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LOCAL ENERGY DECAY FOR SOLUTIONS OF
MULTI-DIMENSIONAL ISOTROPIC SYMMETRIC HYPERBOLIC

SYSTEMS

THOMAS C. SIDERIS AND BECCA THOMASES

1. Introduction

Decay estimates for solutions to hyperbolic initial value problems play a central
role in the perturbative existence theory for nonlinear equations. Traditionally,
such estimates are proved either by considering the representation formula for the
solution or by using the Fourier transform. The generalized energy method offers
an alternative approach in problems which possess enough symmetry. The first
examples required Lorentz invariance [4], and more recently Galilean invariant ex-
amples from continuum mechanics have been successfully treated using this method
[5, 8, 9, 10]. The nonlinear analysis in these works relied on key linear estimates
which establish, in an ad hoc manner, local energy decay.

This paper attempts to provide a unified view of these local energy decay esti-
mates. The general framework is based on symmetric hyperbolic systems. Many
problems can be reduced to this form in combination with a system of constraint
equations. The constraints are essential because they rule out time-independent
solutions for which decay cannot hold. The other key ingredient is an isotropy
assumption on the symbol associated to the problem, guaranteeing the existence of
commuting vector fields. An additional artificial dissipation term can be included
at no extra cost.

The main result, appearing in section 4, shows that solutions decompose into
individual wave families, corresponding to the eigenstates of the symbol. Thanks
to the isotropy assumption, the characteristic cones are standard, and the com-
ponents related to the positive eigenvalues concentrate along these cones. This is
reminiscent of the one-dimensional picture where wave families propagate along
characteristics. The remaining components, associated to the nonpositive eigenval-
ues, actually decay uniformly in L2. In the anisotropic case, solutions still decay
uniformly in L2 in a region which is strictly interior to all characteristic cones, but
detailed information along the cones is lost.

Several examples appear in section 5. The prototypical example is the wave
equation. Maxwell’s equation offers a bit more complexity, and we also briefly
discuss the anisotropic case, for which only the weaker decay result holds. The main
examples come from continuum mechanics. We consider in detail the constrained
first order system that was derived in [10] in the study of the incompressible limit
in elastic solids. We obtain a sharp result which we then use to systematically
re-derive our previous estimates. The results obtained here will also be applied in
a forthcoming paper on nonlinear incompressible elastodynamics [11].

1



2 THOMAS C. SIDERIS AND BECCA THOMASES

2. Preliminaries

Let V and W be finite dimensional inner product spaces over R. We will be
concerned with V-valued strong solutions u : [0, T )× Rn → V of the linear system

(1a) L(∂)u− ν∆u = f with L(∂) = ∂t +A(∇), A(∇) = Ak∂k

together a system of constraints

(1b) B(∇)u = g with B(∇) = Bk∂k.

Here, we suppose that the coefficients are constant linear maps

Ak ∈ L(V,V), Bk ∈ L(V,W), k = 1, . . . , n

and
f : [0, T )× Rn → V, g : [0, T )× Rn →W

are functions whose required regularity will become clear below. The viscosity
parameter ν is nonnegative and constant.

The first assumption is the symmetry of the coefficients of (1a) as elements of
L(V,V)

(2) Ak = A∗k, k = 1, . . . , n.

Associated to the differential operators A(∇) and B(∇), define the symbols

A(ξ) = Akξ
k and B(ξ) = Bkξ

k, ξ ∈ Rn.

The second assumption is that

(3) kerB(ξ) ∩ kerA(ξ) = {0}, for every 0 6= ξ ∈ Rn.

The third assumption is that there exist smooth maps taking the identity to the
identity1 such that

V : SO(Rn) → SO(V) and W : SO(Rn) → L(W,W)

such that for every ξ ∈ Rn and R ∈ SO(Rn)

(4a) A(Rξ) = V (R)A(ξ)V (R)∗

and

(4b) B(Rξ) = W (R)B(ξ)V (R)∗.

We will see momentarily that these assumptions imply that, in a certain sense, the
system is isotropic and that there exists a useful collection of commuting vector
fields. Examples will be given in Section 5.

3. Consequences of the assumptions

Isospectral property.

Lemma 1. The spectrum of A(ω) is real and independent of ω ∈ Sn−1.

1In the applications they will be homomorphisms.
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Proof. The symmetry of the map A(ω), from (2), implies that its eigenvalues are
real.

Suppose that ω and ω′ are distinct points in Sn−1. Select υ ∈ Sn−1 orthogonal to
ω (in the standard inner product on Rn) so that ω, ω′, and υ are linearly dependent.
Define the anti-symmetric map S = ω⊗ υ− υ⊗ω. Then R(t) = exp tS determines
a 2π-periodic one-parameter family in SO(Rn) such that R(θ)ω = ω′, for some
θ ∈ (0, 2π). It follows from (4a) that

A(R(t)ω) = V (R(t))A(ω)V (R(t))∗.

