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Emergence of Singular Structures in Oldroyd-B Fluids

Becca Thomases1, and Michael Shelley1

1Courant Institute of Mathematical Sciences, New York University
New York City, NY 10012

Abstract. Numerical simulations reveal the formation of singular structures
in the “polymer” stress field of a viscoelastic fluid modelled by the Oldroyd-B
equations. These singularities emerge exponentially in time at hyperbolic points
in the flow and their algebraic structure depends critically on the Weissenberg
number. Beyond a critical Weissenberg number the stress field approaches a
cusp-singularity and beyond a second critical Weissenberg number the stress be-
comes unbounded exponentially in time. A local approximation to the solution
at the hyperbolic point is constructed and there is excellent agreement between
the local solution and the simulations. Although the stress field becomes un-
bounded for sufficiently large Weissenberg number, the resultant forces of stress
remain bounded. Artificially enforcing finite polymer chain lengths via a FENE-
P penalization appears to keep the stress bounded, but a cusp-singularity is still
approached exponentially in time.

1 Introduction

Recent experimental work [1, 2, 3, 4] on the mixing of viscoelastic fluids at low
Reynolds number has led us to consider the Oldroyd-B model for viscoelastic
fluids in the zero Reynolds number limit for a standard curvilinear flow. We
report on results for mixing in [5], but while investigating this phenomena we
have observed the formation of singular structures in dynamical solutions of the
Oldroyd-B equations, which we report on here. Oldroyd-B is a popular contin-
uum model of a so-called “Boger” fluid, having a simple and elegant structure
but also some well documented flaws; see for example [6]. The Oldroyd-B equa-
tions can be derived from microscopic principles by assuming a linear Hooke’s
law for the restoring force under distension of the immersed polymer coils; see
[7]. The Oldroyd-B model is often criticized for this simplification because the
linear Hooke’s law puts no restriction on the length of polymer chains. Related
to this, in an extensional rheological flow the steady Oldroyd-B equations can
exhibit stress divergences [8]. Here we consider low Reynolds number flow with
biperiodic boundary conditions using the Stokes-Oldroyd-B equations. This al-
lows us to use a spectral method to evolve the system which is helpful to deduce
the analytic structure of the flow and monitor the numerical accuracy of solu-
tions. The geometry of the flow is set up with a time independent background
force, which in the pure Newtonian case yields the four roll mill. In the full
nonlinear system the polymer stress acts as an additional force which drives the
evolution of the fluid velocity.
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The four roll mill geometry of the flow creates a central hyperbolic stagnation
point. We find the emergence, exponentially in time, of nearly singular struc-
tures in the stresses at every Weissenberg number. These singular structures
appear as “stress islands” in the diagonal components of the stress tensor which
lie along the unstable manifold associated with the hyperbolic point. The regu-
larity of the singular structures decreases as the Weissenberg number increases.
For sufficiently small Weissenbreg number, these singularities are high-order.
There are two significant transitions as the Weissenberg number is increased.
The first is characterized by the onset of a cusp in the stress field centered at the
hyperbolic stagnation point in the flow. This cusp becomes more pronounced in
time, and our simulations suggest that it is approached exponentially in time.
As the Weissenberg number increases further, this cusp “breaks,” resulting in
unbounded solutions. Again, it appears that the unbounded solutions are ap-
proached exponentially in time. Furthermore, for sufficiently large Weissenberg
number the rate at which the solution becomes singular decreases in the Weis-
senberg number.

In these simulations we find that the velocity rapidly approaches a steady-
state that remains locally, about the central hyperbolic point, a simple straining
flow. This enables us to construct a local solution which agrees remarkably
well with our computations. During the preparation of this manuscript we
became aware of a construction by Renardy of steady solutions to the UCM
model for viscoelastic fluids [9]. This construction is essentially the same as the
local solution demonstrated in what follows, though we include time-dependence
and study how these singular structures are selected and approached. We also
observe that the singularities appear to remain integrable in accordance with
finiteness of the systems strain energy.

