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Abstract

A band is the intersection of the surface of a convex polyhedron with the space
between two parallel planes, as long as this space does not contain any vertices
of the polyhedron. The intersection of the planes and the polyhedron produces
two convex polygons. If one of these polygons contains the other in the projection
orthogonal to the parallel planes, then the band is nested. We prove that all nested
bands can be unfolded, by cutting along exactly one edge and folding continuously
to place all faces of the band into a plane, without intersection.
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1 Introduction

It has long been an unsolved problem to determine whether every polyhedron
may be cut along edges and unfolded flat to a single, non-overlapping poly-
gon [12,9,7,6]. An interesting special case emerged in the late 1990s: 6 can the
band of surface of a convex polyhedron enclosed between parallel planes, and
containing no polyhedron vertices, be unfolded without overlap by cutting an
appropriate single edge? A band and its associated polyhedron are illustrated
in Figure 1.

Y

X

Y
X

Fig. 1. A polyhedron cut by two parallel planes, and the projection of the resulting
band onto the xy plane.

This band forms the side faces of what is known as a prismatoid (the convex
hull of two parallel convex polygons in R3) but the band unfolding question
ignores the top and bottom faces of the prismatoid. An example was found
(by E. Demaine and A. Lubiw) that shows how flattened bands can end up
overlapping if a “bad” edge is chosen to cut; see Figure 2.

Fig. 2. Projection of a band that self-intersects when cut along the wrong edge
and unfolded. Left: original band. Edges at the bottom are nearly collinear. Right:
self-intersecting unfolding.

Band-like constructs have been studied before. Bhattacharya and Rosenfeld [3]
define a polygonal ribbon as a finite sequence of polygons, not necessarily
coplanar, such that each pair of successive polygons intersects exactly in a

6 Posed by E. Demaine, M. Demaine, A. Lubiw, and J. O’Rourke, 1998.
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common side. Triangular and rectangular ribbons (both open and closed) have
also been studied. Arteca and Mezey [2] deal with continuous ribbons. Simple
bands can be used as linkages to transfer mechanical motion, as pointed out
by Cundy and Rollett [5]. Open and closed rings of rigid panels connected
by hinges have also been considered in robotics as another model for robot
arms with revolute joints. For example, their singularities are well understood
mathematically [4]. As a special case of the more general panel-and-hinge
structures studied in rigidity theory, they are relevant to protein modeling
[13]. In all these instances, almost no attention was paid to questions regarding
their non-self-intersecting states or their self-collision-avoiding motions.

There is one unfolding result that is particularly relevant to our problem, which
may be interpreted as unfolding infinitely thin bands. This result states that
a slice curve, the intersection of a plane with a convex polyhedron, develops
(unfolds) in the plane without overlap [8,10]. This result holds regardless of
where the curve is cut. Thus, both the top and the bottom boundary of any
band (and in fact any slice curve between) cannot self-intersect after a band
has been flattened. So overlap can only occur from interaction with the cut
edge, as in Figure 2.

Here we will prove that a particular type of band can be unfolded by ex-
plicitly identifying an edge to be cut. A band is nested if projecting the top
boundary A orthogonally onto the plane of the bottom boundary B results
in a polygon nested inside B. For example, the band in Figure 1 is nested.
Intuitively, we might expect to obtain a nested band if both parallel planes
cut the polyhedron near its “top”. We prove that all nested bands can be
unfolded. Our proof provides more than non-overlap in the final planar state:
it ensures non-intersection throughout a continuous unfolding motion.

2 Bands

We first define bands more formally and analyze their combinatorial and ge-
ometric structure, without regard to unfolding.

Let P be the surface of a convex polyhedron with no coplanar faces. Let
z0, z1, . . . , zm denote the sorted z coordinates of the vertices of P . Pick two
z coordinates zA and zB that fall strictly between two consecutive vertices
zi and zi+1, and suppose that zA is above zB: zi < zB < zA < zi+1. The
band determined by P , zA, and zB is the intersection of P ’s surface with the
horizontal slab of points whose z coordinates satisfy zB ≤ z ≤ zA.

The band is a polyhedral surface with two components of boundary, called A
and B. Specifically, we define A as the top (polygonal) chain of the band, i.e.,
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the intersection of P ’s surface with the plane z = zA, and B is the bottom
chain, corresponding to the plane z = zB. Both chains A and B are convex
polygons in their respective horizontal planes, being slice curves of a convex
polyhedral surface P . All vertices of the band are vertices of either A or B.

