
Smith ScholarWorks Smith ScholarWorks

Computer Science: Faculty Publications Computer Science

8-1-2009

Linear Reconfiguration of Cube-Style Modular Robots Linear Reconfiguration of Cube-Style Modular Robots

Greg Aloupis
Université Libre de Bruxelles

Sébastien Collette
Université Libre de Bruxelles

Mirela Damian
Villanova University

Erik D. Demaine
Massachusetts Institute of Technology

Robin Flatland
Siena College

See next page for additional authors

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Aloupis, Greg; Collette, Sébastien; Damian, Mirela; Demaine, Erik D.; Flatland, Robin; Langerman, Stefan;
O'Rourke, Joseph; Ramaswami, Suneeta; Sacristán, Vera; and Wuhrer, Stefanie, "Linear Reconfiguration of
Cube-Style Modular Robots" (2009). Computer Science: Faculty Publications, Smith College,
Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/187

This Conference Proceeding has been accepted for inclusion in Computer Science: Faculty Publications by an
authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/187?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

Authors Authors
Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan Langerman,
Joseph O'Rourke, Suneeta Ramaswami, Vera Sacristán, and Stefanie Wuhrer

This conference proceeding is available at Smith ScholarWorks: https://scholarworks.smith.edu/csc_facpubs/187

https://scholarworks.smith.edu/csc_facpubs/187

Computational Geometry 42 (2009) 652–663

Contents lists available at ScienceDirect

Computational Geometry: Theory and Applications

www.elsevier.com/locate/comgeo

Linear reconfiguration of cube-style modular robots ✩

Greg Aloupis a, Sébastien Collette a,1, Mirela Damian b, Erik D. Demaine c, Robin Flatland d,
Stefan Langerman a,2, Joseph O’Rourke e,∗, Suneeta Ramaswami f,3, Vera Sacristán g,4,
Stefanie Wuhrer h

a Université Libre de Bruxelles, Belgium
b Villanova University, Villanova, USA
c Massachusetts Institute of Technology, Cambridge, USA
d Siena College, Loudonville, USA
e Smith College, Northampton, USA
f Rutgers University, Camden, USA
g Universitat Politècnica de Catalunya, Barcelona, Spain
h Carleton University, Ottawa, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 April 2008
Received in revised form 3 October 2008
Accepted 11 November 2008
Available online 25 November 2008
Communicated by J. Mitchell

Keywords:
Self-reconfiguring modular robots
Cubical units
In-place reconfiguration
Lattice reconfiguration
Synchronous distributed module
communication

In this paper we propose a novel algorithm that, given a source robot S and a target
robot T , reconfigures S into T . Both S and T are robots composed of n atoms arranged
in 2 × 2 × 2 meta-modules. The reconfiguration involves a total of O (n) atomic operations
(expand, contract, attach, detach) and is performed in O (n) parallel steps. This improves
on previous reconfiguration algorithms [D. Rus, M. Vona, Crystalline robots: Self-re-
configuration with compressible unit modules, Autonomous Robots 10 (1) (2001) 107–124;
S. Vassilvitskii, M. Yim, J. Suh, A complete, local and parallel reconfiguration algorithm for
cube style modular robots, in: Proc. of the IEEE Intl. Conf. on Robotics and Automation,
2002, pp. 117–122; Z. Butler, D. Rus, Distributed planning and control for modular robots
with unit-compressible modules, Intl. J. Robotics Res. 22 (9) (2003) 699–715, doi:10.1177/
02783649030229002], which require O (n2) parallel steps. Our algorithm is in-place; that
is, the reconfiguration takes place within the union of the bounding boxes of the source
and target robots. We show that the algorithm can also be implemented in a synchronous,
distributed fashion.

© 2008 Elsevier B.V. All rights reserved.

✩ A short version appeared at ISAAC 2007 [G. Aloupis, S. Collette, M. Damian, E. Demaine, R. Flatland, S. Langerman, J. O’Rourke, S. Ramaswami,
V. Sacristán, S. Wuhrer, Linear reconfiguration of cube-style modular robots, in: Proc. 18th International Symposium on Algorithms and Computation,
in: Lecture Notes in Computer Science, vol. 4835, Springer, Berlin, Heidelberg, 2007, pp. 208–219].

* Corresponding author.
E-mail addresses: greg@scs.carleton.ca (G. Aloupis), sebastien.collette@ulb.ac.be (S. Collette), mirela.damian@villanova.edu (M. Damian),

edemaine@mit.edu (E.D. Demaine), flatland@siena.edu (R. Flatland), stefan.langerman@ulb.ac.be (S. Langerman), orourke@cs.smith.edu (J. O’Rourke),
rsuneeta@camden.rutgers.edu (S. Ramaswami), vera.sacristan@upc.edu (V. Sacristán), swuhrer@scs.carleton.ca (S. Wuhrer).

1 Chargé de Recherches du FNRS.
2 Chercheur Qualifié du FNRS.
3 Partially supported by NSF grant CCR-0204293.
4 Partially supported by projects MEC MTM2006-01267 and DURSI 2005SGR00692.

0925-7721/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2008.11.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82561706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://dx.doi.org/10.1177/02783649030229002
http://dx.doi.org/10.1177/02783649030229002
mailto:greg@scs.carleton.ca
mailto:sebastien.collette@ulb.ac.be
mailto:mirela.damian@villanova.edu
mailto:edemaine@mit.edu
mailto:flatland@siena.edu
mailto:stefan.langerman@ulb.ac.be
mailto:orourke@cs.smith.edu
mailto:rsuneeta@camden.rutgers.edu
mailto:vera.sacristan@upc.edu
mailto:swuhrer@scs.carleton.ca
http://dx.doi.org/10.1016/j.comgeo.2008.11.003

G. Aloupis et al. / Computational Geometry 42 (2009) 652–663 653

Fig. 1. Examples of Slide(x−): (a) Meta-module A slides alone, (b, c) A carries adjacent meta-modules.