Setting t = θ, we find that A(ω) and A(ω′) are similar, and so they have the same
spectrum. �

Let us denote the spectrum of an operator A by σ(A).

Corollary 1. The nonzero eigenvalues of A(ω) occur in plus/minus pairs.

Proof. Lemma 1 shows that σ(A(ω)) = σ(A(−ω)) = σ(−A(ω)). On the other
hand, we have in general that σ(−A(ω)) = −σ(A(ω)). �

Invariance property.

Lemma 2. For any smooth function u : Rn → V and any R ∈ SO(Rn), the
following hold

A(∇)[V (R)u(R∗x)] = V (R)[A(∇)u](R∗x),(5a)

B(∇)[V (R)u(R∗x)] = W (R)[B(∇)u](R∗x),(5b)

∆[V (R)u(R∗x)] = V (R)[∆u](R∗x).(5c)

Proof. These equations follow immediately from the chain rule and, in the first two
cases, the assumptions (4a),(4b). �

Vector fields. Let {ei}n
i=1 be the standard basis on Rn, and define the anti-

symmetric maps

(6) Sij = ei ⊗ ej − ej ⊗ ei 1 ≤ i < j ≤ n.

Then Rij(τ) = exp(τSij) is a smooth one-parameter family in SO(Rn). It is natural
to consider the vector fields arising as the infinitesimal generators of the invariants

d

dτ
V (Rij(τ))u(Rij(τ)∗x)|τ=0 = Ωiju(x) + Ziju(x) ≡ Ω̃iju(x),

where Ωij = xi∂j − xj∂i are the standard angular momentum operators (note that
we have used the fact that V (I) = I) and

Zij =
d

dτ
V (Rij(τ))|τ=0 ∈ L(V,V).

Further, we define

Yij =
d

dτ
W (Rij(τ))|τ=0 ∈ L(W,W).

We shall also make use of the scaling vector field

S = t∂t + r∂r.
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Commutation properties.

Lemma 3. If u is a sufficiently regular solution to (1a),(1b), then

(7a) [L(∂)− ν∆]Ω̃iju = Ω̃ijf

and

(7b) B(∇)Ω̃iju = (Ωij + Yij)g.

In addition, for any positive integer p,

(8a) [L(∂)− ν∆]Spu = (S + 1)pf −
p−1∑
j=0

(−1)p−j

(
p

j

)
ν∆Sju,

and

(8b) B(∇)Spu = (S + 1)pg.

Proof. It follows from (5a), (5c) that

[L(∂)− ν∆][V (Rij(τ))u(t, Rij(τ)∗x)] = V (Rij(τ))f(t, Rij(τ)∗x)

and from (5b) that

B(∇)[V (Rij(τ))u(t, Rij(τ)∗x)] = W (Rij(τ))g(t, Rij(τ)∗x).

The relations (7a), (7b) follow from these by taking the derivative in τ and evalu-
ating at τ = 0 (and using V (I) = I, W (I) = I).

It is easily seen that

L(∂)S = (S + 1)L(∂) and ∆S = (S + 2)∆,

and so by induction

L(∂)Sp = (S + 1)pL(∂) and ∆Sp = (S + 2)p∆.

Therefore, using the binomial theorem, we have

[L(∂)− ν∆]Spu = [(S + 1)pL(∂)− (S + 2)pν∆]u

= (S + 1)pf − [(S + 2)p − (S + 1)p]ν∆u

= (S + 1)pf −
p−1∑
j=0

(−1)p−j

(
p

j

)
(S + 2)jν∆u

= (S + 1)pf −
p−1∑
j=0

(−1)p−j

(
p

j

)
ν∆Sju.

This proves (8a).
The statement (8b) follows easily from the fact that B(∇)S = (S+1)B(∇). �

Spectral projections. For each ω ∈ Sn−1, let Pβ(ω) be the orthogonal projection
of V onto the eigenspace of A(ω) corresponding to the eigenvalue λβ .

Lemma 4. The orthogonal projections Pβ(ω) are smooth functions of ω = x/|x|
on Sn−1 which satisfy the commutation property [Ω̃ij ,Pβ(ω)] = 0.
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Proof. The smoothness of Pβ(ω) follows from the formula

(9) Pβ(ω) =
1

2πi

∫
|ζ−λβ |=ρ

(ζI −A(ω))−1dζ,

where ρ is chosen so that |λβ − λβ′ | > ρ for β 6= β′.
We have from (4a) and (9) that

V (R)Pβ(R∗ω) = Pβ(ω)V (R),

for every R ∈ SO(Rn). Therefore, we obtain

Ω̃ij [Pβ(ω)u(x)] =
d

dτ
[V (Rij(τ))Pβ(Rij(τ)∗ω)u(Rij(τ)∗x)]|τ=0

=
d

dτ
[Pβ(ω)V (Rij(τ))u(Rij(τ)∗x)]|τ=0

= Pβ(ω)Ω̃iju(x).