Every vertex of the band is incident to exactly three edges: two along the chain
A or B containing the vertex, and the third connecting to the other chain.
This third edge, called a hinge, is part of an edge of the original polyhedron
P connecting a vertex of P with z coordinate less than zB to a vertex of P
with z coordinate greater than zA. The hinge from each vertex of the band
defines a perfect matching between vertices of the top chain A and vertices of
the bottom chain B. This matching is consistent with the cyclic orders of A
and B in the sense that, if vertex ai of A is paired with vertex bi of B, then the
vertex ai+1 clockwise around A from ai is paired with the vertex bi+1 clockwise
around B from bi. This correspondence defines a consistent clockwise labeling
of the vertices a0, a1, . . . , an−1 of A and the vertices b0, b1, . . . , bn−1 of B, unique
up to a common cyclic shift. 7

Each face of the band is a quadrilateral spanned by two adjacent vertices ai

and ai+1 on the top chain A and their corresponding vertices bi and bi+1 on
the bottom chain B. This facial structure follows from the edge structure of
the band. Each face is planar because it corresponds to a portion of a face of
the original polyhedron P . Because edges aiai+1 and bibi+1 lie in a common
plane as well as in parallel horizontal planes, the edges themselves must be
parallel. Thus every face of the band is in fact a trapezoid, with parallel top
and bottom edges.

3 Nested Bands

Next we analyze the geometric structure of nested bands in particular, still
without regard to unfolding.

A band is nested if the orthogonal projection of A into the xy plane is strictly
contained inside the orthogonal projection of B into the xy plane. (Of course,
a band is just as nested if instead B’s projection is contained inside A’s pro-
jection, but in that case we just reflect the band through the xy plane.)

Nested bands have a particularly simple structure when projected into the
xy plane. As with all bands, each face projects to a trapezoid. The unique
property of a nested band is that none of its edges cross in projection. This
property follows because the projected edges are a subset of a triangulation of

7 Throughout this paper, indices are taken modulo n.
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the projections of A and B, which themselves do not intersect by the nested
property. (In non-nested bands, edges of A intersect edges of B in projection.)
Thus the projected trapezoidal faces of the band form a planar decomposition
of the region of the xy plane interior to the projection of B and exterior to
the projection of A. When dealing with projections, we will refer to A (B) as
the inner (outer) chain.

In the xy projection, the normal cone of a vertex ai of A (or more generally
any convex polygon) is the closed convex region between the two exterior rays
that start at ai and are perpendicular to the incident edges ai−1ai and aiai+1

respectively. See Figure 3. The two rays forming this cone decompose the local
exterior of A around ai into three regions: left (counterclockwise), inside, and
right (clockwise) of the normal cone.

A

ai−1

ai

ai+1

Fig. 3. The normal cone of a vertex ai.

Lemma 1 In the xy projection of a nested band, not all hinges aibi can be to
the right (or all to the left) of the normal cones of their inner endpoint ai.

PROOF. The following proof refers exclusively to the xy projection. Suppose
by symmetry that all hinges are clockwise (right), or on the right border, of
their respective normal cones on the inner chain A. For each i, define Ti to
be the trapezoid with vertices ai−1, ai, bi, bi−1, and let hi denote its height,
i.e., the distance between the opposite parallel edges ai−1ai and bi−1bi. See
Figure 4. Because aibi is right of the perpendicular at ai to aiai+1, and because
the interior angle at bi is convex, the convex angle aibibi−1 is less than the
convex angle biaiai+1. Thus, the height hi of Ti is less than the height hi+1

of the clockwise next trapezoid Ti+1. Applying this argument to every Ti, we
obtain a cycle of strict inequalities h0 < h1 < · · · < hn−1 < h0, which is a
contradiction. 2
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bi

hi

hi+1

ai−1

ai

bi+1

ai+1bi−1

Fig. 4. If the hinge aibi is right of the normal cone at ai, then the top shaded angle
is less than the bottom shaded angle, so hi < hi+1.

4 Opening Convex Chains

Before we study the unfolding of bands, we first study what happens when
opening a convex closed chain (polygon) by cutting it at some vertex ai and
increasing all other internal angles.

We introduce some basic notation and terminology for a convex closed chain;
refer to Figure 5(a). Given a clockwise-oriented convex closed chain A =
〈a0, a1, . . . , an−1〉 in the plane, the interior angle αj at a vertex aj, 0 ≤ j ≤
n − 1, is the angle aj−1ajaj+1 located on the right side of the chain. Let
τj = π − αj be the turn angle at aj, which is positive (to the right) because
of the clockwise orientation of A. Let θj be the counterclockwise angle of the
vector aj −aj−1 from the positive x axis. If ai−ai−1 is fixed along the positive
x axis, then for a chain with all right turns, we have θi = 0, θi−1 = τi−1, and
in general,

θi−k =
i−1∑

j=i−k

τj. (1)

An opening of a convex closed chain A at ai is a motion A′(t) that cuts the
chain at ai, holds the edge ai−1ai fixed, and monotonically increases all other
interior angles. See Figure 5(b). More precisely, an opening of A at ai consists
of a nonstrictly increasing function δj : [0, 1] → [0, τj], with δj(0) = 0, for each
j 6= i. For any t ∈ [0, 1], the opened chain A′(t) = 〈a∗(t), a′i+1(t), a