1. Introduction

A self-reconfiguring modular robot consists of a large number of independent units that can rearrange themselves into
a structure best suited for a given environment or task. For example, it may reconfigure itself into a thin, linear shape
to facilitate passage through a narrow tunnel, transform into an emergency structure such as a bridge, or surround and
manipulate objects in outer space. Since modular robots comprise groups of identical units, they can also repair themselves
by replacing damaged units with functional ones. Such robots are especially well-suited for working in unknown and remote
environments.

Various types of units for modular robots have been designed and prototyped in the robotics community. These units dif-
fer in shape and the operations they can perform. In this paper, we consider homogeneous self-reconfiguring modular robots
composed of cubical units (atoms) arranged in a lattice configuration. Each atom is equipped with an expansion/contraction
mechanism that allows it to extend its faces out and retract them back. Each atom face has an attaching/detaching mecha-
nism that allows it to attach to (or detach from) the face of an adjacent atom. Prototypes of cubical atoms include crystalline
atoms [5] and telecube atoms [6]. The collection of atoms composing a robot is connected in the sense that its dual graph
(vertices correspond to atoms, edges correspond to attached atoms) is connected. When groups of atoms perform the four
basic atom operations (expand, contract, attach, detach) in a coordinated way, the atoms move relative to one another, re-
sulting in a reconfiguration of the robot. To ensure connectedness of the reconfiguration space, the atoms are grouped into
meta-modules [1,2], which are connected sets of �3 atoms arranged in an � × � × � grid.

The complexity of a reconfiguration algorithm can be measured by the number of parallel steps performed, as well as the
total number of atom operations. In a parallel step, many atoms may perform moves simultaneously. Reducing the number
of parallel steps has a significant impact on the reconfiguration time, because the mechanical actions (expand, contract,
attach, detach) performed by the atoms are typically the slowest part of the system. Furthermore, since atoms may have
limited battery power, it is useful to reduce the total number of mechanical operations (i.e., the atom operations) performed.

Our main contribution in this paper is a novel algorithm that, given a source robot S and a target robot T , each com-
posed of n atoms arranged in 2 × 2 × 2 meta-modules,5 reconfigures S into T in O (n) parallel steps and a total of O (n)

atomic operations. Our algorithm improves significantly the previously best-known reconfiguration algorithms for cube-style
modular robots [1–3], which take O (n2) parallel steps as well as O (n2) atomic operations. In addition, our algorithm re-
configures S into T in-place, in the sense that the reconfiguration takes place within the union of the bounding boxes of S
and T , while keeping the robot connected at all times during the reconfiguration. An in-place reconfiguration is useful when
there are restrictions on the amount of space that a robot may occupy during the reconfiguration process. Note that in this
work we have not taken into consideration any issues regarding the robot’s mass or inertia. However, the “in-place” nature
of our algorithms mitigates some of the issues arising from such constraints.

2. Preliminaries

2.1. Robots as lattices of meta-modules

There exist atom configurations which cannot be reconfigured, e.g., a single row of atoms. Connectedness of the recon-
figuration space can be guaranteed, however, for robots composed of meta-modules. It is desirable that meta-modules are
composed of as few atoms as possible. In our reconfiguration algorithms, meta-modules are of minimum size, i.e. a 2×2×2
grid of atoms [2,7].

We define two basic meta-module moves (hardware independent) used by our reconfiguration algorithms, similar to the
ones described in [2].

Slide(dirSlide). Slides a meta-module one step in the direction dirSlide with respect to some substrate meta-modules. This
move is illustrated in Fig. 1, where each box represents a meta-module. The preconditions for applying this move
are: (i) the sliding meta-module (A in Fig. 1a) is adjacent to a meta-module in a direction orthogonal to dirSlide
(B in Fig. 1a), which in turn is adjacent to a meta-module in direction dirSlide (C in Fig. 1a) and (ii) the target

5 Throughout the paper, n refers to the number of robot atoms and m refers to the number of robot meta-modules, where n = 8m.

654 G. Aloupis et al. / Computational Geometry 42 (2009) 652–663

Fig. 2. Examples of Tunnel(Apos, Cpos) with orthogonal turns at Bi , i = 1,2,3,4. (a) 1-Tunnel, (b) 2-Tunnel, (c) 3-Tunnel, (d) 4-Tunnel.

position for the sliding meta-module is free. This move allows the sliding meta-module to “carry” other attached
meta-modules (as in Figs. 1b–c), as long as the target positions for the carried meta-modules are unoccupied.

k-Tunnel(sPos, ePos). Pushes the meta-module located at sPos into the robot, and pops a meta-module out of the robot
at position ePos. There are two preconditions for applying this move: (i) sPos is at a leaf node in the dual graph
of the starting configuration (i.e., it is attached to only one other meta-module) and ePos is a leaf node in the
dual graph of the ending configuration, and (ii) there is an orthogonal path through the robot starting at sPos and
ending at ePos, with k orthogonal turns (see Fig. 2). This move performs an “inchworm” move between successive
turns. Thus the contracted “mass” of sPos is transferred between turns using O (1) motions.

In addition to the Slide and k-Tunnel moves, meta-modules can also attach to and detach from adjacent meta-modules.
All these moves were explored in [1] for 4×4×4 meta-modules in the expanded atom model and in [2] for 2×2×2 meta-
modules in the contracted atom model. In the expanded (contracted) atom model, the state of the meta-module atoms when
not performing a move is with all faces expanded (contracted). The appendix illustrates sequences of atomic operations
implementing Slide and k-Tunnel for 2 × 2 × 2 meta-modules in the expanded atom model, and we offer a new version of
these operations for 2 × 2 × 2 meta-modules in the contracted atom model. Our implementations avoid exchanging atoms
among the meta-modules.

