, �2, �3
}

)p (25)

= pT diag
{

�2 + �3, �1 + �3, �1 + �2
}

p (26)

Again, assuming that b is positive-definite (although this condi-
tion can be clearly relaxed to include a large class of semidefinite
objects) we can solve for a uniquely so that the evolution Eqs.
(9) and (10) used to obtain b at later times are symmetrized. The
explicit algebraic formulae for the elements aij for n = 3 are dis-
played in Appendix A. In the much simpler case of n = 2 space
dimensions we have

a12 = (b12u1,1 − b11u2,1) + (b22u1,2 − b12u2,2)
b11 + b22

. (27)

This construction places the full dynamics back in a vector space,
namely the direct product of vector fields u and symmetric ten-
sor fields b. For Oldroyd-B the energy functional (6) is proportional
to the vector norm (squared) on the direct product space (mod-
ulo an additive constant). For the FENE-P model, the convexity
of b2/(1 − tr b2/l2) in a neighborhood of the origin, i.e., for ||b|| < l,
allows as well for a natural energy norm. And as shown in the next
section, in some cases this reformulation of the dynamics leads to
significant practical improvements in direct numerical simulations.

3. Numerical experiments

As a test of the numerical accuracy and stability of the square-
root method we consider the zero-Reynolds number (Stokes) limit
of the Oldroyd-B and FENE-P models in which case the momentum
Eq. (1) reduces to

∇p = �u + ∇ · � + f, ∇ · u = 0. (28)

Here � = − ss(c) with s(c) given by (4) or (5) for the Oldroyd-B model
or FENE-P model respectively. In the following we fix s = 0.5. Fol-
lowing recent studies [5,6] we consider a 2� − periodic domain in
n = 2 space dimensions ([ − �, �]2) and impose a steady background
force

f = (−2 sin x cos y, 2 cos x sin y), (29)

curl f is shown in Fig. 1(a). In the absence of polymer stress
this yields a four-roll mill geometry for the fluid velocity. One
well-known consequence of this body-force imposed extensional
geometry in the Oldroyd-B model is that the polymer stress and
stress gradients grow exponentially in time [5,7,8] and inevitably
produce numerical problems. In particular, when resolving steep
gradients the loss of positive-definiteness of the conformation
tensor due to numerical error can lead to breakdown of the com-
putational schemes. One common solution to these difficulties is
the addition of artificial polymer stress diffusion. Although some
polymer stress diffusion can be derived from the basic physics in
the model, the magnitude of the physically relevant diffusion is
far too small to have an effect on numerical simulations [9]. In
the following we do not add any stress diffusion to the numerical
calculations.

The Stokes–Oldroyd-B system (and FENE-P) is solved with a
pseudo-spectral method [10]. The initial data is prescribed for the
conformation tensor (or the square-root), and given c (or b) the
Stokes equation is inverted in Fourier space for u. Given u, the
nonlinearities of the conformation tensor evolution are evaluated

Fig. 1. (a) Contour plots of curl f for the force given by Eq. (29). (b)–(d) Contour plot
of vorticity, trc, and c12 for isotropic initial data, Wi = 5 at t = 10.

using a smooth filter applied in Fourier space before the quadratic
terms are multiplied in real space [11]. The conformation tensor is
then discretized on the Fourier transform side and is evolved using
a second-order Adams-Bashforth method. The method described
above is the same method employed in [5] and due to the struc-
tural similarity of the evolution of the conformation tensor and the
evolution of the square-root it is employed in the same way for
both Eqs. (3) and (9). In particular for Eq. (9), the smooth filter is
applied to the quadratic terms and cubic terms in Fourier space
before these terms are multiplied in real space. Applying a smooth
filter is a modification of the 2/3-dealiasing used commonly in spec-
tral methods and has been shown to create fewer oscillations in
solutions [11]. It should be noted that due to the explicit formula
available the numerical implementation of the square-root method
adds no significant computational cost.

In a recent investigation [5] the Stokes–Oldroyd-B equations
were solved starting from homogeneous and isotropic initial data,
i.e., c(0) = I, and the stress was observed to diverge (exponen-
tially in time) at the extensional stagnation points in the flow
for sufficiently large Weissenberg number. However, outside of
an exponentially decreasing region around the extensional stag-
nation point, the solutions became steady after an initial transient.
These near-steady solutions preserve many symmetries: the stress
is symmetric and aligned along the direction of extension and the
flow has an underlying four-roll structure. For sufficiently large
Wi additional oppositely signed vortices arise along the stable and
unstable manifolds of the extensional stagnation point. Fig. 1(b)–(d)
displays these symmetric solutions in the case Wi = 5, at t = 10.
These symmetries are broken as the initial data is perturbed and
it was shown that instabilities arise for sufficiently large Wi [6,12].