2 Equations of Motion

We study numerically the two-dimensional Oldroyd-B equations of viscoelastic
flow in the low Reynolds number limit. Biperiodic boundary conditions are
assumed and persistent curvilinear flows are created by imposing a very simple
body force. The Stokes-Oldroyd-B equations are given by:

−∇p +4u = −β∇ · S + f, & ∇ · u = 0, (1)
∂tS + u · ∇S− (∇uS + S∇uT ) + 1

Wi (S− I) = 0, (2)

where Wi = τp/τf is the Weissenberg number, with τp the polymer relaxation
time and τf the time-scale of the fluid flow. The dimensional scaling F of
the forcing f is used to set the flow time-scale as τf = µ/ρLF, where µ is
the solvent viscosity, ρ the fluid density, and L the system size. This sets
the adimensional force, and the time-scale of transport, to be order one. The
parameter β = Gτf/µ measures the relative contribution of the polymer stress
to momentum balance, where G is the isotropic stress in the polymer field in
the absence of flow. Note that Eq. (2) preserves symmetry and positivity of S,
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as is expected given its microscopic derivation [8]. The force is given by

f =
( −2 sin x cos y

2 cos x sin y

)
. (3)

In a purely Newtonian Stokes flow (β = 0) this forcing yields a four vortex
“mixer” in each [0, 2π]2 cell, like that in Fig.1(a). The solution for the velocity
in the Newtonian case is given by

u =
(

sin x cos y
− cos x sin y

)
. (4)

The product of β · Wi = Gτp/µ is a material constant, which we set to 1/2.
This is consistent with the fluids used in recent experiments of dilute polymer
solutions with highly viscous solvents, “Boger fluids” (from [4] the solution
viscosity is 1.2 Pa s, while the solvent (97% glycerol/water) is 0.8 Pa s, yielding
β · Wi = (1.2− 0.8)/0.8 = 0.5).

The trace of S is an important physical quantity representing the amount
of stretching of polymer coils. With the constant force given in Eq. (3), and
initial data S(0) = I, many symmetries are maintained in the solution: e.g.
S22(x, y) = S11(y + π, x + π). These symmetries along with the force create a
persistent hyperbolic stagnation point in the velocity field. We will refer to the
hyperbolic point at (π, π), at which there is extension in the x−direction and
compression in the y−direction, as the central hyperbolic point.

The system (1) – (2) has an energy, the “strain energy,” given by

E ≡
∫ ∫

tr (S− I)dxdy,

which satisfies

d

dt
E +

1
Wi

E = − 2
β

∫ ∫
|∇u|2dxdy − 2

β

∫ ∫
u · fdxdy. (5)

The second term on the right hand side is the power input to the system by the
forcing. If it remains bounded, say by C1, then d

dtE + 1
WiE ≤ 2C1

β , which upon
intergration yields the bound

E(t) ≤ 2C1Wi

β
+ C2e

−t/Wi. (6)

Perhaps surprisingly, Eqs.(1)–(2) are not controlled by diffusion. To see this,
consider a linearized version of Eqs.(1) – (2), where

f = εg, u = εv, and S = I + εT,

for ε << 1. The linearized equations are
{

−∇p +4v = −β∇ ·T + g, ∇ · v = 0
∂tT− (∇v +∇vT ) + 1

WiT = 0.
(7)
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If the Fourier transform is used to solve the linearized equations the evolution
of T̂ is given by

∂tT̂ + L
(

k

|k|
)

T̂ + P(k)ĝ = 0, (8)

where L is a linear tensorial operator on the normalized wave vector. Thus, there
is no scale-dependent dissipation in the evolution equation for T. This lack of
scale-dependent dissipation is one source of difficulties in existence results for
these equations (and for numerical difficulties as well). In 2 and 3 dimensions
the system has global solutions for small (perturbative) initial data, where the
size of the solution depends on the viscosity, however there are no results for
global existence if the initial data is large, even for 2D; see [11, 12, 13, 14].

With the constraint β·Wi = C, one can examine the (formal) limits,Wi → 0,
and Wi →∞. For Wi << 1, let

u = Wi v + h.o.t., and S = I +Wi T + h.o.t..

Solving for the leading term in the evolution of S in Eq. (2) gives

T = Wi(∇v +∇vT ) V β∇ ·T = C4v.

Hence, in the limit, v solves the Stokes equation with viscosity (1 + C).
Next consider Wi >> 1 and t ∼ O(1). In this formal limit, the equations

de-couple, the velocity v satisfies the Stokes equation with viscosity 1, and the
stress satisfies T = FT(0)FT , where F is the deformation gradient and satisfies
the equation

∂tF + v · ∇F = ∇vF.

Since v is steady, this is a linear equation for the deformation gradient. Although
both limits Wi → 0 and Wi →∞ give the Stokes flow for the velocity, there is
very interesting (non-Stokesian) behavior for fixed finite Wi.

The numerical scheme is a Fourier-based de-aliased spectral method. The
stress S is evolved using a second-order Adams-Bashforth method. Given S,
the Stokes equation is easily inverted in Fourier space for u. Given u, the non-
linearities of the stress evolution, Eq.(2), are evaluated using 2

3−rule dealiasing
[10]. Care must be taken to maintain good spatial and temporal resolution as
the evolving stress field becomes more singular. The spatial discretization is
successfully doubled as the active part of the spectrum approaches the Nyquist
frequency (∼ 2

3 N, where N is the number of physical space points in each direc-
tion). Maximal resolutions are 20482, and the simulations are stopped before
the high wave-number part of the spectrum exceeds 10−5. We find the posi-
tive definiteness is maintained in all of our simulations and the time-stepping is
verified to have second order accuracy.