As for the complexity, attaching and detaching is done in O (1) parallel steps using O (1) atomic operations. The Slide op-
eration is also implemented in O (1) parallel steps using O (1) atomic operations, no matter how many meta-modules are
carried in the move. The k-Tunnel operation is implemented in O (k) parallel steps using O (k) atomic operations, as long
as no meta-modules are attached along the path between consecutive turns. Our algorithms ensure this property and only
have the need for k � 4.

2.2. Centralized and distributed complexity

We consider both centralized and distributed models of computation. In the centralized model (described in Section 3),
computation is performed only by a central processing unit in order to determine the sequence of reconfiguration moves for
each meta-module. In Section 4 we briefly discuss how to adapt our algorithms to a synchronous distributed model. While
this model does not depend on a central processor, it assumes the existence of a clock, used to synchronize the meta-
module moves; each meta-module performs local computations to determine the sequence of moves it needs to perform
synchronously.

In this paper we do not address the issue of reducing the computation time; however, we observe that straightforward
implementations of our centralized algorithms require O (n2) computation time. The amount of computation performed by
each meta-module in the distributed implementations is O (n). Communication time in both models depends on whether
information can be broadcasted to all atoms simultaneously, or if information must propagate through the network of atoms.
Since a total of O (n) information must be communicated, this takes O (n) time if broadcasted and O (n2) time if propagated.

3. Centralized reconfiguration

In this section we present an algorithm that reconfigures any given source robot, S , into any given target robot, T , where
S and T are each a connected set of m meta-modules composed of n = 8m atoms. In Section 3.1, we describe the algorithm
for reconfiguring 2D robots which consist of a single layer of meta-modules (all at the same discrete z coordinate in 3D).
We then generalize this to 3D robots (Section 3.2).

3.1. Centralized reconfiguration in 2D

The main idea behind the algorithm is to transform the source robot S into the common comb configuration which is
defined in terms of both S and T . Then, by executing in reverse the meta-module moves of this algorithm for T , we can
transform the common comb into T . Transforming S into the common comb uses an intermediate step in which S is
reconfigured into a (regular) comb.

G. Aloupis et al. / Computational Geometry 42 (2009) 652–663 655

Fig. 3. The initial configuration is converted into a comb as it is swept by the wall.

1. Set wall to row containing topmost meta-modules of S .
2. While there are meta-modules below the wall do

2.1 Label wall meta-modules moving or stationary.
2.2 Identify moving wall components.
2.3 Move wall one row lower, carrying moving components

and attached teeth.
2.4 Adjust meta-module attachments

2.4.1 Attach moving components to meta-modules newly adjacent
to left (x−) and right (x+).

2.4.2 Detach meta-modules new in w+ from meta-modules adjacent
to left (x−) and right (x+).

2.4.3 Attach meta-modules in w− to wall meta-modules newly
adjacent above (y+).

Algorithm 1. 2D-Combing(S).

3.1.1. 2D robot to 2D comb
In a comb configuration, the meta-modules form a type of histogram polygon [8]. Specifically, the meta-modules are

arranged in adjacent columns, with the bottom meta-module of each column in a common row (see Fig. 3e). This common
row is called the handle; the columns of meta-modules extending upward from the handle are called teeth.

Initially, the algorithm designates the row containing the topmost meta-modules of S as the wall (see Fig. 3a). We view
the wall as infinite in length. The wall sweeps over the entire robot, moving down one row in each step. By having certain
meta-modules slide downward with the wall, the teeth of the comb emerge above the wall. We call this process “combing”
the robot. In what follows we will refer to the row of meta-modules immediately above (below) the wall as w+ (w−).

Algorithm 1 outlines the combing process. After initializing the wall in Step 1, the loop in line 2 slides the wall down
row by row. In each iteration, Step 2.1 labels each wall meta-module as stationary (S) if it has a meta-module adjacent
below and moving (M) otherwise (see Fig. 3). Intuitively, moving meta-modules will move downward to occupy the gap
below. Step 2.2 identifies moving wall components, which are maximal sequences of adjacent moving wall meta-modules. In
Fig. 3b for example, there are three moving wall components consisting of the 1st, 3rd–6th, and 8th wall meta-modules.
A moving wall component will always have a stationary meta-module adjacent to one or both ends, for otherwise it would
be disconnected from the rest of the robot.

Step 2.3 moves the wall down by one meta-module row. The moving components and the attached teeth move down
with the wall. This is accomplished by having each moving wall meta-module adjacent to a stationary meta-module perform
a Slide(y−) move, thus moving itself one row below w.r.t. the adjacent stationary wall meta-module. Figs. 3a–3e show the
robot configuration after successive moving wall steps.

A series of attach and detach operations in Step 2.4 prepares the robot for the next iteration. First, the end meta-modules
of the moved components attach on the left and right to any newly adjacent meta-modules (if not already attached). For
example, the meta-module that moves adjacent to k2 from Figs. 3c to 3d will need to attach to k2. Then each stationary
meta-module (now in row w+) detaches itself from any adjacent meta-modules to its left and right. By doing this, the
comb’s teeth (which are extending upward from the wall) are disconnected from one another; their only connection to
the rest of the robot is through the wall meta-modules at their bases. See Figs. 3c–3e where detached meta-modules are
separated by dotted lines. The reason for disconnecting the teeth is that in Step 2.3, teeth resting on moving meta-modules
get pulled downward while teeth resting on stationary meta-modules stay in place. By disconnecting the teeth, they can
move past each other. Finally, all meta-modules in w− that are now adjacent to a wall meta-module in the y+ direction
attach to these wall meta-modules. Such a situation is illustrated in Fig. 3b and 3c, where the meta-module marked k1
becomes adjacent to a wall meta-module after the sliding step.

Lemma 1. During 2D-Combing a connected robot configuration stays connected.

