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1  | INTRODUC TION

Reef‐building corals are experiencing unprecedented declines due 
to changing environmental conditions, such as rising sea surface 
temperatures that lead to coral bleaching, and ocean acidification 

that impairs calcification (Andersson & Gledhill, 2012; Hoegh‐
Guldberg et al., 2007). Climate change has also indirectly led to in‐
creasingly prevalent coral diseases, which are often attributed to 
the increased abundance and virulence of bacterial pathogens (Ben‐
Haim, 2003; Maynard et al., 2015; Pruzzo et al., 2010). In the face of 
these stressors, corals are left with few options but to move, adapt, 
or die. A number of studies have documented corals’ capacities to 
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Abstract
Climate change threatens organisms in a variety of interactive ways that requires 
simultaneous adaptation of multiple traits. Predicting evolutionary responses requires 
an understanding of the potential for interactions among stressors and the genetic 
variance and covariance among fitness‐related traits that may reinforce or constrain 
an adaptive response. Here we investigate the capacity of Acropora millepora, a 
reef‐building coral, to adapt to multiple environmental stressors: rising sea surface 
temperature, ocean acidification, and increased prevalence of infectious diseases. 
We measured growth rates (weight gain), coral color (a proxy for Symbiodiniaceae 
density), and survival, in addition to nine physiological indicators of coral and algal 
health in 40 coral genets exposed to each of these three stressors singly and com‐
bined. Individual stressors resulted in predicted responses (e.g., corals developed le‐
sions after bacterial challenge and bleached under thermal stress). However, corals 
did not suffer substantially more when all three stressors were combined. Nor were 
trade‐offs observed between tolerances to different stressors; instead, individuals 
performing well under one stressor also tended to perform well under every other 
stressor. An analysis of genetic correlations between traits revealed positive covari‐
ances, suggesting that selection to multiple stressors will reinforce rather than con‐
strain the simultaneous evolution of traits related to holobiont health (e.g., weight 
gain and algal density). These findings support the potential for rapid coral adapta‐
tion under climate change and emphasize the importance of accounting for corals’ 
adaptive capacity when predicting the future of coral reefs.
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expand their ranges to more suitable habitats (Makino et al., 2014; 
Yamano, Sugihara, & Nomura, 2011). Models that simulate future 
coral cover under different climactic scenarios increasingly include 
estimates of adaptive capacity, such as simulated directional genetic 
selection (Logan, Dunne, Eakin, & Donner, 2014) or predictions of 
the spread and persistence of alleles conferring thermal tolerance 
(Bay, Rose, Logan, & Palumbi, 2017; Matz, Treml, Aglyamova, & Bay, 
2018). These studies primarily focus on a single environmental chal‐
lenge (thermal stress) and do not predict interactive effects among 
simultaneous stressors or account for genetic associations between 
multiple tolerance traits.

Adaptation to rapidly changing conditions requires standing phe‐
notypic variation upon which selection can act, provided that this 
heterogeneity has a genetic basis (i.e., that it is heritable). Although a 
large and ever‐growing number of studies examine mean responses 
of coral species to individual effects of climate change (Marubini, 
Ferrier‐Pages, & Cuif, 2003; Okazaki et al., 2017), few have mea‐
sured standing genetic variation and heritability of these responses 
(Dixon et al., 2015; Kenkel, Setta, & Matz, 2015; van Oppen, Császár, 
Berkelmans, Ralph, & Frankham, 2010; Vollmer & Kline, 2008; Wang 
et al., 2009) and even fewer have assessed variation in multiple stress 
tolerance phenotypes (Shaw, Carpenter, Lantz, & Edmunds, 2016). 
Corals exhibit remarkable variation in stress tolerance traits upon 
which selection could theoretically act (Baums et al., 2013; Dixon 
et al., 2015; Wright et al., 2017). However, univariate analyses as‐
sessing a single stress‐response phenotype, such as mortality under 
bacterial challenge or bleaching under thermal stress, fail to fully de‐
scribe the genetic basis of the phenotypes under selection. Selection 
is an inherently multivariate process that acts simultaneously on sets 
of functionally related traits. Indeed, centuries of animal and plant 
breeding have demonstrated that selection on one trait will often re‐
sult in changes in another correlated trait (Rauw, Kanis, Noordhuizen‐
Stassen, & Grommers, 1998; Zhao, Atlin, Bastiaans, & Spiertz, 2006). 
Commercial demand for multiple‐stress‐tolerant crops has driven 
extensive research on stressor combinations in plants (Pandey, 
Irulappan, Bagavathiannan, & Senthil‐Kumar, 2017). In these plants, 
combinations of abiotic stressors and pathogens result in either re‐
sistance or susceptibility to disease, depending on the intensity or 
duration of stress (Pandey, Ramegowda, & Senthil‐Kumar, 2015). 
Positive associations between different stressors can be attributed 
to shared pathways. For example, some biotic and abiotic stressors 
stimulate the same defense‐related endogenous signals (Mithöfer, 
Schulze, & Boland, 2004). Alternatively, stress responses may com‐
pete for demands on energetic reserves, resulting in a negative asso‐
ciation in tolerances, or a trade‐off (Sokolova, 2013).