In what follows we discuss both accuracy and stability improve-
ments for the Oldroyd-B and FENE-P models using the square root
method. In Section 3.1 we consider homogeneous isotropic ini-
tial data b(x, 0) = I and compare solutions to the Stokes–Oldroyd-B
model obtained using the direct evolution of c with those obtained
by evolving the symmetric square root. In Subsection 3.2 we con-
sider perturbations to the initial data for the Stokes–Oldroyd-B
model (as in previous studies [6,12]) to see how far the simulations
run, for a fixed resolution using each method, before numerical
divergences appear. Finally, in Section 3.3 we revisit both of these
questions for the FENE-P model.
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a b

Fig. 2. (a) Absolute error |cN − cexact | measured along the axis of compression of the first component of the conformation tensor with N2 = 2562, Wi = 5, at t = 10. Dotted line
is c and solid line is b2. (b) Relative error | cN − cexact |/| cexact |.

3.1. Accuracy

Fig. 2 shows the difference between the solution to
Stokes–Oldroyd-B with N2 = 2562 grid cells and the “exact”
solution computed by evolving c with N2 = 20482 grid cells,
resolved to at least 6 digits of accuracy. The dotted line shows the
solution computed by directly evolving the conformation tensor c,
while the solid line shows the solution computed by evolving the
symmetric square root. The simulation is performed with Wi = 5
and the result of the computation is shown at t = 10. Panel (a)
shows the absolute error (|cN − cexact |) in the first component of
the conformation tensor (c11) along the direction of compression
because this is precisely where steep gradients form. We observe
that away from the extensional stagnation point the square root
gives a much better approximation and it is only very near the
extensional stagnation point where the evolution of c gives a
better approximation. The relative error is shown in panel (b) to
emphasize that although the square-root method’s error at the
extensional stagnation point is larger, the relative error is actually
quite small because the stress is very large there.

Fig. 3 (a) shows the relative error

‖cN − cexact‖L1

‖cexact‖L1
(30)

measured in the L1([ − �, �]2) norm for both cN and (b2)N for
N2 = 322, 642, 1282, 2562, 5122, comparing to the “exact” solu-
tion defined by the N2 = 20482 simulation. The L1 norm is chosen
because it takes into account the average error over the entire
domain. This computation is also for Wi = 5 at t = 10.

In this averaged sense we see that the error is always smaller
using the square root method. The improvement in accuracy (in the
L1 −sense) using the square root method is shown in Fig. 3 (b). Here
we plot

|errorc − errorb2 |
|errorc| (31)

for Wi = 1, 2, 3, 4, 5 for N2 = 322, 642, 1282, 2562, 5122. Each sim-
ulation is computed at T = t/Wi = 2, and this scaled-time is used
because the solutions grow exponentially like et/Wi. There is a signif-
icant improvement for higher Wi, in particular for lower resolutions
N2 = 1282 and 2562.

3.2. Stability

Experiments on low-Reynolds number viscoelastic turbulence
[13–15] and instabilities in extensional geometries [16] have
inspired many numerical studies of low-Reynolds number vis-
coelastic fluids [17–19,6,12]. Two main instabilities were observed
in one investigation [6,12]: first, for sufficiently large Wi, if a small
perturbation is introduced in the initial conformation the exten-
sional stagnation point in the flow becomes unstable and loses the
pinning to the background steady force. For larger Wi other stag-
nation points lose their pinning to the background force and higher
oscillations arise in the flow. These instabilities occur on long time
scales and some artificial polymer stress diffusion was introduced
to fully resolve the stress [6,12]. Here we test these same per-
turbations to the initial data and for a fixed resolution N2 = 2562

and run the same simulations without any artificial polymer stress
diffusion.