3 Numerical Results

First we consider the dynamics for three values of Wi (0.3, 0.6, and 5.0) at a
fixed time t = 6, after evolving from initial data S = I. These values are chosen
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Figure 1: Contour plots of vorticity at t = 6 : (a) Wi = 0.3, (b) Wi = 0.6, (c)Wi = 5.

to sit between transitions in the solution form as Wi is increased. Figure 1
shows contour plots of the vorticity ω at t = 6 for these three values of Wi. For
the lower Weissenberg numbers the vorticity for the Stokes flow is not changed
qualitatively by the addition of the polymer stress, i.e. the four vortex flow
persists and no additional features are created. Above a critical Weissenberg
number this begins to change, and we see for Wi = 5 that additional oppo-
sitely signed vortices are generated along the stable and unstable manifolds of
the hyperbolic point. Increasing the Weissenberg number decreases the overall
magnitude of vortex strength.

Figures 2(a) - (c) show contour plots of tr S at t = 6. At the central hyper-
bolic point, tr S is dominated by S11. For Wi = 0.3 and 0.6 the solution has
essentially relaxed to a bounded steady state by this time. This is not so for
Wi = 5.0 which appears to be “relaxing” to an unbounded state. The stress
field grows rapidly near the hyperbolic points in the flow and concentrates along
the unstable manifold of the hyperbolic point; see Fig. 2(c). At this time the
solutions remain accurate to within 10−8, which we see by examining the high
wave-number part of the spectrum. The shear stress component S12 likewise
shows transitions in its spatial structure with Wi, but remains much smaller in
magnitude; see Figs. 2(d) - (f). Figures 2(g) - (i) show contour plots of the first
component of the force due to polymer stress at t = 6 : F1 = ∂xS11 + ∂yS12

(due to symmetries the second component is a π/2 rotation of the first). The
forces are of much smaller magnitude than the stress components; the large
gradients that make up the stress islands in Fig. 2(c) (∂yS11 and ∂xS22) are not
components of the force ∇·S. It is interesting to note that the only appearance
of ∂yS11 (∂xS22) in Eq. (2) is in the advection term of S11 (S22).

Figures 3(a)-(c) show the stress S11(π, y) at t = 6, i.e. slices along the
stable manifold about the hyperbolic point. By this time the stress has begun
to concentrate at the central hyperbolic point but for Wi . 0.5 the solutions
appear smooth. The first transition appears to occur at Wi1 ≈ 0.5 above which
the stress remains bounded, but appears to approach a cusp singularity. Above
Wi2 ≈ 0.9, the maximum of the stress appears to become unbounded in time.
We will detail this observation shortly.

Our computations suggest the emergence of a singular algebraic structure
of the form S11(π, π − y) ∼ |y|q, near the central hyperbolic point, where q is
a function of Wi. This is seen from our simulations by analyzing the structure
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Figure 2: (a) - (c) Contour plots of tr S, for Wi = 0.3, 0.6, and 5.0, from left to right.

S11 dominates at the central hyperbolic point, and S22 dominates at the hyperbolic point at

(0, π). (d) - (f) Contour plots of S12 for the same values of Wi. (g) - (i) Contour plots of the

first component of the force due to the polymer stress, ∇· (S)1 = ∂xS11 + ∂yS12 for the same

values of Wi. Note the difference in scale in each case as Wi is increased.

of Ŝ11(π, k), the Fourier transform (in y) of S11(π, y), shown for Wi = 0.6 in
Fig. 4 (a). In consistency with the emergence of a singular structure, Ŝ11(π, k)
decays less rapidly (in k) as time progresses. To analyze the structure of the
singularity we make the Ansatz that |Ŝ11(π, k)| ∼ Ae−νkk−p, for |k| >> 1. This
is motivated by Laplace’s method for expressing the asymptotic decay of a 1 d
Fourier series (for an analytic function) in terms of the distance and algebraic
structure of the nearest singularity to the real axis. This method has been used
in many numerical studies of singularity formation (e.g. see [15, 16, 17]). The
value of ν gives the distance of the singularity to the real axis and p gives its
algebraic order. In this Ansatz then, the emergence of the singularity of the form
|y|q is associated with the approach of ν to zero and with q = p− 1. |Ŝ11(π, k)|
is fitted to this Ansatz over successive triples of wave number (k, k + 1, k + 2),
yielding pointwise approximations. These fits for Wi = 0.6, as an example,
are shown in Figs. 4(b) and (c). It is typical that the range in k over which
one finds smooth fits in k is limited by attempting to pick out an asymptotic
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(a) (b) (c)

Figure 3: S11(π, y), at t = 6, increasing in Wi. (a) Wi = 0.1 − 0.5 (b) Wi = 0.6 − 0.9 (c)

Wi = 1− 5.