The prospects for future reef‐building corals are exceedingly 
pessimistic without rapid adaptation to a number of simultaneous 
stressors. This capacity for adaptation is determined by the answer 
to an outstanding question: does success under one type of stress 
come at a cost of susceptibility to a co‐occurring environmental 
challenge? To address this critical knowledge gap, we quantified the 
capacity for Acropora millepora, a model representative of a keystone 
group of marine organisms that are among the most vulnerable to 

climate change (Reusch, 2014), to adapt to simultaneous stressors. 
Multiple coral colonies (n = 40, hereafter referred to as “genets”) 
were split into replicate clonal fragments (n = 5 per treatment) that 
were exposed to elevated temperature (30°C), increased pCO2 
(pH  =  7.8, 700  ppm  CO2), bacterial challenge (106  CFU/ml Vibrio 
owensii), a combination of these three stressors at the same levels, 
or a control condition (27°C, pH = 8.0, 400 ppm CO2, no added V. 
owensii). We measured a comprehensive suite of coral host and algal 
traits to assess each genet's performance in each condition and 
constructed a genetic variance–covariance matrix to identify po‐
tential genetic trade‐offs or reinforcements between phenotypes.

2  | MATERIAL S AND METHODS

2.1 | Study organism and aquarium conditions

Colonies of A. millepora were sampled between October and 
December 2014 from Davies Reef lagoon (78 km offshore; 18°50′11″S, 
147°38′41″E), Rib Reef (56 km offshore; 18°28′55″S, 146°52′15″E), 
Pandora Reef (16 km offshore; 18°48′44″S, 146°25′59″E), and Esk 
Island (24  km offshore; 18°46′04″S, 146°30′57″E). These colonies 
were transferred to holding tanks at the National Sea Simulator 
system at the Australian Institute of Marine Science (Townsville, 
Queensland, Australia). After approximately 2  weeks of acclima‐
tization, each colony was fragmented into 25 replicate fragments 
(“nubbins”), which were mounted on aragonite plugs and placed on 
replicate trays. Trays were maintained in six indoor holding tanks 
which were supplied with 0.2 µM filtered seawater (FSW) at 27°C. 
Three lights (AI Aqua Illumination) were suspended above each tank 
providing an average underwater light intensity of 180  µmol  pho‐
tons m−2 s−1 on a 10‐/14‐hr light–dark cycle. Corals were fed freshly 
hatched Artemia nauplii twice daily and cleaned three times a week to 
prevent algal growth. Coral nubbins were acclimated to these condi‐
tions for 3–5 months, depending on the date of collection. Unique 
genets were later confirmed via 2b‐RAD genotyping (Wang, Meyer, 
Mckay, & Matz, 2012). The final total genets for each sampling loca‐
tion are as follows: Davies (n = 10), Rib (n = 10), Pandora (n = 14), and 
Esk (n = 6). Algal symbiont types were investigated by ITS‐2 sequenc‐
ing for eight of the coral colonies (Howe‐Kerr et al., 2019).

2.2 | Experimental treatments and sample 
preparation

On March 2, 2015, coral nubbins (25 per genet) were placed into 
twenty‐five 50 L treatment tanks fitted with 3.5‐W Turbelle na‐
nostream 6015 pumps (Tunze) with flow‐through seawater at 
~25 L/hr at the same temperature and light conditions as in the 
previous holding tanks. Initial weights for each nubbin were ob‐
tained following the method described by Davies (1989). All nub‐
bins were approximately the same size (mean = 7.62 g, SD = 1.08 g). 
Tanks (n = 5 per treatment) were allocated to the following treat‐
ments: elevated temperature (30°C), increased pCO2 (700  ppm, 
pH  =  7.8), bacterial challenge (106  CFU/ml V. owensii DY05), a 
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combined treatment (30°C, 700 ppm, 106 CFU/ml V. owensii), and 
control (27°C, 400  ppm, pH  =  8.0, no bacteria). This isolate of 
non‐quarantined V. owensii had been recently sampled during an 
infectious disease outbreak in cultured lobsters at the research 
facility. Temperature and pCO2 were gradually increased in their 
respective tanks over the course of a week to 30°C and 400 ppm 
(pH  =  8.0). The bacterial challenge was conducted in separate 
isolated tanks (no flow through) and consisted of a daily 6‐hr 
incubation. Vibrio owensii was added at a final concentration of 
106 CFU/ml to every bacterial challenge tank, including the com‐
bined treatment (which was also maintained at 30°C and 700 ppm 
pCO2 for these 6 hr). Corals were then returned to their respec‐
tive treatment tanks until the next day's bacterial challenge and 
the bacterial challenge tanks were treated with 20% bleach for 
at least 30  min. Coral fragments were photographed daily to 
quantify bleaching via the Coral Health Chart (Siebeck, Marshall, 
Klüter, & Hoegh‐Guldberg, 2006) and lesion progression. Net 
oxygen production and the changes in total alkalinity under light 
were measured for randomly selected genets adapting methods 
described in Strahl et al. (2015). Briefly, coral nubbins were incu‐
bated in enclosed acrylic chambers at respective treatment tem‐
peratures for 1.5 hr, alongside blanks to subtract the background 
metabolic activity. The O2 concentration of the seawater in each 
chamber was measured after the incubation period using a dis‐
solved oxygen meter (HQ30d, equipped with LDO101 IntelliCAL 
oxygen probe, Hach). A subsample of seawater (120 ml) in each 
chamber was fixed with 0.5 mg mercuric chloride and the total al‐
kalinity was measured using a Titrando 855 Robotic Titrosampler 
(Metrohm AG). Fragments exhibiting any tissue loss or that were 
fully bleached and exhibiting algal growth were removed from 
treatment tanks, buoyant weighed, and preserved in liquid nitro‐
gen. The time of death (day post initial exposure) was recorded at 
each instance. We stopped the experiment after 10 consecutive 
days of treatment. At this time, many fragments presented severe 
tissue loss, which meant they could not be used in downstream 
physiological assays (Figure S1). To preserve enough clonal rep‐
lication to make statistical comparisons across genets, we ended 
the experiment when symptoms were apparent but total mortal‐
ity was relatively low (approximately 21%). Eleven days after the 
initial challenge, all surviving corals were photographed, buoyant 
weighed, preserved in liquid nitrogen, and stored at −80°C until 
sample processing.