�

Plane waves. Consider a plane wave solution of the operator L(∂):

u(t, x) = φ(λβt− 〈ω, x〉)ψβ(ω),

in which ψβ(ω) is an eigenvector of A(ω) for λβ . Our assumptions imply that the
propagation speed λβ is independent of the direction of propagation ω and that a
rotation R of the propagation direction produces a corresponding rotation V (R)
of the eigenspace of the polarization vector ψβ(ω). In this sense, the system is
isotropic.

4. Main result

Throughout the remainder of the paper, we regard the projections {Pβ(ω)} onto
the eigenspaces of A(ω) as homogeneous functions of degree zero on Rn, by setting
ω = x/|x|.

Theorem 1. Let n ≥ 2 and j = 1, . . . , n. Assume that conditions (2) and (3)
hold. There are positive constants α and C, depending on the coefficients Ak and
Bk, such that all sufficiently regular solutions of (1a), (1b) satisfy the estimate

(10) αt‖∂ju‖L2({r≤αt},V) + (νt)1/2‖∇u‖L2(Rn,V) + νt‖∆u‖L2(Rn,V)

≤ C‖u‖L2(Rn,V) + ‖Su‖L2(Rn,V) + t‖f‖L2(Rn,V) + t‖g‖L2(Rn,W).

If, in addition, conditions (4a), (4b) hold, then

(11) ‖(λβt− r)Pβ∂ju‖L2({r≥αt},V)

≤ C
[
‖Ω̃u‖L2(Rn,V) + ‖u‖L2(Rn,V)

]
+ ‖Su‖L2(Rn,V) + t‖f‖L2(Rn,V),

and

(12) ‖rB(ω)∂ju‖L2({r≥αt},W) ≤ C
[
‖Ω̃u‖L2(Rn,V) + ‖u‖L2(Rn,V)

]
+ ‖rg‖L2(Rn,W).

The proof will be given below, but first we isolate the key step.
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Lemma 5. Let n ≥ 2. Suppose that conditions (2) and (3) hold. All sufficiently
regular solutions of (1a) satisfy the estimate

‖(tA(∇)− r∂r)u‖2L2(Rn,V) + (n− 2)νt‖∇u‖2L2(Rn,V) + (νt)2‖∆u‖2L2(Rn,V)

≤ ‖Su− tf‖2L2(Rn,V).

Proof of Lemma 5. Here and later on we may assume that solutions are smooth
and that they decay rapidly at infinity. A density argument can then be used to
pass to solutions for which the norms appearing are finite.

Using the definition of S, we may rewrite (1a) as

tA(∇)u− r∂ru− νt∆u = −Su+ tf.

Taking the L2-norm of both sides, this immediately gives

‖tA(∇)u− r∂ru‖2L2(Rn,V) + 2〈r∂ru− tA(∇)u, νt∆u〉L2(Rn,V) + ‖νt∆u‖2L2(Rn,V)

≤ ‖Su− tf‖2L2(Rn,V).

Thanks to the symmetry of the coefficient matrices, we find using integration by
parts that

〈A(∇)u,∆u〉L2(Rn,V) = 〈Ak∂ku,∆u〉L2(Rn,V) = 0.

Again using integration by parts, we can rewrite the remaining cross term as follows:

2〈r∂ru, νt∆u〉L2(Rn,V) =2νt〈xj∂ju,∆u〉L2(Rn,V)

=− 2νt〈xj∂j∂ku, ∂ku〉L2(Rn,V) − 2νt〈∂ku, ∂ku〉L2(Rn,V)

=nνt〈∂ku, ∂ku〉L2(Rn,V) − 2νt〈∂ku, ∂ku〉L2(Rn,V)

=(n− 2)νt〈∂ku, ∂ku〉L2(Rn,V)

=(n− 2)νt‖∇u‖2L2(Rn,V).

�

We now continue with the proof of Theorem 1.