(b)(a) (c)

Figure 4: (a) Ŝ11(π, k) for Wi = 0.6 and t = 1, 2, ..., 10. The spectrum decays less

rapidly as time progresses. (b) For Wi = 0.6 and the same times, the fit for the Ansatz

|Ŝ11(k)| ∼ Ae−νkk−p, this computation shows the convergence of p, the algebraic structure

of the approached singularity. As time progresses the value p ≈ 1.7 is approached for a wide

value of wave numbers. (c) This computation shows the convergence of ν, the distance from

the real axis of the approached singularity. As time progresses the value ν = 0 is approached

for a wide value of wave numbers.

decay structure from a solution made increasingly inaccurate by the oncoming
singularity (see [17]).

For all Weissenberg numbers our computations suggest ν → 0 in time, and
hence the algebraic structure of the solution becomes progressively more pro-
nounced. The data points in Fig. 5 show the fit exponent, q = p− 1, versus the
Weissenberg number. We find that q and hence the smoothness of the solution
depends sensitively on the Weissenberg number. For Wi . Wi1 this exponent
q is greater than 1, hence the solutions have at least one continuous derivative.
The first transition occurs at q = 1. Between Wi1 and Wi2, the solutions are
cusps; bounded but with a singularity in the first derivative, as 0 < q < 1. At
Wi = Wi2, this singularity becomes unbounded as q becomes negative. Note
that the exponent appears to remain bounded below by −1. This would im-
ply that although the stress components are becoming unbounded, they remain
integrable. This is supported by Eq. (5), which implies that tr S remains inte-
grable as long as the input power is bounded. Our computations confirm that
the input power does remain bounded as does the strain energy, with the bound
given in Eq. (6).
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ε

, as computed from the local solution of Sect. 4.

We now turn to examining the temporal structure of the stress field. Figs.
6(a) - (f) show slices of the stress S11 along both the stable and unstable di-
rections around the hyperbolic point at (π, π) for t = 1, 2, ..., 10 for our three
example Weissenberg numbers. In the next section we construct a local solution
S̃ about the hyperbolic point. Our simulations and this local solution suggest
the form

S̃11(x, y − π, t) ≈ S̄(Wi) + eP (Wi)tH(yeQ(Wi)t), (9)

where P (Wi) < 0 for Wi < Wi2, P (Wi) > 0 for Wi > Wi2, and Q(Wi) > 0.
Hence, the exponential rate P controls the rate of convergence (divergence)
towards (from) S̄, and e−Qt defines a collapsing inner scale of the local solution.
To compute P we look at |S11(π, π, t)− S̄|. S̄(Wi) is given in the next section,
but the logarithm of this difference is plotted in Fig. 7(a). These curves appear
linear (after t ≈ 5 for Wi = 5.0) suggesting an exponential rate. For Wi < Wi2
the peak value, S̄, is approached exponentially in time, and for Wi > Wi2 the
maximum of the stress is repelled away from S̄ exponentially in time. Fig. 7(b)
shows this rate, P versus Wi. When Wi > Wi2 this approach rate becomes
positive and though initially increasing, it eventually (Wi & 2.0) begins to
decrease in Wi. Previously we have seen that as Wi is increased the singular
solution has an exponent approaching −1 (see Fig. 5) making the solution more
difficult to resolve near the hyperbolic point. However, the rate at which the
singularity is being approached is decreasing in Wi (past Wi & 2.0).

To identify the inner-scale, Q(Wi), which is so apparent in Fig.6, we con-
struct the length-scale

λ(t) =
( |S11(π, π, t)− S̄|
|∂2

yS11(π, π, t)|
)1/2

. (10)

λ measures the ratio of the rate at which S11(π, π, t) approaches (or repels
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(b) (c)(a)
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Figure 6: (a) - (c) S11(x, π) for t = 1, 2, ..., 10, increasing in time for Wi = 0.3, 0.6, and 5.0,

respectively. (d) - (f) S11(π, y) for t = 1, 2, ..., 10, increasing in time for Wi = 0.3, 0.6, and

5.0, respectively.

away from) S̄, over the rate at which the second derivative is diverging at the
central hyperbolic point (at least for Wi > Wi1). This rate is going to zero
exponentially fast, as we can see in Fig. 7(c) which shows the logarithm of
λ(t) for Wi = 0.3, 0.6 and 5.0. Observe that for Wi = 0.3 < Wi1, this rate
appears exponential at first, but after t ≈ 5 it levels off which suggests that
the second derivative is not diverging. This agrees with the fit for the exponent
which gives q ≈ 3, for Wi = 0.3. For Wi > Wi1, these curves appear linear
(after t ≈ 5 for Wi = 5.0) suggesting an exponential rate. The slope of ln(λ)
is the exponential rate of collapse, Q. Figure 7(d) shows Q as a function of the
Weissenberg number. The inner scale is collapsing for all Wi > Wi1, and the
rate of collapse is decreasing in the Weissenberg number.