Tissue was removed from coral skeletons using an air gun and 
0.2 µM filtered seawater and homogenized for 60 s using a Pro250 
homogenizer (Perth Scientific Equipment). A 1 ml aliquot of the tis‐
sue homogenate was centrifuged for 3  min at 1,500g at 4°C and 
the pellet was stored at −80°C for chlorophyll analyses. The re‐
maining homogenate was centrifuged for 3 min at 1,500g at 4°C to 
separate host and symbiont fractions. The fractions were frozen in 
96‐well tissue culture plates and stored at −80°C. Coral skeletons 
were rinsed with 10% bleach and then dried at room temperature 
(~24°C). Skeletal surface area was quantified using the single paraf‐
fin wax dipping method (Stimson & Kinzie, 1991) and skeletal volume 

was determined by calculating water displacement in a graduated 
cylinder.

2.3 | Physiological trait assays

Assays were conducted to detect cellular and metabolic activity 
changes within Symbiodiniaceae or coral host tissue in response 
to the treatment. All standards and samples were loaded as dupli‐
cates, and absorbance was recorded with a Cytation 3 multi‐mode 
microplate reader (BioTek) and analyzed using Gen5 software 
(BioTek).

To quantify chlorophyll concentrations, tissue homogenate algal 
pellets were resuspended in 1 ml chilled 90% acetone. The homoge‐
nate was sonicated on ice for 10 s at 40% amplitude, left in the dark 
for 20 min, and centrifuged for 5 min at 10,000g at 4°C. A 200 µl 
aliquot of sample extract was loaded to a 96‐well plate, and absor‐
bance was recorded at 630 and 663 nm. Chlorophyll a and c2 con‐
centrations were calculated with the equations in Jeffrey and Haxo 
(1968) and were normalized to surface area:

A commercial colorimetric protein assay kit (DCTM Protein 
Assay Kit, Bio‐Rad) was used to quantify total protein content of the 
coral host tissue. A 100 µl aliquot of Symbiodiniaceae‐free coral tis‐
sue sample was digested using 100 µl sodium hydroxide in a 96‐well 
plate for 1 hr at 90°C. The plate was centrifuged for 3 min at 1,500g. 
Following the manufacturer's instructions, 5 µl digested tissue was 
mixed with 25 µl alkaline copper tartrate solution and 200 µl dilute 
Folin reagent in a fresh 96‐well plate. The absorbance at 750 nm was 
recorded after a 15‐min incubation. Sample protein concentrations 
were calculated using a standard curve of bovine serum albumin 
ranging from 0 to 1,000 µg/ml.

Carbohydrate content of the Symbiodiniaceae‐free coral tissue 
was estimated following the method of Masuko et al. (2005) that mea‐
sures monosaccharides, including glucose, which is the major photo‐
synthate translocated between symbionts and host corals (Burriesci, 
Raab, & Pringle, 2012). A 50 µl aliquot of coral tissue was mixed with 
150 µl concentrated sulfuric acid and 30 µl 5% phenol in a 96‐well 
plate for 5 min at 90°C. After another 5‐min incubation at room tem‐
perature, the absorbance at 485 nm was recorded. The total carbo‐
hydrate concentrations of samples were calculated using a standard 
curve of d‐glucose solutions ranging from 0 to 2,000 µg/ml.

To analyze nonfluorescent chromoprotein content, a 30  µl ali‐
quot of coral tissue was loaded to a black/clear 384‐well plate and 
the absorbance was recorded at 588  nm. Mean absorbance was 
standardized to sample protein content.