Fig. 4 (a) shows a plot of the first component of the confor-
mation tensor for Wi = 10 at t = 15 computed both by evolving the
conformation tensor (solid line) and the square root (dotted line).
The plot is shown along the axis of compression and it is evident
that the stress has accumulated significantly and is quite large near
the extensional stagnation point in the flow (y = 0). The oscillations
produced in the direct evolution of c lead to the loss of positive-
definiteness of the conformation tensor, and the numerical scheme
breaks down. This figure shown is at t = 15 and the computation
fails to produce finite numbers at t = 20. However using the square
root one can run these simulations to t = 1500 and even beyond.
Fig. 4 (b) shows a plot of max (tr(b2)) as a function of time for
0 < t < 1500. It is important to point out that although max (tr(b2))
remains bounded in this case (with no artifical stress diffusion)
this quantity clearly depends on N and this is one way that the
accuracy of the solution is lost. However, it is not clear that this
level of loss of accuracy is entirely relevant to the flow because the
region where tr(b2) gets large diminishes exponentially in time
even as tr(b2) grows exponentially in time [5]. Fig. 4 (c) and (d)
show contour plots of tr(b2) and the vorticity of the flow on [ − �,
�]2. Here we see that the previously observed instabilities [6,12]
are at least qualitatively reproduced. The time-dependent behav-
ior is similar, too: the four-roll mill structure of the background
force is preserved initially, the extensional stagnation point leaves
the origin, and eventually time-dependent oscillations arise in the
flow.
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a b

Fig. 3. (a) Relative error in L1 shows ‖cN − cexact‖L1 /‖cexact‖L1 computed with c and b2, for Wi = 5 at t = 10. (b) Improvement in accuracy as a function of N, for Wi = 1 − 5 at
T = t/Wi = 2.

Of course with fixed resolution and no stress diffusion there is
an inevitable loss of accuracy. This can be seen in Fig. 4 (c) and (d) in
the slightly fuzzy images indicating oscillations while attempting to
resolve the steep gradients in the conformation tensor and vortic-
ity. It is noteworthy that these simulations are performed with no
artificial stress diffusion but nevertheless qualitatively reproduce
the well-resolved results that utilized artificial diffusion [6,12]. The
same computations simply cannot be performed with a direct evo-
lution of the conformation tensor (in this particular code). The
square root method allows simulations to run much longer and at
much higher Weissenberg number than evolving c directly allows.
This indicates that it might be possible to use much smaller—closer
to the physically realistic quantity—stress diffusion and still obtain
reasonably accurate results, although this will not be pursued in
this paper.

3.3. FENE-P

The FENE-P model enforces a limit (l2) on the magnitude of
tr c so the conformation tensor remains bounded. Steep gradients
can still arise in the polymer stress, however, and numerical dif-
ficulties remain. Therefore we also simulated the FENE-P model
in a Stokesian solvent to check for possible accuracy and stability
improvements by evolving the symmetric square root.

Fig. 5 (a) and (b) are analogs of Figs. 2 (b) and 3 (a) for FENE-P.
The simulations were performed with Wi = 5 and cut-off l2 = 100,
and are displayed at t = 10. Rather than plot the conformation ten-
sor c and b2, however, it is more analogous to plot S = c/[1 − (trc/l2)]
because this is closely related to the physical stress tensor and
includes the factor that gets very large as trc gets near the cut-
off l2. The accuracy improvement is not as large here as it was for
Oldroyd-B: for Wi = 5 the improvement is about 65% at N = 2562 and
is only 31% for N2 = 5122 but there is still some improvement (espe-
cially away from the extensional stagnation point). As before, the
“exact” solution here comes from a simulation with N2 = 10242.

The significance of the symmetric square root method for FENE-
P is much more apparent in terms of stability. The fact is that we
can increase Wi much more than we can for Stokes–Oldroyd-B.
We show results from two different simulations to demonstrate
this. First in Fig. 5 (c) and (d) we show results from perturbed
initial data with Wi = 20 at t = 100, with l2 = 225. This is just after

the onset of the instability and the flow is still nearly symmet-
ric. The stress has accumulated along the incoming and outgoing
streamlines of the extensional stagnation point and the four-roll
mill structure of the vorticity is still largely preserved. Fig. 5 (e) and
(f) shows results from perturbed initial data with Wi = 50 at t = 500,
with l2 = 225. These same computations evolving c fail to produce
finite values before t = 60 whereas the evolution of b appears to
continue indefinitely—although, again, there must be some loss
of accuracy. The qualitative behavior is similar to the solutions of
Stokes–Oldroyd-B and the instabilities discussed for that case also
occur here. In Fig. 5 (c) and (e) we show contour plots of tr(S(b2))
after the instabilities have developed and observe that max tr(S)
is quite large. The time-dependent behavior is also quite compli-
cated and as one can see in Fig. 5 (f), the vorticity of the flow is also
very complex with many additional vortices continually arising and
being destroyed in the flow.