656 G. Aloupis et al. / Computational Geometry 42 (2009) 652–663

Proof. We prove inductively that after each iteration of the loop in line 2 of Algorithm 1, the robot is connected and all
adjacent meta-modules in or below the wall are attached. The claim is trivially true after zero iterations, and we assume
inductively that it is true after the ith iteration. We now show that it is true after the (i + 1)st iteration. At the beginning of
the (i + 1)st iteration, consider any maximal moving component in the wall. Let ml and mr be its left and right end meta-
modules, and let M be the collection of meta-modules consisting of the moving component plus meta-modules comprising
teeth resting on top of it. Since there are no meta-modules adjacent below M and the teeth in M are attached only to the
moving component at their base, one or both of ml and mr must be adjacent to a stationary meta-module in the wall, or
else M is disconnected from the rest of the robot. W.l.o.g. assume, that both ml and mr are adjacent to stationary meta-
modules, call them sl and sr . Let s′

l and s′
r be the adjacent meta-modules below sl and sr . In Step 2.3 the moving component

slides down, resulting in attachments (sl,ml) and (sr,mr) being replaced by the attachments (s′
l,ml) and (s′

r,mr). Any two
meta-modules in the dual graph connected by a path that included edge (sl,ml) before the component moved, are still
connected via the same path but with (sl,ml) replaced by attachments (sl, s′

l) and (s′
l,ml). Therefore, the robot S remains

connected after the (i + 1)st move. Step 2.4 in the algorithm ensures that any newly adjacent meta-modules in and below
the wall are attached to one another after the (i + 1)st move. �
Lemma 2. A 2D robot can transform into its comb configuration in place in O (n) parallel steps and a total of O (n) atomic operations.

Proof. Clearly, during reconfiguration the robot stays within the bounding box of the source robot. For each of the O (m)

iterations, the algorithm performs one parallel set of meta-module Slide operations and three parallel sets of attachment
operations, which is O (m) = O (n) parallel steps. We now consider the total number of atomic operations performed. For
each stationary meta-module that emerges above the wall, there are at most 2 moving meta-modules that slid past it,
one on each side. At most m stationary meta-modules emerge above the wall, so the total number of Slide operations is
bounded by 2m. Since a meta-module is in w− at most once and enters the wall and w+ at most once, the number of
meta-module attach and detach operations done in Step 2.4 is O (m). The Slide and attach/detach operations require O (1)

atomic operations, making the total number of atomic operations performed O (m) = O (n). �
3.1.2. 2D comb to 2D common comb

For two combs C S and CT , this section describes an algorithm to reconfigure C S into the common comb CST , an interme-
diate configuration defined in terms of both C S and CT .

Let hS and hT be the number of meta-modules in the handles of C S and CT , and let h = max(hS ,hT). Let S1, S2, . . . , Sh
denote the teeth of C S . If hS < hT , then let ShS +1, . . . , Sh be simply “empty teeth”. |Si | is the number of meta-modules on
top of the handle meta-module in tooth Si ; it does not count the handle meta-module. We will represent meta-modules by
their “coordinates” in the lattice. When referring to meta-modules by their coordinates, we will assume the comb’s leftmost
handle meta-module is at (1,1). So the set {(i, j) | 2 � j � |Si | + 1} is the set of meta-modules in tooth Si . All terms are
defined analogously for comb CT and for comb CU , whose description follows.

Let CU be a comb that is the union of C S and CT in the sense that the length of CU ’s handle is h and its ith tooth has
length max(|Si |, |Ti |), 1 � i � h. The common comb CST is a subset of CU consisting of its h handle meta-modules and a
‘right-fill’ of the m − h teeth meta-modules into the shell defined by CU . For example, Figs. 4a and 4b show C S and CT . In
Fig. 4d, CU consists of all the shaded and unshaded meta-modules; the common comb is all the shaded boxes.

Algorithm 2 describes in detail the process of converting C S to the common comb. Step 1 initializes queue O with the
teeth meta-modules of C S in reverse lexicographical order on their coordinates. (See the labeled ordering in Fig. 4a.) This is
the order in which teeth will be moved to fill in for missing meta-modules in the common comb. We assume O supports
the operations O .dequeue() and O .size(), where O .dequeue() removes and returns the front item in O and O .size() returns
the number of items in O . Step 2 lengthens C S ’s handle so that it contains h meta-modules, moving meta-modules from O
to the handle using 1-Tunnel operations. Fig. 4c shows the results of Step 2.

Fig. 4. (a) C S , with meta-modules labeled in reverse lexicographical order. (b) CT . (c) Shaded meta-modules are C S after extending its handle’s length to
match CU . CU consists of all shaded and unshaded boxes. Labels indicate which meta-modules moved to form the handle. (d) Shaded meta-modules form
the common comb for C S and CT .

G. Aloupis et al. / Computational Geometry 42 (2009) 652–663 657

1. Let O be a queue of the (i, j) coordinates of the teeth meta-modules
(i.e., j > 1) of C S , in reverse lexicographical order.

2. If hS < h then { extend C S ’s handle to length h }
2.1 For i = hS + 1 to h

2.1.1 oPos = O .dequeue()
2.1.2 In C S , 1-Tunnel(oPos, (i,1))

3. For i = h down to 1 { lengthen teeth of C S , from right to left }
3.1 For j = 1 to |Si |

3.1.1 O .dequeue() { remove meta-modules already in tooth Si }
3.2 For j = |Si | + 1 to |Ui | { lengthen tooth Si }

3.2.1 if O .size() = 0 then exit
3.2.2 oPos = O .dequeue()
3.2.3 In C S , 2-Tunnel(oPos, (i, j))

Algorithm 2. 2D-Comb-To-Common-Comb(C S , CU).