The activity of catalase (CA), a reactive oxygen species scaveng‐
ing enzyme (Lesser, 2006), was measured by estimating the change 
in hydrogen peroxide (H2O2) substrate concentration. A 20 µl aliquot 
of coral tissue was mixed with 30 µl 50 mM phosphate‐buffered sa‐
line solution (pH 7.0) and 50 µl 50 mM H2O2 in a 96‐well plate. CA 

Chlorophyll a (�g/ml) =13.31×A663−0.27×A630

Chlorophyll c2 (�g/ml)=51.72×A630−8.37×A663.
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was calculated as the change in absorbance at 240 nm every 30 s 
over the linear portion of the reaction curve for 15  min and was 
standardized to sample protein content:

The change in coral color was estimated using photographs taken 
during the experiment with a Nikon D300 digital camera. Brightness 
values were measured over the entire front and back sections of 
each nubbin using image analysis software (ImageJ, NIH). Corals 
become brighter (whiter) when they lose darkly colored algal sym‐
bionts, so changes in brightness reflect changes in Symbiodiniaceae 
densities (Beer, Loya, Winters, Holzman, & Blekhman, 2009). A stan‐
dard curve of brightness values was constructed using standard coral 
color cards that were present in each image. Brightness values were 
standardized to color cards to normalize for differences across photo 
sessions.

2.4 | Statistical analyses

The time of death was noted for each individual nubbin. Survival was 
modeled as time of death ~ treat + reef + (1|tank) using coxme pack‐
age in R 3.3.1 (R Core Team, 2016; Therneau, 2019), where treatment 
was specified as the presence or absence of elevated heat, bacteria, 
or increased pCO2 (e.g., bacteria = 1 for “V. owensii” and “combined” 
treatments; heat = 1 for “30°C” and combined” treatments). All sub‐
sequent analyses were performed on lesion‐free (alive) corals. Data 
were log‐transformed using powers determined by Box–Cox trans‐
formations performed using the powerTransform function in the R 
package car (Fox & Weisberg, 2011). Linear mixed‐effects models 
implemented using the R package nlme (Pinheiro, Bates, DebRoy, 
& Sarkar, 2018) tested the effects of treatments and reef‐of‐origin 
on trait values. As described above, four levels of treatment were 
specified as the presence or absence of each stressor. For example, 
the combined and bacterial challenge conditions are coded as “pre‐
sent” for the bacterial challenge stressor, whereas the elevated pCO2 
and 30°C conditions are “absent” for the bacterial treatment. The 
stepAIC function in the R package MASS (Venables & Ripley, 2002) 
determined which terms to include in the best‐fit model. Principal 
components analysis on mean‐centered and variance‐scaled values 
was performed using the prcomp function in base R. Pearson correla‐
tions between trait values were calculated using the cor function in 
base R, and correlation heatmaps were constructed using the corrplot 
function. The genetic variance–covariance matrix was constructed 
using the R package MCMCglmm (Hadfield, 2010). Trait data were 
mean‐centered and variance scaled. The multivariate model was fit 
for four traits (growth, color, chlorophyll c2, and carbohydrate) with 
treatment as a fixed effect and genet as a random effect, using the 
idh variance structure. The model was run for 20,000 iterations after 
a 5,000 iteration burn‐in, storing the Markov chain after 20 iteration 
intervals. Partial regression coefficients for each trait on binomial 
survival outcome were modeled using a categorical MCMCglmm 
model with genet as a random effect. The selection gradient was 
composed of these partial regression coefficients, scaled to unit 

variance. Predicted changes in trait values (Δz) were calculated using 
the multivariate breeder's equation (Lande & Arnold, 1983):

where G is the genetic variance–covariance matrix and β is the se‐
lection gradient.

3  | RESULTS

3.1 | Mean responses to treatments

3.1.1 | Survival

Corals in the control condition experienced the lowest mortality 
at 13.5%, followed by increased temperature (21.5%), combined 
treatment (23.7%), bacteria challenge (26.4%), and elevated pCO2 
(27.4%). Treatment was specified as the presence or absence of 
each stressor. The Cox proportional hazards model included each 
treatment and reef as fixed effects, with tank as a random effect. 
Bacteria challenge significantly increased mortality rates (hazard 
ratio [HR] = 3.32, p = .018). In the last days of the experiment, cor‐
als in the elevated pCO2 treatment experienced high mortality, but 
mortality rates in corals under this condition were indistinguishable 
from control corals throughout the first week of the experiment 
(Figure 1a). We did not detect a significant difference in mortal‐
ity between the control and elevated pCO2 treatment, as the Cox 
proportional hazards model compares mortality across the entire 
period. Colonies from Rib reef had the lowest mortality (16.5%). 
Colonies from Davies and Esk reefs had higher mortality rates 
(HR = 0.54, p = .007 and HR = 0.58, p = .01, respectively) than those 
from Rib (Figure S2).