Proof of (10). Let n ≥ 2, and suppose that (2) and (3) hold.
By (3), the expression |A(ω)u|2V+|B(ω)u|2W vanishes if and only if u = 0. In other

words, the map A(ω)2 +B(ω)∗B(ω) in L(V,V) is positive definite and symmetric,
by (2). If we let

(3α)2 = min{λ : λ ∈ σ(A(ω)2 +B(ω)∗B(ω)) for some ω ∈ Sn−1},

then
(3α)2|u|2V ≤ |A(ω)u|2V + |B(ω)u|2W ,

for all u ∈ V and ω ∈ Sn−1. Therefore, using the Fourier transform, we obtain

(13) 3α‖∇u‖L2(Rn,V) ≤ ‖A(∇)u‖L2(Rn,V) + ‖B(∇)u‖L2(Rn,W),

for all sufficiently regular functions u : Rn → V.
Introduce a cut-off function ζ ∈ C∞(R) with 0 ≤ ζ ≤ 1 and

ζ(s) =

{
1, if s ≤ 1
0, if s ≥ 2.

Fixing α as in (13), define ηα(t, r) = ζ(r/(αt)).
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Let u solve (1a), (1b), and set v = ηαu, so that v is supported in {r ≤ 2αt}. By
(13), we obtain

3αt‖∇v‖L2(Rn,V) ≤ t‖A(∇)v‖L2(Rn,V) + t‖B(∇)v‖L2(Rn,V)

≤ ‖(tA(∇)− r∂r)v‖L2(Rn,V) + 2αt‖∇v‖L2(Rn,V) + t‖B(∇)v‖L2(Rn,V).

This yields the bound

(14) αt‖∇v‖L2(Rn,V) ≤ ‖(tA(∇)− r∂r)v‖L2(Rn,V) + t‖B(∇)v‖L2(Rn,V).

Since (αt+ r)|∂jηα| ≤ C, we have from (14)

αt‖∂ju‖L2({r≤αt},V)

≤ αt‖ηα∂ju‖L2(Rn,V)

≤ αt‖∂jv‖L2(Rn,V) + C‖u‖L2(Rn,V)

≤ ‖(tA(∇)− r∂r)v‖L2(Rn,V) + t‖B(∇)v‖L2(Rn,V) + C‖u‖L2(Rn,V)

≤ ‖(tA(∇)− r∂r)u‖L2(Rn,V) + t‖B(∇)u‖L2(Rn,V) + C‖u‖L2(Rn,V).

The dependence of the constant C on the coefficients occurs upon differentiation of
the cut-off function in the last inequality.

The estimate (10) now follows by an application of Lemma 5 and (1b). �

Proof of (11). Let n ≥ 2 and suppose that (2), (3), and (4a), (4b) hold.
Using the orthogonal projections and the vector fields Ωij defined in Section 3,

we have the pointwise estimate

|(λβt− r)Pβ(ω)∂ju(t, x)|V
= |Pβ(ω)(tA(ω)− rI)∂ju(t, x)|V
≤ |(tA(ω)− rI)∂ju(t, x)|V
= |(tAk − rωkI)ωk∂ju(t, x)|V

= |(tAk − rωkI)(ωj∂k +
1
r
Ωkj)u(t, x)|V

=
∣∣∣∣[ωj(tA(∇)− r∂r) + (tAk − rωkI)

1
r
Ωkj

]
u(t, x)

∣∣∣∣
V

≤ |(tA(∇)− r∂r)u(t, x)|V + C

∣∣∣∣ tr + 1
∣∣∣∣ |Ωu(t, x)|V .

The inequality (11) follows from this after an integration over the region {r ≥ αt}
and an application of Lemma 5.

�

Note that away from the origin, the symbol is used with the physical variables
in proving this last result.

Proof of (12). Let u solve (1b). As above, we have

rB(ω)∂ju(t, x) = Bkx
k∂ju(t, x)

= Bk[Ωkj + xj∂k]u(t, x)

= BkΩkju(t, x) + xjB(∇)u(t, x),

from which (12) follows immediately. �
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Time derivatives. Time derivatives can also be estimated using the pde, however
the quantity t+r appears as a weight with the inhomogeneity in the exterior region.

Corollary 2. Let n ≥ 2 and j = 1, . . . , n. Assume that conditions (2) and (3)
hold. There are positive constants α and C, depending on the coefficients Ak and
Bk, such that all sufficiently regular solutions of (1a), (1b) satisfy the estimate

(15) αt‖∂tu‖L2({r≤αt},V)

≤ C‖u‖L2(Rn,V) + ‖Su‖L2(Rn,V) + t‖f‖L2(Rn,V) + t‖g‖L2(Rn,W).