Once the handle is of proper length, C S ’s teeth are lengthened to match the lengths of CU ’s teeth, starting with the
rightmost tooth. Since CU is the union of C S and CT , each tooth Si of C S is either the same length as the corresponding
tooth in CU , or it is shorter. A key invariant of the algorithm is that, at the beginning of an iteration in Step 3, O contains
exactly those meta-modules in teeth S1, . . . , Si of C S . This is certainly true in the first iteration when i = h, and can be
easily shown to be true inductively for all i. Therefore, at the start of an iteration, if |Si | > 0 then the next |Si | meta-
modules in O are exactly the teeth meta-modules in Si . These meta-modules are already in their final locations, and so
they are just removed from O (Loop 3.1). Loop 3.2 then moves the next |Ui | − |Si | teeth meta-modules in O to tooth Si
using 2-Tunnel operations. Fig. 4d shows the resulting common comb.

Observe that in Loop 3.2, tooth oPos is always the top meta-module of the first non-empty tooth to the left of tooth Si .
Therefore, the orthogonal path followed in the 2-Tunnel operation goes from oPos down to the handle meta-module at the
base of the tooth, through a (possibly length 0) section of the handle containing only empty teeth, and then up to the top of
tooth i. No meta-modules are attached between turns along this path, so the 2-Tunnel operation requires only O (1) atomic
operations to complete.

Lemma 3. A 2D robot can transform into a common comb configuration in-place in O (n) parallel steps and a total of O (n) atomic
operations.

Proof. The reconfiguration takes place within the union of the bounding boxes of C S and CT , which is contained within
the union of the bounding boxes of S and T . At most m modules are relocated, each by a 1-Tunnel or 2-Tunnel operation
requiring O (1) atomic operations, resulting in O (m) = O (n) parallel steps and atomic operations. �
3.1.3. Overall 2D reconfiguration algorithm

The general algorithm to reconfigure any m meta-module robot S to any other m meta-module robot T consists of four
major steps. First S reconfigures into comb C S , then C S reconfigures into common comb CST . Then the reverse moves of the
2D-Comb-To-Common-Comb and 2D-Combing algorithms reconfigure CST into CT and then CT into T .

Theorem 1. Any 2D source robot can be reconfigured into any 2D target robot in-place in O (n) parallel steps and a total of O (n)

atomic operations.

3.2. Centralized reconfiguration in 3D

Analogous to the 2D case, in 3D the source robot S is also transformed into a 3D common comb and then into the target
robot T . In transforming to the 3D common comb there are two intermediate configurations, a terrain configuration and a
(regular) 3D comb configuration.

3.2.1. Source robot to 3D terrain
We use the 3D analog of the 2D-Combing process, 3D-Combing, to reconfigure S into a 3D terrain. The 3D algorithm

is the same as in 2D, except the wall now consists of an entire 2D horizontal layer of meta-modules, initially the topmost
single layer of S . See Fig. 5. In each iteration of the algorithm, wall meta-modules are labeled as stationary or moving.
Analogous to the 2D case, a stationary meta-module is one that has an adjacent meta-module below. Here, a 3D moving
wall component is an arbitrarily shaped maximal component of adjacent moving meta-modules within the wall. In Fig. 5a
for instance, the wall is in the initial position and contains one single F -shaped moving component. When the wall moves
down a layer, the moving components slide past the stationary meta-modules (using a Slide(z−) move). The final result is
that all meta-modules of S having the same (x, y) coordinates are grouped together to form a contiguous tower of meta-
modules. These towers extend in the z+ direction, rest on an arbitrarily-shaped, connected base layer (in the xy-plane), and
are attached only to the base layer.

658 G. Aloupis et al. / Computational Geometry 42 (2009) 652–663

Fig. 5. The 3D-Combing algorithm. (a) Meta-modules labeled M form one F -shaped connected component. (b, c, d) Robot configuration after (1, 2, 3)
algorithm iterations. (d) Final terrain configuration.

Fig. 6. (a) Solid meta-modules are C S after each z-comb is converted to a common comb. CU consists of the solid and the wireframe boxes. (b) C S after
extending its xy-comb handle to match that of CU . (c) C S during the execution of Step 4.3 of Algorithm 3, as it lengthens the teeth of C7

S by tunneling
meta-modules from C4

S . (d) The 3D common comb (solid boxes only).

Lemma 4. A 3D robot can transform into a 3D terrain in-place in O (n) parallel steps and a total of O (n) atomic operations.

3.2.2. 3D terrain to 3D comb
A 3D Terrain I is reconfigured into a 3D comb by applying the 2D-Combing algorithm of Section 3.1.1 to its base layer,

thus reconfiguring the base layer into a 2D comb. As the base meta-modules move during the reconfiguration, they carry
along the towers resting on top. If B(I) is the base of I , then a call to 2D-Combing(B(I)) using the Slide operation that
carries towers (see Fig. 1c) accomplishes this. After this second combing pass, the resulting 3D comb robot consists of a 2D
comb in the xy-plane (call this the xy-comb), and each tooth and its handle module in the xy-comb form the handle of a
comb with teeth extending up in the z direction (call these the z-combs). We immediately have the following result.

Lemma 5. A 3D terrain can transform into a 3D comb in-place in O (n) parallel steps and a total of O (n) atomic operations.

3.2.3. 3D comb to 3D common comb
Given two 3D combs C S and CT , this section describes an algorithm to reconfigure C S into the 3D common comb CST

determined by C S and CT . Let s (t) be the number of z-combs in C S (CT); equivalently, s (t) is the handle length of C S ’s
(CT ’s) xy-comb. We assume C S (CT) is positioned with the handle of its xy-comb starting at lattice coordinates (1,1,1)

and extending to (s,1,1) ((t,1,1)). Let C i
S be the z-comb of C S in lattice position i, let Si

j be the jth tooth of C i
S , and let

|Si
j| be the number of teeth meta-modules in tooth Si

j (not counting the handle module at its base). Let hi
S be the length

of C i
S ’s handle. All terms are defined analogously for combs CT and CU .