3.2 | Physiological responses

We measured the following algal and host‐associated traits from sur‐
viving coral fragments: coral color (an indicator of Symbiodiniaceae 
densities), algal chlorophyll a and chlorophyll c2 content, total host 
carbohydrate, total host protein, host CA activity, host chromopro‐
tein content, oxygen production (indicator of photosynthetic rate), 
instant calcification rate, and change in buoyant weight (skeletal 
growth).

Chromoprotein content and CA (Figure 1b,c) serve as proxies for 
coral innate immune response. We found no significant effect of treat‐
ment on either of these measurements. Bleaching was calculated as a 
log‐transformed change in color in photographs standardized to the 
Coral Health Chart (Siebeck et al., 2006). Bacteria treatment made 
corals significantly darker (β = .70, p < .001), whereas corals became 
lighter (i.e., bleached) in the elevated temperature treatment (β = −.54, 
p < .001; Figure 1e). The elevated temperature treatment resulted in 
worse bleaching than the combined treatment (β  =  −.86, p  <  .001). 
These findings are corroborated by chlorophyll measurements: bacte‐
rial treatment increased chlorophyll a (β = 2.1, p < .001; Figure 1f) and 
c2 (β = 1.0, p = .001; Figure 1g) content in the algal fraction of the coral 

CA (mg/protein)= Initial A240−Final A240.

Δz=G� ,
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tissue. Bacterial treatment increased the carbohydrate content in the 
coral host tissues (β = .73, p < .001; Figure 1h).

Photosynthetic and instant calcification rates were measured for 
a smaller subset of the coral genets. As expected, the elevated tem‐
peratures reduced photosynthetic rates (β = −.51, p < .001; Figure 1i). 
The bacterial treatment improved algal traits under bacterial chal‐
lenge (Figure 1e–g). Only the elevated pCO2 treatment affected in‐
stant calcification rates, decreasing them on average (β = −.48, p = .01; 
Figure 1j). Buoyant weights of each fragment were measured at the 
beginning of the experiment and when each fragment was removed 
from the experiment. Corals in the elevated temperature treatment 
experienced moderately increased growth rates (β  =  .017, p  =  .04; 
Figure 1k). Buoyant weights were not significantly affected by any 
other treatment.

3.3 | Phenotypic space, correlations, and 
evolvability calculations

The lack of synergistic treatment effects on coral fitness proxies 
provides encouraging evidence for an individual coral's capacity 
to resist multiple stressors. To investigate whether a population 
of corals can adapt to multiple threats, we looked for potential 

trade‐offs by measuring correlations between stressor effects 
across genets.

Principal components analysis explored patterns in phenotypic 
space of 429 individual fragments (Figure 2a) with complete datasets 
for growth, color change, chlorophyll a, chlorophyll c2, chromopro‐
tein, CA, and survival fraction (the proportion of fragments surviving 
for the genet in each respective treatment). The first principal com‐
ponent explained 30.2% of the variation and separates samples by 
differential algal responses to treatment (Figure 2a,b). The second 
principal component explained 16.2% of the variation and separates 
samples by host immune enzyme responses (chromoprotein and CA 
activity).

We calculated Pearson correlations by genet across treatments 
for five traits with the most complete data and clearest link to fit‐
ness: survival fraction, growth rate, color change, chlorophyll c2 
content, and total host carbohydrate (Figure 3). The correlation 
heatmaps show many positive and statistically significant correla‐
tions between trait pairs and very few negative correlations, none of 
which were statistically significant (Figure 3). Survival fractions for 
each genet are significantly positively correlated among treatments 
(Figure 3a). In other words, individuals that show high fitness charac‐
teristics under one stressor also perform well under other stressors.

F I G U R E  1   Mean responses to treatment. (a) Survival fraction over the duration of the experiment. Colors correspond to treatment 
(see inset key). (b–k) Box–Cox power transformed trait values separated (left axis) and untransformed trait values (right axis) by treatment 
(indicated by color in legend). The bottom and top of each box represent the lower and upper quartiles, respectively. Whiskers span 1.5× the 
interquartile range. NS = no significant effect of treatment. Asterisks indicate a significant (p < .05) effect of the indicated treatment relative 
to the control condition. (b) Chromoprotein content (A588 · µg/protein). (c) Catalase activity (∆H2O2 · mg protein−1 min−1). (d) Total protein 
content (mg/cm2). (e) Coral fragment color change (final – initial score). Chlorophyll a (f) and c2 (g) content (µg/cm2). (h) Total carbohydrate 
(mg/cm2). (i) Oxygen production (mg O2 cm−2 min−1). (j) Instant calcification rate (µmol CaCO3 cm−2 min−1). (k) Buoyant weight growth rate (% 
∆ weight g/day)
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Pairwise comparisons do not adequately capture the overall 
genetic covariance of traits in the population. To further explore 
the evolvability of these traits, we constructed a genetic variance–
covariance matrix (G matrix) by selecting four traits that describe 
various aspects of host and symbiont fitness: color change, weight 
gain, chlorophyll c2 content, and carbohydrate content. All ge‐
netic correlations between these traits were positive (Figure 4a).