4 Comparison with approximate local solution

We can understand many of our computational results in terms of a very simple
local model around the hyperbolic point, and hence we examine the local velocity
field here. The important observation is that the velocity is approaching steady
state for all Wi. Figures 8(a) and (b) examine the structure of the local flow
about the hyperbolic point for Wi = 5.0. At t = 0 the velocity is given by the
Newtonian solution, given in Eq. (1). For t > 0, along the stable and unstable
manifolds it appears that u1(x, π, t) ≈ −α(t) sin(x) and u2(π, y, t) ≈ α(t) sin(y),
for some function α(t,Wi). Computations of the L2 norms of u and ∇u show
that by t ≈ 6 the norms are reaching a constant value for all Wi considered.
Figure 8(c) shows α(t) = ∂u

∂x (π, π, t) as a function of time. We observe that
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α decreases in time to an apparently steady value. With this steady value α
decreases in Weissenberg number, as seen in Fig. 9(a).

As a simple model we approximate the steady state solution for the velocity
near the hyperbolic point by u ∼ α(−x, y), where α is the “large-time” value
observed in our simulations. Observe that as Wi → 0, α → 2/3. This is in
agreement with the formal limit Wi → 0 discussion from Sect. 2, where u
solves the Stokes equation with viscosity (1 + C), and C = 1/2.

To solve for the local structure of S at a hyperbolic point at the origin we
substitute u = α(x,−y) into the stress advection equation and seek a local
solution S̃. This gives the following PDE for γ = S̃11 :

∂tγ + αxγx − αyγy + (
1
Wi

− 2α)γ − 1
Wi

= 0.

Scaling time as Wi · t and setting ε = αWi gives

∂tγ + εxγx − εyγy + (1− 2ε)γ − 1 = 0. (11)

This PDE can be solved by the method of characteristics with the general so-
lution given by

γ(x, y, t) =
1

(1− 2ε)
+ e(2ε−1)tH11(xe−εt, yeεt) (12)

for an arbitrary function H11. We seek solutions that yield a time-independent
algebraically singular structure in y as t →∞ and which show little dependence
on x. (This latter requirement is already consistent with the dependence of γ
upon xe−εt.) Hence for simplicity consider H11(a, b) ≡ h(b) where h(b) ∼ |b|q
as b →∞. One consistent choice would be

h(b) = h0(1 + Cy2e2εt)q/2.

We determine the exponent q by requiring loss of time dependence of γ for large
times, yielding q = 1−2ε

ε , and large time local solution

γ∞ =
1

1− 2ε
+ A|y|q. (13)

The solution γ∞ involves a re-scaled time, and also an “effective” Weis-
senberg number ε (“effective” because it scales the actual Weissenberg number
by the local rate of strain at the hyperbolic point). Critical values of q occur
when 1−2ε1

ε1
= 1 ⇒ ε1 = 1/3, and 1−2ε

ε = 0 ⇒ ε2 = 1/2. If the solution is to
remain integrable it must be that ε < 1. Figure 9(b) shows the computed value
of ε = α Wi, with the value of α coming from our simulations. The critical
values ε1 and ε2 do compare with the critical Weissenberg numbers observed
from the computations in Sect. 3, Wi1 ≈ 0.5, and Wi2 ≈ 0.9. It also appears
that ε < 1, which implies that the theoretical exponent > −1, and hence the
solutions are integrable.

10



Now we make several other remarks on comparisons with simulations. In
Sect. 3 we used the constant S̄ = 1

1−2ε in the approximation of the exponen-
tial rate P . Figure 7(b) compares this rate P with the theoretically predicted
exponential rate 2ε−1

Wi from Eq. (12). Note that we must divide by Wi be-
cause we re-scaled time in Eq. (12). The close comparison of the theoretical
exponential rate with the computed exponential rate implies that the particular
solution to the PDE (Eq. (13)) is an excellent predictor for the long-time value
of S11(π, π, t), when Wi < Wi2. In fact, for Wi = 0.1 the difference is O(10−14).