As in 2D, comb CU is the union of C S and CT . Let u be the handle length of CU ’s xy-comb. The common comb is a subset
of CU consisting of the u handle meta-modules in its xy-comb and its rightmost m − u meta-modules. More precisely, for
each z-comb C i

U , i = u . . . 1, append to a list I the handle meta-modules (i,2,1) to (i,hi
U ,1) of C i

U , followed by the teeth
meta-modules of C i

U in descending order on their y coordinate (primary key) and increasing order on their z coordinate
(secondary key). The first m − u meta-modules of I are in the common comb.

Algorithm 3 describes in detail the process of converting C S to the common comb. In Step 1, the algorithm converts each
z-comb C i

S to the 2D common comb determined by C i
U = C i

S ∪ C i
T using Algorithm 2. Fig. 6a shows example results from

Step 1. Since C i
S and C i

T may not contain the same number of meta-modules, there may not be enough meta-modules in C i
S

to fill the entire handle of C i
U , in which case C i

S will contain only a portion of the handle that starts with module (i,1,1).
Step 2 creates a queue, O , of meta-modules, in the order in which they will be used to fill meta-modules of CU . Step 3

extends the length of C S ’s xy-comb handle so that it matches the length of CU ’s xy-comb handle. Fig. 6b shows the results
of this step. The order of the meta-modules in O ensures that each leg of the k-Tunnel path is unattached to other meta-
modules, thus allowing the k-Tunnel move to be performed in O (1) time. In Step 4, the teeth of each z-comb in C S
are lengthened to match the lengths of the corresponding teeth in CU . As in 2D, an important invariant is that, at the
beginning of each iteration i of Step 4, O contains exactly the teeth and handle meta-modules in combs C1

S , . . . , C i
S (with

the exception of those meta-modules in C S ’s xy-comb handle, which stay in place throughout this step). Step 4.1 removes
from O those meta-modules that are already in C i

S . Step 4.2 extends C i
S ’s handle such that its length matches that of C i

U .

G. Aloupis et al. / Computational Geometry 42 (2009) 652–663 659

1. For i = 1 . . . s
1.1 2D-Comb-To-Common-Comb(C i

S , C i
U)

(with combs parallel to the yz plane)
2. Let O be an empty queue

For i = s down to 1
2.1 Append to O the teeth meta-modules of C i

S , ordered by
increasing y (primary key) and decreasing z (secondary key)

2.2 Append to O all handle meta-modules of C i
S except for

module (i,1,1), ordered by decreasing y
3. If s < u then { extend the handle of C S ’s xy-comb to length u }

3.1 For i = s + 1 to u
oPos = O .dequeue()
In C S , k-Tunnel(oPos, (i,1,1)), for k ∈ {1,2}

4. For i = u down to 1 { fill in missing meta-modules of each z-comb }
4.1 For j = 1 to |C i

S | − 1
O .dequeue() { remove meta-modules already in C i

S }
4.2 For j = hi

S + 1 to hi
U { lengthen handle of C i

S }
If (O .size() == 0) exit
oPos = O .dequeue()
In C S , k-Tunnel(oPos, (i, j,1)), for k ∈ {2,3}

4.3 For j = hi
S down to 1 { lengthen short teeth of C i

S }
For k = |Si

j | + 1 to |U i
j |

If (O .size() = 0) exit
oPos = O .dequeue()
In C S , k-Tunnel(oPos, (i, j,k)), for k ∈ {3,4}

Algorithm 3. 3D-Comb-To-Common-Comb Algorithm(C S , CU).

Step 4.3 lengthens short teeth of C i
S . Again, the order of the meta-modules in O ensures that each k-Tunnel operation

follows a path whose segments are not attached to any other meta-modules, allowing O (1) k-Tunnel moves. A stage of
Step 4 is illustrated in Fig. 6c, with Fig. 6d showing the resulting 3D common comb (solid meta-modules).

Lemma 6. A 3D robot can transform into a common comb configuration in-place in O (n) parallel steps and a total of O (n) atomic
operations.

3.2.4. Overall 3D reconfiguration algorithm
The general algorithm to reconfigure any 3D m meta-module robot S to any 3D m meta-module target robot T consists

of six stages: S reconfigures into 3D terrain I S , then I S reconfigures into 3D comb C S , then C S reconfigures into common
comb CST , and finally the reverse moves reconfigure CST into CT , CT into IT , and then IT into T .

Theorem 2. Any source robot can be reconfigured into any target robot in-place in O (n) parallel steps and a total of O (n) atomic
operations.

We have focused on reducing the mechanical operations performed by the atoms because they dominate the reconfig-
uration time. However, we comment briefly on the time required by the centralized processor to compute the sequence of
meta-module moves. A straightforward simulation of the 3D-Combing algorithm takes O (m) time to slide the wall down
one row, giving an overall running time of O (m2). The Terrain-To-Comb algorithm has the same time behavior as the
2D-Combing algorithm, which also requires O (m2) time. The 3D-Comb-To-Common-Comb algorithm requires O (m) time, if
counting sort is used to order the meta-modules in the queue O by their lattice coordinates, and counts such as |C i

S | are
initially determined and then updated each time a meta-module is relocated via a k-Tunnel operation. Therefore, the overall
processing time required by the centralized processor is O (m2), which is O (n2). In the distributed algorithm that follows,
this reduces to O (n) (parallel) processing time.

4. Distributed implementation

Our centralized algorithms can be executed by the meta-modules in a synchronous, distributed fashion. The implemen-
tation must be synchronous since both the Slide and k-Tunnel moves require strict coordination of motion among the
atoms in order to prevent collisions and disconnection of the robot. For example, the two end meta-modules of a moving
component in the 2D-Combing algorithm must perform their slides at the same time. To synchronize the operations, we
assume each atom/meta-module can count clock ticks modulo k, for any k ∈ N.