If, in addition, conditions (4a), (4b) hold and also ν = 0, then

(16) ‖(λβt− r)Pβ∂tu‖L2({r≥αt},V)

≤ C
[
‖Ω̃u‖L2(Rn,V) + ‖u‖L2(Rn,V)

]
+ ‖Su‖L2(Rn,V) + ‖(t+ r)f‖L2(Rn,V),

Proof. The inequality (15) is easily shown by rewriting (1a) as

∂tu = −A(∇)u+ ν∆u+ f,

and then applying (10).
Now let ν = 0. Noticing that

∂tu = −A(∇)u+ f = A(ω)∂ru+O(
1
r
|Ωu|) + f,

we now get (16) from (11). �

Higher-order estimates. Let Γ = (Γ1, . . . ,Γq) denote our list of q = n+1+n(n−
1)/2 vector fields ∂j , S, Ω̃ij . Let a = (a1, . . . , am) be an m-tuple in {1, . . . , q}. We
denote by Γa the mth-order operator Γa1 · · ·Γam . From Lemma 3, it follows that
if u is a sufficiently regular solution of (1a), (1b), then Γau satisfies a system of
the same type. Although we will not write the estimates down explicitly, it is clear
that Theorem 1 can be applied to obtain weighted estimates for the higher-order
derivatives ∂jΓau.

The utility of the estimates resulting from Theorem 1 (and its higher-order ver-
sion) depends on being able to control norms of form

∑
|a|≤` ‖Γau(t, ·)‖L2(Rn,V).

This can be accomplished using the standard energy method thanks to the symme-
try of the coefficients (2) and the commutation properties from Lemma 3.

5. Examples

In the following examples, the artificial viscosity term has been dropped, since
the physically interesting cases include more complicated dissipative mechanisms
that do not fall within the framework of our result.

Wave equation. Let’s look a simple test case, namely the wave equation for φ :
R× Rn → R:

∂2
t φ− c2∆φ = h.

The first step is to rewrite the problem in the form (1a), (1b). The setup uses
V = Rn+1 with the inner product diag(c−2, 1, . . . , 1). Also, let {ea}n

a=0 be the
standard basis on V.

The wave equation can be written in first order form (1a) (with ν = 0) in the
standard way:

u = uaea = ∂tφe0 + ∂kφek, f = he0,
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and
−Ak = c2e0 ⊗ ek + ek ⊗ e0, k = 1, . . . , n.

Notice that the symmetry condition (2) holds in the chosen inner product.
Let ω = (ωk) ∈ Sn−1, and set ω̂ = ωkek ∈ Rn+1. Then

A(ω) = −(c2e0 ⊗ ω̂ + ω̂ ⊗ e0).

Given R ∈ SO(Rn), we define V (R) ∈ SO(V) by V (R)e0 = e0 and V (R)ei = Rei,
i 6= 0. Then

A(Rω) = −(c2e0 ⊗ V (R)ω̂ + V (R)ω̂ ⊗ e0) = V (R)A(ω)V (R)∗,

and we have verified (4a).
In coordinates, the constraints are simply

∂`u
m − ∂mu

` = 0, 1 ≤ ` < m ≤ n.

In order to express this in the form (1b), with g = 0, we use (6) in defining

W = span{Sij : 1 ≤ i, j ≤ n} ⊂ L(V,V).

and then define Bk ∈ L(V,W), k = 1, . . . , n, by

u 7→ Bku = 1
2

∑
`,m

〈u, S`mek〉VS`m.

In particular, we have

(17) B(ω)u = 1
2

∑
`,m

〈u, S`mω̂〉VS`m,

and therefore,

B(Rω)V (R)u = 1
2

∑
`,m

〈V (R)u, S`mV (R)ω̂〉VS`m

= 1
2

∑
`,m

〈u, V (R)∗S`mV (R)ω̂〉VS`m.

Since V (R)∗S`mV (R) is antisymmetric, it lies in the span of the Sij , and so we
see that the last expression has the form W (R)B(ω)u, for some W (R) ∈ L(W,W).
This verifies (4b).

Clearly ψ±(ω) = (ce0 ∓ ω̂)/
√
c2 + 1 serve as unit eigenvectors of A(ω) with

eigenvalues λ± = ±c. The remaining eigenvalues are all zero, and

kerA(ω) = {e0, ω̂}⊥.
On the other hand, we have from (17) that kerB(ω) = span{e0, ω̂} = kerA(ω)⊥.
Having thus verified the hypotheses of Theorem 1, using (11), we get bounds for

(18a) ‖(r ∓ ct)〈ψ±(ω), ∂ju〉V‖L2({r>αt}),

and from (10) we have

(18b) αt‖∇u‖L2({r<αt}).

In terms of the original variable, we get from (18a) an estimate for

‖(r ± ct)(c−1∂j∂tφ± ∂j∂rφ)‖L2({r>αt}),

but since

∂i = ωi∂r −
1
r

n∑
j=1

ωjΩij ,
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this implies a bound for

‖(r ± ct)(ωic
−1∂t ± ∂i)∂jφ)‖L2({r>αt}).