4. Discussion and conclusions

In hindsight both the symmetrization procedure and the direct
computation of the square root evolution Eqs. (9) and (10) might
have been expected to contribute to the gains in stability and accu-
racy. Taking the square root reduces large amplitudes which, not
unexpectedly, reduces the stiffness in time stepping.2 Moreover
symmetrizing the system may reduce the stiffness of the time
marching as compared to taking a = 0 and simply computing the
deformation tensor because components of the symmetric square
root matrix will generally have less variance than a square root
with no symmetry. And computing the square root instead of c has
other advantages: the square root computation ensures positivity
of c in the numerical scheme compared to the most direct evolution
of the conformation tensor. We have observed that in practice the
square root method can be applied at higher Wi and for longer time
without any artificial numerical stress diffusion than evolving the

2 Clearly, the positive (2k)th-roots of c have entries with even smaller amplitude
compared to c when stress gets very large, which may help the numerics. This advan-
tage is most aggressively pursued in methods where one computes the logarithm of
the matrix c but these methods can be computationally expensive and more compli-
cated to implement [1]. A comparison of the square-root method with the logarithm
method [1] and the method of evolving eigenvalues [2] is planned for a future study.
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Fig. 4. (a) Plot of first component of conformation tensor c11(0, y) and b2
11(0, y) along direction of compression near the extensional stagnation point for Wi = 10 at t = 15.

Computations of c stop producing finite values at t = 19. (b) Plot of max(tr(b2)) as a function of time over 0 < t < 1500. (c) Wi = 10, contour plot of tr(b2) at t = 1000 on [ − �, �]2.
(d) Wi = 10, contour plot of the vorticity of the flow field at t = 1000 on [ − �, − �]2. All simulations performed with N2 = 2562 grid points.

conformation tensor directly can, enabling one to obtain numerical
solutions in more situations.

One less obvious but perhaps important advantage is the fol-
lowing. Assuming the locality of modal interactions, i.e., that
lower spectral modes of c are determined predominantly by
lower modes of the square root matrix b, we can expect good
information about up to the first 2N modes of the confor-
mation tensor c when we know just the first N modes of
the square root b. This speculation basically boils down to
the assumption that the Galerkin approximation method works
well for both b and c for sufficiently large N. Thus we might
expect that evolution of the square root improves both stabil-
ity and accuracy, at least in spectral or pseudospectral schemes.
Whether this is the case in other types of spatial discretizations
requires further investigation. Of course it also remains to imple-
ment the full n = 3 dimensional symmetric square root algorithm
and systematically compare its performance with conventional

schemes used to investigate, for example, turbulent drag reduction
[20].

We emphasize that all the numerical simulations shown have
been performed without artificial diffusion. The form of the equa-
tions with added stress diffusion is given in Appendix B. The
square-root method still has limitations for sufficiently large Wi
so it is natural to ask if one could use a more physically realistic
diffusion coefficient with the square-root method and this will be
pursued in future work.

The advantage of expressing the Oldroyd-B and FENE-P models
as evolutions in a vector space (indeed, a Hilbert space) remains
one of theoretical elegance at this point. Whether or not this for-
mulation might assist the rigorous mathematical analysis of these
models is an open question. Nevertheless it opens up new pos-
sibilities including the development of energy stability methods
and the implementation of diagnostic tools like proper orthogonal
decomposition [21] for the polymer configuration field.
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Fig. 5. (a) Relative error | SN − Sexact |/| Sexact | measured along the axis of compression of the first component of S(c) for FENE-P with N2 = 2562, Wi = 5 at t = 10, l2 = 100. Dotted
line is S(c) and solid line is S(b2). (b) Relative error in L1 shows ‖SN − Sexact‖L1 /‖Sexact‖L1 computed with S(c) and S(b2), for Wi = 5 at t = 10, l2 = 100. (c) Wi = 20, contour plot
of tr(S(b2)) at t = 100 on [ − �, �]2, l2 = 225. (d) Wi = 20, contour plot of the vorticity of the flow field at t = 100 on [ − �, − �]2, l2 = 225. All simulations done with N2 = 2562

grid points. (e) Wi = 50, contour plot of tr(S(b2)) at t = 500 on [ − �, �]2, l2 = 225. (f) Wi = 50, contour plot of the vorticity of the flow field at t = 500 on [ − �, − �]2, l2 = 225. All
simulations done with N2 = 2562 grid points.
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Appendix A. Entries of the antisymmetric matrix for n = 3

The entries a12, a13, a23 of the antisymmetric matrix a in (11)
are given by

D a12 =
(

T1T2 − B2
3

)
w1 − (B1T1 + B3B2) w2 + (B2T2 + B1B3) w3,(32)

D a13= − (B1T1+B3B2) w1+
(

T1T3 − B2
2

)
w2− (B2B1+B3T3) w3, (33)