The Combing algorithm can be easily adapted to the synchronous distributed model. During an initialization phase, each
meta-module is sent its starting (x, y, z) location and the starting position of the wall. Thereafter, each meta-module can
determine its next move in O (1) time by keeping track of elapsed clock ticks to determine the position of the wall, using

660 G. Aloupis et al. / Computational Geometry 42 (2009) 652–663

information on its current state (moving or stationary), and polling adjacent meta-modules on their state. For example, each
meta-module can determine its own moving or stationary label by just checking if it is attached to a module below.

For the reverse of the Combing algorithm taking CT to T , if a meta-module were to simulate the entire forward combing
algorithm to determine the sequence of moves it will run in reverse, its overall processing time would be O (n2). But
we describe here a distributed reverse combing algorithm that requires each meta-module to do only O (n) processing,
albeit with some stronger requirements. It assumes that each meta-module’s location in CT and the final configuration
is communicated to every meta-module. In addition, each meta-module requires a more powerful processor on board.
Specifically, we require that each meta-module can store information of size O (n) and can run an algorithm of complexity
O (n) in O (n) time.

We will describe the algorithm for 2D; for 3D it is analogous. Using the final configuration T and its (x, y) location in CT ,
each meta-module first determines in O (n) time where its final location in T will be. Its final location has coordinates
(x, y′), where y′ � y. The wall initially is set to the first row of CT and slides upwards. For each movement of the wall,
the wall meta-modules label themselves as moving or stationary. A wall meta-module is moving if its current y coordinate
is less than its final y′ coordinate. Otherwise, it is stationary (and is in its final location). Next, moving components are
identified. At least one end meta-module of each moving component is adjacent to a stationary module, which in turn has
a meta-module resting on top of it, for otherwise the final configuration T would not be connected. When a meta-module
is labeled a moving meta-module for the first time, it detaches from the meta-module adjacent below it (if any). Then the
end meta-modules of the moving components slide their component and any meta-modules resting on top of it up one
row. In preparation for the next slide, all meta-modules that entered the wall for the first time attach on the left and right
to any adjacent meta-modules. A minor issue arises in having the meta-modules keep track of their (x, y) locations as the
moving components slide up, since meta-modules resting on top of moving components need to know that they moved up
a row. It is straightforward, though, to have each meta-module use CT and T to determine in O (n) time the clock tick in
which the wall will reach it and what its y coordinate will be on that clock tick. Like the forward Combing algorithm, the
reverse algorithm is in-place and runs in O (n) parallel steps and performs a total of O (n) atomic operations.

The Comb-To-Common-Comb algorithms can also be distributed, albeit with similar requirements as the distributed re-
verse combing algorithm. First, the initial and final configurations S and T must be communicated to each meta-module.
Then each meta-module must simulate the Comb-To-Common-Comb algorithm to precompute which operations it will per-
form on each clock tick, since local information alone is not enough to determine a meta-module’s next operation. For
example, meta-modules at the turn locations in the k-Tunnel operations must determine when they will be involved in
such an operation in order to coordinate their actions. Distributing the reverse of the Comb-To-Common-Comb algorithm to
take CST to CT is done similarly and thus has the same requirements as the forward Comb-To-Common-Comb algorithm.

The total processing time needed to determine the atomic operations is reduced to O (n) parallel time in the distributed
implementation. In the forward Combing algorithms, each meta-module does O (1) computations in parallel for each of
the O (m) = O (n) times the wall moves. Similarly, the reverse Combing algorithms require O (n) parallel time, as outlined
above. In the forward and reverse Comb-To-Common-Comb algorithms, in parallel each atom simulates the algorithm to
precompute its moves, taking O (n) parallel time.

5. Conclusions and open problems

Here we presented an algorithm for reconfiguring a cube-style robot in O (n) parallel moves and atomic operations, im-
proving upon the previous best algorithms that required both O (n2) parallel moves and atomic operations. Subsequent to
the short version of this result appearing in [4], there have been two significant new advances: an algorithm that recon-
figures in O (n) parallel operations while taking into account the physical forces associated with mass or inertia during the
moves by restricting to constant force per operation [9], and an algorithm for reconfiguring in O (log n) parallel moves [10].
Problems open for future work include developing distributed algorithms that operate using simple local rules, thus reduc-
ing the on-board processing requirements of the atoms. Also of interest are algorithms that minimize the maximum number
of moves any one atom must perform, since each atom is limited by its battery power.

Acknowledgements

We thank Thomas Hackl for his suggestion on how to reduce the size of the meta-modules [7]. We thank the other
participants of the 2007 Workshop on Reconfiguration at the Bellairs Research Institute of McGill University for providing a
stimulating research environment.

Appendix A

This appendix shows how to achieve the Slide and k-Tunnel moves in both the expanded and the contracted atom
models, using meta-modules of minimum size. In the expanded (contracted) model, the atoms have their faces expanded
(contracted) except when they are involved in a meta-module operation. Both models have been considered in the robotics
community, and one may be preferred over the other depending on whether space is restricted (use the contracted model)
or a larger robot is needed (use the expanded model). Previously, meta-modules of size 4×4×4 were thought to be required

G. Aloupis et al. / Computational Geometry 42 (2009) 652–663 661

Fig. 7. Expanded robot. First steps of Slide applied to the top meta-module. Only one layer shown.

Fig. 8. Contracted robot. First steps of Slide applied to the top meta-module. Only one layer shown.

Fig. 9. Expanded robot. Carrying meta-modules in a Slide move. Only one layer shown.

Fig. 10. Contracted robot. Carrying meta-modules in a Slide move. Only one layer shown.

to perform these moves in the expanded model [1]. Here we show that 2 × 2 × 2 meta-modules suffice [7]. For both models,
the sequences of atom operations we provide for the k-Tunnel move avoid exchanging atoms among meta-modules.

Slide

The following figures show the first steps in an example Slide operation applied to the top meta-module (dark gray)
in the expanded model (Fig. 7) and in the contracted model (Fig. 8). In both cases, the result is that the top meta-module
slides one atom to the left; repeating this sequence of steps one more time completes the Slide move.