In multivariate trait space, the response of a trait to selection 
may deviate from the direction of selection due to influences of 
genetically associated traits. Depending on the shape of genetic 
variance–covariance matrix (G matrix) and selection strength on in‐
dividual traits, fitness traits may or may not be able to evolve in con‐
cert. To investigate this issue in our coral, we calculated a selection 

gradient (a vector of partial regression coefficients standardized to 
unit length) by regressing the four traits against binomial survival 
(1 = fragment survived; 0 = fragment died). All selection coefficients 
were positive (Figure 4a), although only growth was significantly 
associated with survival (p <  .001). We then applied the multivari‐
ate breeder's equation to estimate how trait values would change 
given our G matrix and selection for higher survival under moderate 
stressors (Figure 4b). Since all selection coefficients and covariances 
were positive, the change in every trait over one generation was also 
positive (Figure 4b). This result implies that fitness traits should be 
able to co‐evolve together and moreover, reinforce each other's evo‐
lution, that is, corals with high survival rates would also tend to pro‐
duce offspring with increased growth rates, carbohydrate content, 

F I G U R E  2   Principal components 
analysis. (a) Principal components analysis 
based on physiological trait data for 429 
fragments. (b) Loadings for traits along 
the first two principal components axes. 
Data point colors represent the treatment 
in which the coral fragment was placed. 
Colors and line shapes of loadings identify 
traits related to algal parameters (green), 
immune enzyme activity (dashed), or 
general coral fitness (black)

F I G U R E  3   Pearson correlation 
heatmaps based on scaled average (a) 
survival fraction, (b) growth rate, (c) color 
change, (d) chlorophyll c2 content, and 
(e) carbohydrate content for 39 genets. 
Colored bars indicate the treatment 
measurement. Colors within the heatmap 
squares represent the magnitude and 
direction of the Pearson correlation 
according to the key. Significant 
(p < .05) correlations are indicated with 
asterisks
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Symbiodiniaceae densities, and chlorophyll content under different 
stressors.

To demonstrate this reinforcement effect, we decomposed the 
total predicted change in each trait (the total height of each bar in 
Figure 4b) into the contribution of selection directly on that trait or 
on the three covarying traits. For example, a predicted increase in 
chlorophyll c2 content is mostly driven by selection on growth rate, 
which is more strongly correlated with survival and is genetically 
correlated with chlorophyll c2 content (Figure 4a). The model pre‐
dicts less improvement in color (a proxy of algal symbiont density) 
and host carbohydrate content because these traits covary less with 
growth rate and are not themselves strongly associated with survival 
(Figure 4a).

4  | DISCUSSION

4.1 | Mean effects of single and combined stressors

At the end of our 10‐day challenge, each experimental treatment 
largely resulted in the expected mean response. Elevated tempera‐
tures reduced algal parameters (Symbiodiniaceae densities, chloro‐
phyll a and c2 content), analogous to a natural coral bleaching event. 
Bacteria challenge resulted in the development of lesions and caused 
an unexpected increase in algal traits. Although a meta‐analysis of 
coral stress responses predicted that the detrimental effects of most 
stressors are enhanced by the presence of another stressor (Ban, 
Graham, & Connolly, 2014) and other empirical studies have docu‐
mented compromised coral immunity and increased prevalence of 
coral disease concurrent with thermal stress (Bruno et al., 2007; 
Palmer, 2018), we did not observe detrimental interactive effects of 
the combined challenge. A tempting hypothesis to explain this phe‐
nomenon is that elevated temperature exposure prior to pathogen 
exposure primed the coral's stress response system to mitigate oxida‐
tive stress associated with launching an innate immune response (Lu, 
Wang, & Liu, 2015).

We also saw that coral bleaching was minimized in the combined 
treatment relative to thermal stress alone (Figure 1e), possibly as a 
result of heterotrophic feeding (Bourne, Morrow, & Webster, 2016): 
both coral host and algal symbiont had access to extra nutrients (bac‐
terial inoculations triply washed in sterile seawater) in the combined 
treatment. Further supporting this hypothesis is the unexpected 
observation of increased algal traits in the bacteria‐only treatment. 
Reef‐building corals feed on bacteria (Houlbrèque & Ferrier‐Pagès, 
2009), which could act as a beneficial nutrient source to encourage 
algal productivity (Rädecker, Pogoreutz, Voolstra, Wiedenmann, & 
Wild, 2015; Sawall, Al‐Sofyani, Banguera‐Hinestroza, & Voolstra, 
2014). Heterotrophic compensation has been investigated as a 
method by which corals withstand extended bleaching events 
(Baumann, Grottoli, Hughes, & Matsui, 2014; Grottoli, Rodrigues, & 
Palardy, 2006; Hughes & Grottoli, 2013), but the capacity for het‐
erotrophic feeding to prevent bleaching deserves more attention.