Using (18b), this, in turn, implies bounds for

‖(r ± ct)(ωic
−1∂t ± ∂i)∂jφ)‖L2(Rn).

Bounds of this type were implicitly given in [12] (see Lemma 5.1). From here, we
easily recover the weaker estimates for

‖(r − ct)∂t∂jφ‖L2(Rn) and ‖(r − ct)∂i∂jφ‖L2(Rn)

orginally derived in [5]. Weighted space-time estimates for the special derivatives
(ωic

−1∂t + ∂i)φ have been derived by Alinhac (even for the curved wave equation)
using what he calls the ghost weighted energy method, [1].

Maxwell’s equation. Maxwell’s system for an electromagnetic field (E,H) ∈
R3 × R3 takes the form

ε∂tE − c∇∧H = J

µ∂tH + c∇∧ E = 0

with the constraints

∇ · εE = ρ

∇ · µH = 0.

The current density J and the charge density ρ are regarded as known inhomo-
geneities. The (scalar) parameters are the light speed c, the permittivity ε, and the
magnetic permeability µ.

Taking V = R3 × R3 with the inner product

(19) 〈(E,H), (E′,H ′)〉V = 〈εE,E′〉R3 + 〈µH,H ′〉R3 ,

the system verifies the assumptions of Theorem 1, however we shall not go through
the details of the formalism in this case.

In this case, the symbol is given by

A(ω)u = (−(c/ε) ω ∧H, (c/µ) ω ∧ E).

The nonzero eigenvalues coincide with the propagation speeds λ± = ±λ = ±(c/
√
εµ).

Here and later on, it will be convenient to use the notation

(20) P (ω) = ω ⊗ ω, Q(ω) = I − ω ⊗ ω.

The orthogonal projections onto the eigenspaces for λ± are then

P±(ω)u = (1/2λ2)(A(ω)2 ± λA(ω))u

= (1/2)(Q(ω)E ∓
√
µ/ε ω ∧H,Q(ω)H ±

√
ε/µ ω ∧ E),

and the projection onto the zero eigenspace is

P0(ω)(E,H) = (P (ω)E,P (ω)H).

Application of Theorem 1 gives a bound for

‖(λt−r)[
√
ε Q(ω)∂jE−

√
µ ω∧∂jH]‖L2 +µ‖(λt−r)[√µ Q(ω)∂jH+

√
ε ω∧∂jE]‖L2 .

The remaining components decay uniformly in L2, see also [1, 2, 3, 7].
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Anisotropic Maxwell Equation. In the anisotropic case, where the permittivity
has the form ε = diag(ε1, ε2, ε3), the conditions (2) and (3) hold with the obvious
modification of the inner product (19). However, the conditions (4a) and (4b) fail.
Still, the interior estimate (10) of Theorem 1 holds giving a uniform bound for

t
(
‖
√
ε ∂jE‖L2(r<ct/2) + ‖√µ ∂jH‖L2(r<ct/2)

)
,

as well as for higher derivatives. Thus, via the Sobolev lemma, we obtain decay in
L∞(r < t/2) at a rate of t−1. This improves slightly upon the result [6] where it
was shown that solutions decay uniformly in L∞(R3) at a rate of t−1/2.

Linearized elasticity. The motion of an elastic body is typically described by a
one-parameter family of orientation preserving deformations x(t,X) taking a point
X in the reference configuration to its position x at time t. The reference map is
the inverse X(t, x). For the case of homogeneous isotropic materials, a first order
system was derived in [10] for the couple (H(t, x), v(t, x), ρ(t, x)) where

Hi
`(t, x) = ∂`X

i(t, x), v(t, x) = Dtx(t,X)|X=X(t,x), ρ(t, x) = detH(t, x).

Here H is the inverse of the deformation gradient, v is the velocity, and ρ is (pro-
portional to) the density. The natural vector space to describe the motion in these
variables is

V = (R3 ⊗ R3)× R3 × R.
The linearized equations of motion take the form

∂tH +∇v = fH(21a)

∂tv +∇ · TH + µ2∇ρ = fv(21b)

∂tρ+∇ · v = fρ,(21c)

in which T ∈ L(R3 ⊗ R3,R3 ⊗ R3) is defined by

(21d) TH = c22H + (c21 − c22) tr H I,

and
(∇ · TH)i = ∂`(TH)i

`.

The material parameters are assumed to satisfy c1 > c2 > 0 and µ > 0. As a
consequence, the mapping T is positive definite and symmetric on R3 ⊗ R3, with
the standard inner product, and T induces a new inner product on R3⊗R3 through

〈H, H̄〉T = 〈TH, H̄〉R3⊗R3 = tr [(TH)H̄∗].