The exponent q = 1−2ε
ε in the local solution γ∞ from Eq. (13) is compared

with the computed exponents (from Sect. 3) in Fig. 5. The comparison is quite
good for the range of Weissenberg number.

The general solution to the local problem given in Eq. (12) also predicts an
inner scaling form. In the re-scaled variables the inner scaling rate is ε, or in the
original variables ε

Wi = α. Figure 7(d) gives a comparison with the inner scale
predicted in Sect. 3, λ. We do not expect the inner scale as defined by λ to have
meaning for Wi < Wi1 where the singularities are higher order, and indeed the
comparison improves for Wi > Wi1 (ε & .3), where the second derivative is
diverging at the central hyperbolic point.

The approximation u = (αx,−αy) yields local solutions for the other com-
ponents of the stress tensor as well. The general solution for S22 is given by

S̃22(x, y, t) =
1

1 + 2ε
+ e−(1+2ε)tH22(xe−εt, yeεt).

The comparison with the particular solution 1
1+2ε is excellent for S22; see Fig.

10(a). S22(π, π, t) remains bounded for all Wi and the behavior of S22 near
the central hyperbolic point is less singular than S11. Computing the scaling
exponent as was done for S11 gives a solution of the form

S22,∞ ∼ 1
(1 + 2ε)

+ |y|q′ , (14)

with q′ = 1
ε + 2. However, when we make the Ansatz |Ŝ22(π, k)| ∼ Be−µkk−q′ ,

and fit q′ it compares well with an exponent of the form q′ = 1
ε , see Fig. 10(b).

It is unclear what this discrepency is stemming from. It is possible that the less
singular solutions for S22 are harder to fit to the Ansatz. Again the distance
from the singularity to the real axis, µ, goes to zero for all Weissenberg number,
and in fact, µ = ν, i.e. the singularity for S11 is approached at the same rate as
the singularity for S22.

The local solution for S̃12 has the form

S̃12(x, y, t) ∼ e−tH12(xe−εt, yeεt).

By symmetry S12 = 0 around the central hyperbolic point.
The large-time local solutions we construct and those of Renardy in [9] are

essentially the same. Renardy considers a steady state problem with a fixed
velocity u = (x,−y). We note that for the dynamic problem constructing the
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local solution requires knowledge of the local straining flow at the hyperbolic
point (which we compute pointwise from ∇u at the central hyperbolic point).
Solving for α in general requires matching the inner and outer flow conditions
which we have not attempted here. We also observe that theoretically the
exponent predicted by Renardy’s solution, 1/Wi− 2, approaches −2, as Wi →
∞. The stress of such a solution would not satisfy the energy law, Eq. (5),
as tr S would not be integrable. We observe in our simulations that α(Wi)
decreases in Wi in such a way as to keep tr S integrable. Knowledge of the local
straining flow also gives an “effective” Weissenberg number, ε, which gives quite
accurate information about the exponential rates of both decay and divergence,
the maximum values of the stresses (when bounded) and the inner scaling of
the stress field.

5 Other considerations

It is important to note that the observed singularities depend sensitively on
many aspects of the problem besides the bare Weissenberg number. For ex-
ample, we have found that adding a higher order harmonic to the background
force will change α(Wi) and hence the order of the singularity. The choice of
β · Wi also affects α. Our local model is not closed, though it requires only a
single number, α, from the simulations. Plainly, there is a matching problem to
be solved to self-consistently determine α from the “outer” flow. We have also
investigated the robustness of the singularity to dynamical changes in the forc-
ing. For example, we took as initial data a well-resolved but near-cusp solution
(Wi = 0.6) for a run with Wi = 0.2. Fig. 11(a) shows that the solution rapidly
relaxes to what appears to be the typical solution for Wi = 0.2. The maximum
decreases in time and the solution reaches near steady state. Fig. 11(b) shows
Ŝ11(π, k). Here the spectrum decays more rapidly as time progresses, indicating
that the solution is becoming less singular in time. Recall that the algebraic
structure is approximated as |y|q where q = 1−2ε

ε . For Wi = 0.2, q ≈ 5.5, and
for Wi = 0.6, q ≈ 0.7. We use the same method as in Sect. 3 to fit the exponent
with this data and p(k) is plotted in Fig. 11(c). Initially the fit gives p(k) ∼ 1.7
which indicates a cusp. As time progresses the fit appears to give p ∼ 1.7 for
lower wave numbers and p ∼ 6.7 for higher wave numbers. By t = 10, the fit
appears to give p ∼ 6.7 for all wave numbers (where convergence is seen). This
seems to suggest that initially the more dominant singularity has p = 1.7 which
agrees well with Wi = 0.6, and then as time progresses this singularity dimin-
ishes and the singularity with p = 6.7, corresponding to Wi = 0.2, becomes
more dominant.