4.2 | Best performing genets tolerate 
multiple stressors

Pairwise correlations of trait values in each treatment revealed 
mostly positive associations across all genets. Importantly, survival 
rates were significantly positively correlated under most treatments 
(Figure 3; Figure S3), indicating the absence of trade‐offs with re‐
spect to an individual's ability to withstand different disturbances. 
Individuals that could survive one stressful condition tended to be 
able to manage other stressors as well. There were a few excep‐
tions involving Symbiodiniaceae: color under bacterial challenge 
was negatively correlated with survival under bacterial challenge 
or under thermal stress, and also negatively correlated with growth 
under control conditions and under bacterial challenge. Again, 
Symbiodiniaceae density measurements in corals exposed to Vibrio 
in this experiment may reflect the ability of a coral to improve algal 
traits due to the presence of bacteria as a result of increased hetero‐
trophic feeding.

FIGURE 4 (a) Left: Genetic variance–covariance matrix for four fitness traits across five treatments in 39 genets. The color in the inset key and 
number within each box quantifies trait variances (diagonal elements) and covariances between paired traits (off‐diagonal elements). Bold font 
denotes significant associations. Right: Selection gradient (β), a vector of partial regression coefficients for each trait on survival. (b) Changes in 
trait means (ΔZ) per unit of selection for higher survival under multiple stressors. Each stacked bar is composed of the direct effect of selection 
on the trait and effects of selection on each of the genetically correlated traits
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Given the drastically different phenotypic responses to each 
stressor applied in this study (e.g., symbiont expulsion vs. tissue loss), 
it is reasonable to expect to observe trade‐offs in a coral's ability to 
manage each challenge. Presumably these unique stressors require 
the coral to employ distinct molecular response mechanisms, which 
come at a metabolic cost. This study cannot offer a mechanism to 
explain the positive associations in stress tolerances observed in 
these corals, but the literature offers promising areas for further in‐
vestigation. In corals, the oxidative theory for bleaching under ther‐
mal stress posits that reactive oxygen species (ROS) accumulation 
damages cells and triggers symbiont expulsion (Lesser, 1997). ROS 
are also produced in response to immune challenges to exert antimi‐
crobial activity and stimulate immune signaling pathways (Bogdan, 
Röllinghoff, & Diefenbach, 2000). Innate immune activiation limits 
pathogen growth and poses immunopathological risk to the host; 
thus, a maximal immune response is not always optimal (Viney, 
Riley, & Buchanan, 2005) and antioxidant mitigation of self‐harm is 
necessary for survival (Knight, 2000). Elevated pCO2 has also been 
shown to trigger oxidative stress in corals (Davies, Marchetti, Ries, 
& Castillo, 2016) and oysters (Tomanek, Zuzow, Ivanina, Beniash, & 
Sokolova, 2011). Given the critical role of managing oxidative stress 
in responses to thermal stress, elevated pCO2, and bacterial chal‐
lenge, the robustness of a coral's antioxidant defense system to pre‐
vent self‐harm may underlie tolerance to all three of these stressors. 
A recent study in rice identified an allele of the transcription factor 
Ideal Plant Architecture 1 that simultaneously confers improved 
growth and immune function by toggling between phosphorylation 
states that drive expression in distinct subsets of gene targets (Wang 
et al., 2018). Future studies should critically evaluate the nature of 
shared pathways in coral stress responses.

Another consideration is the contribution of the algal symbiont 
toward holobiont health. In this study, colonies primarily hosted 
Cladocopium symbionts almost exclusively, but also contained 
lower abundances of Brevolium, Durusdinium, and/or Gerakladinium 
symbionts (<0.1% of the total community; Howe‐Kerr et al., 2019). 
Notably, one colony contained a larger proportion of Durusdinium 
and was among the worst performing colonies in this experiment. 
Though we do not observe a clear contribution of any one symbi‐
ont type on overall host health in this study, as other studies have 
demonstrated (Rouzé, Lecellier, Saulnier, & Berteaux‐Lecellier, 2016; 
Silverstein, Cunning, & Baker, 2017), future studies should continue 
to investigate how algal symbionts modify coral responses to envi‐
ronmental stressors.

Furthermore, the extent to which algal traits can be used to pre‐
dict host adaptation in a broadcast spawning, horizontally transmit‐
ting coral species is worthy of discussion and further investigation. 
Previous studies in another horizontal transmitter, Orbicella faveo-
lata, have shown that the genetic identity of the coral host explains 
more than 70% of the variation in proportions of Symbiodiniaceae 
genera hosted, and by implication, in bleaching responses (Manzello 
et al., 2019). In an acroporid species, heritability of symbiont com‐
munity was high: host genetics accounted for about 29% of the vari‐
ation in symbiont profiles between adult parents and their juvenile 

offspring (Quigley, Willis, & Bay, 2017). One could expect an even 
higher similarity in symbiont profiles across generations with ad‐
ditional winnowing through development. Larval and axenic adult 
Aiptasia ingest algae indiscriminately but employ host cell‐specific 
mechanisms to selectively phagocytose compatible symbiont strains 
to establish stable symbiosis (Hambleton et al., 2018). Post‐phago‐
cytotic host mechanisms allow further symbiont strain selection in 
Montipora capitata (Dunn & Weis, 2009). In general, symbiosis and 
dysbiosis (bleaching) is always a result of interaction between host 
and symbiont, and while it might be not 100% heritable when viewed 
from the perspective of the coral host (because of symbiont contri‐
bution), there is every reason to expect it to be evolvable due to the 
substantial coral influence on what kinds of symbionts are hosted 
and how they are managed (e.g., Barfield, Aglyamova, Bay, & Matz, 
2018).