The inner product on V is defined by

〈u, ū〉V = 〈(H, v, ρ), (H̄, v̄, ρ̄)〉V
= 〈H, H̄〉T + 〈v, v̄〉R3 + µ2ρρ̄.

The equations (21a)-(21c) are equivalent to (1a) with the symbol A(ω) ∈ L(V,V)
defined by

(22) A(ω)u = A(ω)(H, v, ρ) = (v ⊗ ω, THω + µ2ρω, 〈v, ω〉R3).

The inhomogeneity is f = (fH , fv, fρ). Thus defined, the symbol A(ω) (and hence
also each Ak) satisfies the symmetry condition (2).

The constraint equations are

(23) ∂mH
i
` − ∂`H

i
m = 0, and ∇(ρ− tr H) = gρ.

The second constraint is simply the linearization of the relation ρ = detH.
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The constraint system can be formulated as in (1b) using

W = (R3 ⊗ R3)× R3 × R3.

Using the maps (6), the symbol B(ω) ∈ L(V,W) then given by

B(ω)u = B(ω)(H, v, ρ) =
∑

`,m,n

〈H, en⊗S`mω〉R3⊗R3 (S`m, en, 0)+(ρ− tr H)(0, 0, ω).

Define the map V : SO(R3) → L(V,V) by

V (R)u = V (R)(H, v, ρ) = (RHR∗, Rv, ρ), R ∈ SO(R3), u ∈ V.

It is straightforward to verify that, in fact, V : SO(R3) → SO(V).
The map V also satisfies the conditions (4a), (4b). For example, let us verify

(4b). By the definitions

B(Rω)V (R)u =
∑

`,m,n

〈RHR∗, en ⊗ S`mRω〉R3⊗R3 (S`m, en, 0)

+ (ρ− tr RHR∗)(0, 0, Rω)

=
∑

`,m,n

〈H,R∗en ⊗R∗S`mRω〉R3⊗R3 (S`m, en, 0)

+ (ρ− tr H)(0, 0, Rω)

Since R∗S`mR is antisymmetric, we see that the last expression above depends
linearly on the coordinates of B(ω)u. This implies the existence of a map W (R) ∈
L(W,W) for which (4b) is valid.

We now verify (3) by showing that that kerA(ω) = kerB(ω)⊥. We have that

kerA(ω) = {u = (H, v, ρ) : THω + µ2ρω = 0, v = 0}

and, using the notation (20) again,

kerB(ω) = {u = (H, v, ρ) : HS`mω = 0, `,m = 1, 2, 3, ρ = tr H}
= {u = (H, v, ρ) : H = HP (ω), ρ = tr H}.

Take u = (H, v, ρ) ∈ kerA(ω) and ū = (H̄, v̄, ρ̄) ∈ kerB(ω). Then

〈u, ū〉V = 〈H, H̄〉T + µ2ρρ̄

= 〈H, H̄P (ω)〉T + µ2ρρ̄

= 〈TH, H̄P (ω)〉R3⊗R3 + µ2ρρ̄

= 〈THω, H̄ω〉R3 + µ2ρρ̄

= µ2ρ[−〈ω, H̄ω〉R3 + ρ̄]

= µ2ρ[− tr H̄P (ω) + ρ̄]

= µ2ρ[− tr H̄ + ρ̄]
= 0.

This shows that kerA(ω) ⊂ kerB(ω)⊥.
In the other direction, suppose that u = (H, v, ρ) ∈ kerB(ω)⊥. Note that if

ū = (H̄, v̄, ρ̄) = (THP (ω) + µ2ρP (ω), v, tr THP (ω) + µ2ρ),
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then ū ∈ kerB(ω). So we have

0 = 〈u, ū〉V
= 〈TH, THP (ω) + µ2ρP (ω)〉R3⊗R3 + 〈v, v〉R3 + µ2ρ( tr THP (ω) + µ2ρ)

= |THω|2R3 + 2µ2ρ〈THω, ω〉R3 + µ4ρ2 + |v|2R3

= |THω + µ2ρω|2R3 + |v|2R3 ,

and thus, u ∈ kerA(ω).
We have shown that the system (21a),(21b),(21c) can be rewritten so as to satisfy

the assumptions of Theorem 1.
The nonzero eigenvalues of A(ω), representing slow and fast propagation speeds,

are
λ±s = ±λs = ±c2, and λ±f = ±λf = ±(c21 + µ2)1/2.