D a23 = (B2T2 + B1B3) w1 − (B2B1 + B3T3) w2 +
(

T2T3 − B2
1

)
w3,(34)

where

D ≡ det((tr b)I − b)
= T1

(
T2T3 − B2

1

)
− B2 (B2T2 + B1B3) − B3 (B2B1 + B3T3) ,

(35)

T1 = b22 + b33, T2 = b11 + b33, T3 = b11 + b22, (36)

B3 = b12, B2 = b13, B1 = b23, (37)

and w1, w2, and w3 are given in (17)–(19).
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Appendix B. Stress diffusion

To include stress diffusion in the dynamics of b, note that

∂xxcij = ∂xx(bikbjk) = bik(∂xxbjk) + (∂xxbik)bjk + 2∂xbik∂xbjk,

and similarly for y and z. In matrix notation,

�c = (�b)b + b(�b) + 2
[
(∂xb)2 + (∂yb)2 + (∂zb)2] .

Denoting the stress diffusion coefficient by 	, the term

	
(

1
2

�b + h
)

,

where

h = b−1
[

1
2

(�b)b + (∂xb)2 + (∂yb)2 + (∂zb)2
]

,

is then added to the right hand side of the evolution equation for
b (i.e., (9) or (10)) to produce the effect of a 	�c term in the con-
formation tensor equation. In case of the Oldroyd-B the equation
beomes(

∂

∂t
+ u · ∇

)
b = 	

(
1
2

�b + h
)

+ b∇u + ab + 1
2Wi

(
b−1 − b

)
= 	

2
�b + 1

2Wi

(
b−1 − b

)
+ 	h + b∇u + ab

and to symmetrize the equation, instead of defining r as in (13), we
set

r = (rij) = 	h + b∇u + ab.

This does not affect the solvability of a. It only changes the definition
of w1, w2, w3. With this choice, the diffusion term in the b equa-
tion takes the form 	/(2�b), where 	 is the diffusion constant in the
conformation tensor equation. The antisymmetric matrix a is com-
puted with modified w1, w2, w3. More precisely, let us introduce
the notation

∂xm b = (bij,m), i, j, m = 1, 2, 3,
�b = (�bij), i, j = 1, 2, 3,

b−1 = (�ij), i, j = 1, 2, 3,

where

B�11 = b22b33 − b2
23,

B�12 = b13b23 − b12b33,
B�13 = b12b23 − b13b22,
B�22 = b11b33 − b2

13,
B�23 = b12b13 − b11b23,
B�33 = b11b22 − b2

12,
B = det(b)

= b11
(

b22b33 − b2
23

)
+ b12 (b13b23 − b12b33)

+b13 (b12b23 − b13b22) ,

and the other entries are determined by symmetry of b−1. Then,
we change w1, w2, w3 as follows. Let W1, W2, W3 denote the new
values for the system with diffusion, and w1, w2, w3 denote the old
values for the equations without diffusion. Then,

W1 = w1 + 	

2
(�2k�bkibi1 − �1k�bkibi2)

+	
(

�2kbki,mbi1,m − �1kbki,mbi2,m

)
,

W2 = w2 + 	

2
(�3k�bkibi1 − �1k�bkibi3)

+	
(

�3kbki,mbi1,m − �1kbki,mbi3,m

)
,

W3 = w3 + 	

2
(�3k�bkibi2 − �2k�bkibi3)

+	
(

�3kbki,mbi2,m − �2kbki,mbi3,m

)
,

where we sum over repeated indices i, k, m = 1, 2, 3 in 3D, and i, k,
m = 1, 2 in 2D (where only w1 and W1 are present).

In particular, in 2D, (27) becomes

a12 =
(

b12u1,1 − b11u2,1
)

+
(

b22u1,2 − b12u2,2
)

+ A

b11 + b22
, (38)

where

A= 	

2
(�2k�bkibi1−�1k�bkibi2) +	

(
�2kbki,mbi1,m−�1kbki,mbi2,m

)
,

i, k, m = 1, 2.

Thus, we change the evolution Eq. (9) for b to(
∂

∂t
+ u · ∇ − 	

2
�

)
b = 1

2Wi

(
b−1 − b

)
+ b∇u + ab + 	h, (39)

and compute a12 as in (38).
All that being said, we remark that if stress diffusion is included

for computational purposes, i.e., to numerically stabilize and/or
regularize particular calculations, it may be just as effective to sim-
ply add a term ∼�b to the square root’s evolution Eq. (9) or (10).

Appendix C. Supplementary Data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jnnfm.2011.02.008.
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