The Oldroyd-B equations are often criticized for allowing infinite extensibil-
ity of polymer chains. Indeed, those singular solutions with Wi > Wi2 corre-
spond to arbitrarily large extension. Still, we have also found a whole spectrum
of solutions with finite extension which are singular nonetheless. To understand
whether the singularities we have observed are due to this infinite extensibility
we add a FENE-P cutoff to our model [18]. The Stokes-Oldroyd-B equations
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with the FENE-P penalization are given by:

−∇p +4u = −β∇ · S + f, & ∇ · u = 0,

∂tC + u · ∇C− (∇uC + C∇uT ) + 1
Wi (S− I) = 0,

S = C
1−( tr C

`2
)
,

where ` represents the ratio of the maximum polymer length to the length of
the polymer when coiled. In what follows we use ` = 10. We consider two cases,
Wi1 < Wi < Wi2, and Wi > Wi2.

In the first case we consider Wi = 0.6. Fig. 12(a) shows slices of S11(π, y) for
t = 0, 1, ..., 10. The solution appears to be approaching a cusp singularity quite
similar to Wi = 0.6 without the FENE-P penalization; see Fig. 6(e). Fig. 12(b)
shows the value of tr S(π, π, t) for Wi = 0.6 both with and without the FENE-P
penalization. We see that the penalization reduces the maximum value of the
stress, but in this range of Wi, the maximum value is bounded even without the
penalization and the differences are minimal. Fits of Fourier spectrum for the
algebraic order give a cusp singularity similar to the case without the FENE-P
penalization. In summary, the FENE-P penalization does not smooth out the
cusp and hence any difficulties in numerical simulations related to the large
gradients in the stress field at the central hyperbolic point will still be apparent.

For Wi > Wi2, the FENE-P penalization does appear to keep tr S bounded.
For Wi = 2.0, Fig. 12(c) shows slices of S11(π, y) for t = 0, 1, ..., 10, and
Fig. 12(d) shows tr S(π, π, t) for Wi = 0.6 with and without the FENE-P
penalization. It appears that tr S is bounded (perhaps asymptotically by 100)
with the FENE-P penalization. The fit of the Fourier spectrum in this case gives
evidence of an oncoming singularity but the results appear to indicate that the
solution should be approaching an unbounded solution. This may be due to
problems with the method of fitting the exponent in this case, or perhaps the
Ansatz is inappropriate. In any event the solution appears to remain bounded
and appears to approach a cusp singularity. Although these results are not
conclusive it does appear that at least a simple FENE-P penalization will not
resolve all of the difficulties associated with the Oldroyd-B equations, and that
allowing infinite extensibility in polymer chain lengths is not at the root of all
the difficulties with these equations. We suspect that FENE may suffer from
similar difficulties.

6 Conclusion

The behavior and smoothness of solutions to the Stokes-Oldroyd-B equations
is very sensitive to the Weissenberg number. Nearly singular structures in the
stress field arise at every Weissenberg number. We observe two dramatic tran-
sitions which for our simulations occur for Wi1 ≈ 0.5 and Wi2 ≈ 0.9. The first,
at Wi1 ≈ 0.5, is distinguished by the appearance of a cusp singularity in the
stress field which is approached exponentially in time at the central hyperbolic
point in the flow. Below this critical Weissenberg number, although one or more
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derivatives of the stress may be bounded, the solutions are still approaching a
singular solution. At higher Weissenberg number (beyond Wi2 ≈ 0.9) the sin-
gular structures that are approached are unbounded at the central hyperbolic
point.

The constructed local solution agrees quite well with the numerical results
giving similar dependence on Wi for regularity of solutions, exponential rate,
and inner scaling. The constructed local solution also introduces the new pa-
rameter ε, the “effective” Weissenberg number. The nature of the singularity
depends critically on ε which includes of course the Weissenberg number, but
also the local strain rate of the flow at the hyperbolic point, α. Currently we ap-
proximate α with our simulations, however it should be possible to solve for α in
general by matching the inner and outer flow conditions. This is a complicated
problem but well worth studying.

An interesting point to reiterate is the fact that although there is significant
evidence that for Wi > Wi1 first derivatives of the stress are growing exponen-
tially fast, these very large derivatives are not components of the polymer stress,
and hence do not directly feed back into the Stokes equation. One might be
able to use this fact to obtain bounds on the stress which in turn yield bounds
on u to show that the solutions (although exponentially large) remain bounded
for all time.