4.3 | Positive genetic associations of fitness traits 
suggest holobiont adaptability

Multivariate analyses describe how fitness traits may change under 
directional selection. The variance–covariance structure estimated in 
this study indicates that our focal species possesses the genetic het‐
erogeneity and flexibility to respond to multiple selective pressures. 
The positive genetic covariances between four traits associated with 
holobiont fitness (growth, Symbiodiniaceae density, chlorophyll c2 
content, and total carbohydrate content) argue for reinforced evolu‐
tion of all traits (Figure 4). In our study, growth rate is most strongly 
associated with survival under climate change stressors and therefore 
would be predicted to evolve rapidly due to direct selection pressure. 
Another study identified a positive association between growth and 
survival in situ, though this association was weak and did not persist 
across multiple years of observation (Edmunds, 2017). In our experi‐
ment, although directional selection is weaker for other traits (algal 
density, carbohydrate content, and chlorophyll c2 content), genetic 
correlation with growth rate would result in their increases as well. 
However, it is important to note that our experiment cannot disentan‐
gle genetic associations that are due to host, symbiont, or their spe‐
cific combination. Our conclusions regarding the effect of selection on 
fitness traits would hold only if genetic interactions between host and 
symbiont do not contribute much to fitness trait variation (i.e., if most 
of the trait variance is attributable to a simple sum of variances due to 
host and symbiont). More research on study systems where holobiont 
genetic composition can be manipulated (e.g., coral recruits) is neces‐
sary to resolve this issue.

Furthermore, our findings are limited to the experimental condi‐
tions included in this study. While infectious disease, heat‐induced 
bleaching, and ocean acidification are major contributors to reef 
devastation, other disturbances also have widespread effects on 
coral health. This study cannot account for other coral threats, such 
as physical damage and photic habitat changes caused by hurricanes 
(Edmunds, Tsounis, Boulon, & Bramanti, 2019) and mortality by pre‐
dation (Kayal et al., 2012). We observe no trade‐off in a coral's abil‐
ity to manage the stressors at the duration and level applied in this 
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experiment, but we cannot rule out potential limitations in a coral's 
ability to respond to every possible threat and disturbance regime. 
Additionally, though secondary responses (e.g., heat‐induced bacterial 
microbiome shifts that may lead to chronic disease; Pootakham et al., 
2018) are certainly important to the long‐term fate of reef‐building 
corals, this experiment aimed to quantify the immediate, primary host 
responses to individual stressors. Given our relatively brief treatment, 
we can be reasonably sure that we observed only rapid induction pri‐
mary responses to the experimental perturbation. Given more time 
in each treatment, corals may have developed secondary responses, 
such as heat‐stress induced necrotic disease (Jones, Bowyer, & Hoegh‐
Guldberg, 2004), that would confound our interpretation of individual 
stress responses. Lastly, our 10‐day experimental challenge captured 
the immediate responses to these different stressors. Future studies 
should address whether the patterns of covariance in stress tolerances 
persist after longer exposures to each treatment, though our results 
suggest that the weakest genets would be completely dead, rendering 
many other traits uninformative, within about 2 weeks.

4.4 | Considerations for future reefs

The management implications of these findings are twofold. Firstly, 
adaptive processes should not be ignored in ecological climate mod‐
eling. Dire estimates for future coral cover are often derived from 
experiments in which a coral from today is placed under conditions 
predicted decades into the future (Okazaki et al., 2017). Acropora 
millepora can reach reproductive maturity as early as 3  years after 
fertilization (Baria, dela Cruz, Villanueva, & Guest, 2012) and thus, 
modeling strategies based on end‐of‐the‐century climate scenarios 
ignore dozens of generations of potential adaptive evolution. Our 
results suggest that this adaptation can proceed because coral fit‐
ness traits tend to reinforce, rather than constrain, adaptation to‐
ward improved fitness under multiple environmental challenges. 
Secondly, our results should be taken into account during efforts to 
spread adaptive genetic variation by propagating, translocating, and 
breeding genets that have survived a natural stress event, although 
latent effects of the stress event may impact thermal tolerance into 
the future. Regardless of the method used to select broodstock for 
coral reseeding, our results strongly suggest that colonies should be 
selected for restoration in a manner that does not jeopardize corals’ 
natural ability to adapt, for example through a narrowing of the gene 
pool. In the absence of severe bottlenecks in genetic diversity, natural 
selection will continue selecting for corals that thrive despite multiple 
harassments brought about by climate change. However, this adapta‐
tion will only proceed if reproduction is maintained under increas‐
ingly hostile conditions and until adaptive genetic variation starts 
running out (Matz et al., 2018), and therefore our findings should not 
undermine the critical urgency to limit anthropogenic climate change.
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