Figs. 9 and 10 show how the sliding meta-module can carry other meta-modules with it.

Connectedness of the robot. Notice that sliding one meta-module will not disconnect the robot as long as the sliding meta-
module (dark gray in the previous figures) is only attached to the substrate meta-module (colored light gray) with respect
to which it will slide. When several modules are to slide simultaneously, possibly carrying some other meta-modules with
them, both the sliding and the carried meta-modules need to be only attached to meta-modules sliding or being carried in
the same direction.

Complexity of the move. As shown in Figs. 9 and 10, both the number of parallel steps and the number of atomic operations
(contract, expand, attach, detach) needed to perform a Slide move is constant, no matter how many meta-modules are
carried in the move.

k-Tunnel

Figs. 11 and 12 show the 1-Tunnel((x, y + 1), (x + 1, y)) atomic operations in the expanded and contracted models.
Figs. 13 and 14 show selected steps of 1-Tunnel((x, y + 3), (x + 3, y)) in both models.

Connectedness of the robot. In all our algorithms, we have no modules attached along the path between the meta-modules
where the path turns. So tunneling a meta-module along a path can be achieved without worry about disconnecting the
robot.

Complexity of the move. k-Tunnel is implemented in O (k) parallel steps using O (k) atomic operations, as long as there are
no meta-modules attached along the paths between consecutive turns, as is the case in our algorithms here. When there

662 G. Aloupis et al. / Computational Geometry 42 (2009) 652–663

Fig. 11. Expanded robot. 1-Tunnel((x, y + 1), (x + 1, y)). Only one layer shown. Attachments and detachments are not shown.

Fig. 12. Contracted robot. Example of 1-Tunnel((x, y + 1), (x + 1, y)). Only one layer shown. Attachments and detachments are not shown.

Fig. 13. Expanded robot. Selected steps of 1-Tunnel((x, y + 3), (x + 3, y)). Labels refer to Fig. 11.

Fig. 14. Contracted robot. Selected steps of 1-Tunnel((x, y + 3), (x + 3, y)). Labels refer to Fig. 12.

G. Aloupis et al. / Computational Geometry 42 (2009) 652–663 663

are attached meta-modules, k-Tunnel can still be implemented in O (k) parallel steps, but the number of atomic operations
required is proportional to the number of turns plus the number of meta-modules attached to the legs of the path. This is
because each attached meta-module must be partially detached to allow pushing along the legs of the path.

References

[1] D. Rus, M. Vona, Crystalline robots: Self-reconfiguration with compressible unit modules, Autonomous Robots 10 (1) (2001) 107–124.
[2] S. Vassilvitskii, M. Yim, J. Suh, A complete, local and parallel reconfiguration algorithm for cube style modular robots, in: Proc. of the IEEE Intl. Conf.

on Robotics and Automation, 2002, pp. 117–122.
[3] Z. Butler, D. Rus, Distributed planning and control for modular robots with unit-compressible modules, Intl. J. Robotics Res. 22 (9) (2003) 699–715,

doi:10.1177/02783649030229002.
[4] G. Aloupis, S. Collette, M. Damian, E. Demaine, R. Flatland, S. Langerman, J. O’Rourke, S. Ramaswami, V. Sacristán, S. Wuhrer, Linear reconfiguration of

cube-style modular robots, in: Proc. 18th International Symposium on Algorithms and Computation, in: Lecture Notes in Computer Science, vol. 4835,
Springer, Berlin, Heidelberg, 2007, pp. 208–219.

[5] Z. Butler, R. Fitch, D. Rus, Distributed control for unit-compressible robots: Goal-recognition, locomotion and splitting, IEEE/ASME Trans. Mecha-
tron. 7 (4) (2002) 418–430.

[6] J. Suh, S. Homans, M. Yim, Telecubes: Mechanical design of a module for self-reconfigurable robotics, in: Proc. of the IEEE Intl. Conf. on Robotics and
Automation, 2002, pp. 4095–4101.

[7] T. Hackl, Personal communication, 2007.
[8] E.M. Arkin, M.A. Bender, J.S.B. Mitchell, V. Polishchuk, The snowblower problem, in: S. Akella, N.M. Amato, W.H. Huang, B. Mishra (Eds.), WAFR, in:

Springer Tracts in Advanced Robotics, vol. 47, Springer, 2006, pp. 219–234.
[9] G. Aloupis, S. Collette, M. Damian, E. Demaine, D. El-Khechen, R. Flatland, S. Langerman, J. O’Rourke, V. Pinciu, S. Ramaswami, V. Sacristán, S. Wuhrer,

Realistic reconfiguration of crystalline (and telecube) robots, in: Proc. 8th International Workshop on the Algorithmic Foundations of Robotics, 2008, in
press.

[10] G. Aloupis, S. Collette, E. Demaine, S. Langerman, V. Sacristán, S. Wuhrer, Reconfiguration of cube-style modular robots using O (logn) parallel moves,
in: Proc. 19th International Symposium on Algorithms and Computation, 2008, in press.

http://dx.doi.org/10.1177/02783649030229002

	Linear Reconfiguration of Cube-Style Modular Robots
	Recommended Citation
	Authors

	Linear reconfiguration of cube-style modular robots
	Introduction
	Preliminaries
	Robots as lattices of meta-modules
	Centralized and distributed complexity

	Centralized reconfiguration
	Centralized reconfiguration in 2D
	2D robot to 2D comb
	2D comb to 2D common comb
	Overall 2D reconfiguration algorithm

	Centralized reconfiguration in 3D
	Source robot to 3D terrain
	3D terrain to 3D comb
	3D comb to 3D common comb
	Overall 3D reconfiguration algorithm

	Distributed implementation
	Conclusions and open problems
	Acknowledgements
	References