It may be these potential infinite time singularities which are at the root of
the difficulties in numerical simulations of viscoelastic fluids using the Oldroyd-
B model. There is a vast literature regarding the “high Weissenberg” number
problem; see [19], Chapter 7, for a careful exposition of many relevant results. It
appears that the solution to the Oldroyd-B equations in any flow which contains
a hyperbolic stagnation point will develop large stress gradients at an exponen-
tial rate, even for Weissenberg number much lower than those which are related
to the infinite extension of polymer chains. These large stress gradients (due to
the cusp singularity) will be present even with a restriction on the length of the
polymer chains. We have added a simple FENE-P penalization to our numerical
simulation and observe that for Wi < Wi2 there is still an exponential approach
to a cusp singularity, and for Wi > Wi2 although tr S is bounded, there re-
mains an approach to a cusp singularity. We believe that the real difficulties
stem from the lack of scale dependent dissipation in the stress advection.
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(a) (b)

(c)
(d)

Figure 7: (a) ln(|S11(π, π, t)−S̄|) forWi = 0.3, (solid curve with scale on left axis)Wi = 0.6,

(dotted curve with scale on right axis) and Wi = 5.0, (dashed curve with scale on right axis).

The curves are approximately linear after some time giving an exponential rate of convergence

towards (negative slope) or divergence from (positive slope) S̄ for S11(π, π, t). The slope for

each Wi gives the exponential rate P (Wi). (b) The exponential rate P is plotted versus

Weissenberg number. Curve is 2ε−1
Wi

, as computed from the local solution of Sect. 4. (c)

ln(λ(t)) for each valueWi = 0.3, (solid curve)Wi = 0.6, (dotted curve) andWi = 5.0, (dashed

curve). Wi = 0.3 < Wi1 the second derivative at the hyperbolic point is not diverging and the

curve levels off as the peak value is approached. For Wi > Wi1 the curves are approximately

linear after some time, indicating an exponentially collapsing inner scale. The slope for each

Wi gives the collapse rate Q(Wi). (d) The inner scale Q is plotted versus the Weissenberg

number. The solid curve is −ε
Wi

, as computed from the local solution of Sect. 4.
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(c)(b)(a)

Figure 8: (a) Velocity u1(x, π, t) for Wi = 5.0, for t = 0, 1, ..., 10. The initial data,

u1(x, π, 0) = − sin x and u1 decreases in time (from t = 0 to t = 10) to a steady solu-

tion. (b) u2(π, y, t) for t = 1, 2, ..., 10 decreasing to a steady solution. (c) The strain rate at

the central hyperbolic point, α(t) = ∂u
∂x

(π, π, t) for Wi = 0.3 (solid), 0.6, (dashed) and 5.0,

(dotted).

(b)

(a)

Figure 9: (a) The converged strain rate α = ∂u
∂x

(π, π) at the central hyperbolic point. α at

steady state decreases as a function of Wi (b) “Effective” Weissenberg number ε = α Wi is

plotted as a function of Wi, from computed values of α, ε1 = 1/3 corresponds to Wi1 ≈ 0.5

and ε2 = 1/2 corresponds to Wi2 ≈ 0.9.

(b)(a)

Figure 10: (a) For S22 : a comparison of the constant term of the local solution, S̄22 = 1
1+2ε

,

with the “large time” of converged value of S22(π, π, t). (b) For S22 : a comparison of a possible

scaling exponent, 1
ε
, with the exponent, q, estimated from the Fourier spectra.
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(c)(b)(a)

Figure 11: (a) Stress S11(π, y) for t = 0, 1, ..., 10 decreasing in time. Initial data comes

from cusp solutions with Wi = 0.6 which is changed to Wi = 0.2 immediately. (b) Plot of

Ŝ11(π, k), the Fourier spectrum decays more rapidly in time indicating that the singularity

may be changing. The dotted line is for t = 0 and the solid line is for t = 10. (c) Plot of fit to

compute algebraic order of singularity, |y|q , with q = p − 1. Time progresses from the heavy

dotted line to the heavy solid line. Initially the fit p ∼ 1.7 (indicating a cusp) is dominant

but as time progresses the line p ∼ 6.5, is dominant (indicating an increase in smoothness of

the solution).
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(b)(a)

(d)(c)

Figure 12: (a) Plots of S11(π, y, t), with FENE-P penalization, increasing in time to cusp-like

solution, Wi = 0.6. (b) Comparison of tr S(π, π, t) with FENE-P penalization (dotted line)

and without the FENE-P penalization (solid line), Wi = 0.6. (c) Plots of S11(π, y, t), with

FENE-P penalization, increasing in time to cusp-like solution, Wi = 2.0. (d) Comparison of

tr S(π, π, t) with FENE-P penalization (dotted line) and without FENE-P penalization (solid

line), Wi = 2.0.
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