The nonzero eigenspaces form a 6 dimensional subspace of V. Using (20) again, the
corresponding orthogonal projections are

P±s (ω)u =
1
2

(
Q(ω)HP (ω)± λ−1

s Q(ω)v ⊗ ω,±λsQ(ω)Hω +Q(ω)v, 0
)
,

and

P±f (ω)u =〈u, z±(ω)〉V z±(ω), z±(ω) =
1√
2λf

(P (ω),±λfω, 1)

We let P0(ω) be the remaining orthogonal projection onto kerA(ω). Theorem 1
ensures that the quanties

‖(λst∓ r)P±s ∂ju‖L2(R3,V),(24a)

‖(λf t∓ r)P±f ∂ju‖L2(R3,V),(24b)

‖(t+ r)P0∂ju‖L2(R3,V),(24c)

are bounded by

(25) C[‖Γu‖L2(R3,V) + ‖u‖L2(R3,V) + t‖f‖L2(R3,V) + ‖(t+ r)g‖L2(R3,V)].

We do not attempt to make explicit the dependence of the constant C on the
material parameters. All components of the solution decay uniformly in L2 except
for those in the 3 dimensional subspace corresponding to the positive eigenvalues.

These estimates can be unravelled to a less precise, but still useful form. Set

Ps(ω) = P+
s (ω) + P−s (ω), and Pf (ω) = P+

f (ω) + P−f (ω),

and notice that
Ps(ω)u = (Q(ω)HP (ω), Q(ω)v, 0),

and

Pf (ω)u = 〈u, y(ω)〉V y(ω) + (0, P (ω)v, 0), y(ω) =
1
λ f

(P (ω), 0, 1).

Then by (24b) and (24a), we obtain that the quantities

(26a) ‖(λst− r)Ps∂ju‖2L2(R3,V)

= ‖(λst− r)Q∂jHP‖2L2(R3,R3⊗R3) + ‖(λst− r)Q∂jv‖2L2(R3,R3),
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and

(26b) ‖(λf t− r)Pf∂ju‖2L2(R3,V)

= ‖(λf t− r)〈∂ju, y〉V‖2L2(R3) + ‖(λf t− r)P∂jv‖2L2(R3,R3),

are also bounded by the square of (25). In particular, we see that the longitudinal
and transverse components of the velocity v concentrate along the fast and slow
cones, respectively.

Further simplification comes from taking into account the component of u in the
kernel. We have

|P0(ω)u|2V = |(I − Pf (ω)− Ps(ω))u|2V(27)

= |u|2V − |Pf (ω)u|2V − |Ps(ω)u|2V
= |H|2T + |v|2R3 + µ2ρ2 − (〈u, y(ω)〉2V + |P (ω)v|2R3)

− (|Q(ω)HP (ω)|2T + |Q(ω)v|2R3)

= c22|HQ(ω)|2R3⊗R3 + [c22(c
2
1 − c22)/λ

2
f ][ tr HQ(ω)]2

+ [µ2(c21 − c22)/λ
2
f ][ tr H − ρ]2 + [c22µ

2/λ2
f ][ tr HP (ω)− ρ]2.

Now, since we have that

λfρ = 〈y(ω), u〉V + (c21/λf )(ρ− tr HP (ω))− [(c21 − c22)/λf ] tr HQ(ω),

it follows from (27), (24c), and(26b) that

(28) ‖(λf t− r)λf∂jρ‖L2(R3)

is bounded by (25).
Next, writing

tr HP (ω) = ρ+ ( tr HP (ω)− ρ),
we deduce from (28), (27), and (24c) that

(29) ‖(λf t− r)λ−1
f tr ∂jHP‖L2(R3)

is bounded by (25). Going back to (26b), we find that the same bound holds for
tr ∂jH.

Since

P (ω)H = P (ω)HP (ω) + P (ω)HQ(ω) = ( tr HP (ω))P (ω) + P (ω)HQ(ω),

we have
|P (ω)H|2R3⊗R3 = ( tr HP (ω))2 + |P (ω)HQ(ω)|2R3⊗R3 ,

and therefore from (28), (27), and (24c),

‖(λf t− r)λ−1
f P∂jH‖L2(R3,R3⊗R3)

is bounded by (25).
Finally, since

|Q(ω)H|2R3⊗R3 = |Q(ω)HP (ω)|2R3⊗R3 + |Q(ω)HQ(ω)|2R3⊗R3 ,

we find from (27), (26a), and (24c) that

‖(λst− r)Q∂jH‖L2(R3,R3⊗R3)

is bounded by (25).
We summarize these results in
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Corollary 3. Let u be a C1 solution of (21a)-(21c), (23). Then the quantity

‖(λst− r)(Q∂jH,Q∂jv, 0)‖L2(R3,V) + ‖(λf t− r)(λ−1
f P∂jH,P∂jv, ρ)‖L2(R3,V)

is bounded by (25).

With a bit more care, one can show that the constant in (25) grows linearly with
λf . This estimate was used in [10] in the study of the incompressible limit, µ→ 0.
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