′
i+2(t), . . . ,

a′n−1(t), a
′
0(t), a

′
1(t), . . . , a

′
i(t)〉 at time t is obtained from A by fixing a′i(t) = ai,

fixing a′i−1(t) = ai−1, and opening each interior angle αj, j 6= i, to α′
j(t) =

αj + δj(t). The opening separates two copies of ai; we call the stationary copy
ai and the moving copy a∗(t). Because δj(0) = 0, the opening motion starts
at A′(0) = A. Because δj(t) is nonstrictly increasing, the interior angles α′

j(t)
only open with t. Because δj(t) ≤ τj, the interior angle α′

j(t) remains at most
αj + τj = π, so the opened chain A′(t) has only right turns. Thus these chains
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ai−2

ai+1

αiαi−1

τi−2

αi−2

ai−1 ai = a∗(0)

αi+1

αi+2 θi+2

ai+2

a∗

r

forbidden
region

α′
i+1

(b)(a)

a′i−1

a′i−2

a′i+2

a′i+1

a′i

Fig. 5. (a) A convex closed chain A, and (b) an opening of αi+1.

A′(t) can use the same definitions of interior angle α′
j(t), turn angle τ ′j(t),

and counterclockwise angle θ′j(t) at a vertex a′j(t), j 6= i, and the analog of
Equation (1) still holds.

Lemma 2 During any opening A′(t) of a convex closed chain A at ai, every
edge a′k(t)a

′
k+1(t) turns clockwise in the sense that the vector a′k+1(t) − a′k(t)

rotates only clockwise as t increases; in particular, a∗(t)ai+1(t) turns clockwise.

PROOF. The transformation of an edge ak−1ak of A to a′k−1(t)a
′
k(t) induced

by the opening at time t can be expressed as a composition of rotations,
rotating clockwise by δj(t) around each vertex aj for j = k, k + 1, . . . , i − 1.
In particular, the vector a′k(t)− a′k−1(t) is a rotation of ak − ak−1 clockwise by∑i−1

j=k δj(t). Because δi(t) ≥ 0 and δi(t) only increases with t, ak+1(t) − ak(t)
rotates only clockwise as t increases. 2

Lemma 3 During any opening A′(t) of a convex closed chain A at ai, the
Euclidean distance between any two vertices a′j(t) and a′k(t) only increases
with t.

PROOF. Cauchy’s arm lemma [8,10] states that opening the interior an-
gles α1, α2, . . . , αn−1 of a convex open chain a0, a1, . . . , an nonstrictly increases
the Euclidean distance between the endpoints a0 and an. The lemma follows
from applying Cauchy’s arm lemma to the chain aj, aj+1, . . . , ak or the chain
ak, ak+1, . . . , aj, whichever excludes the missing edge aia

∗. 2

We define three classes of shapes that an open chain A′ = 〈a∗, a′i+1, a
′
i+2, . . . ,

a′n−1, a
′
0, a

′
1, . . . , a

′
i〉 with only right turns may have: convex, weakly convex,

and spiral. Refer to Figure 6. The chain A′ is convex if joining the endpoints
a′i and a∗ with a closing segment yields a convex polygon. The chain A′ is
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weakly convex if joining the endpoints a′i and a∗ with a segment yields a
nonconvex simple polygon with no exterior angles smaller than π/2. Such a
weakly convex chain is called R-weakly convex or L-weakly convex depending
on which endpoint is on the hull: if a′i is on the hull, then the chain is L-weakly
convex; if a∗ is on the hull, then the chain is R-weakly convex. If the chain A′

is neither convex nor weakly convex, then it is a spiral.

Fig. 6. Types of chains, from left to right: convex, R-weakly convex, spiral. Endpoints
are joined by dashed line segments.

Lemma 4 During any opening A′(t) of a convex closed chain A at ai, A′(t)
remains convex or weakly convex, and the endpoint a∗(t) remains outside the
normal cone of ai.

PROOF. Define the forbidden region to be the normal cone of ai unioned
with the quarter-plane above the horizontal ray emanating leftward from ai;
see Figure 5. Initially, no vertex aj is inside the forbidden region. By Lemma 3,
no vertex a′j(t) can cross an edge a′k−1(t)a

′
k(t), for to cross the edge, a′j(t) would

have to approach one of the edge’s endpoints. In particular, no vertex a′j(t)
can cross the edge ai−1ai. Because the opened chain A′(t) has only right turns,
the only way for a vertex a′j(t) of the chain to enter the forbidden region is for
a∗(t) to cross the ray r emanating from ai normal to aiai+1. Such penetration
is possible only when a∗(t) is above or on the horizontal line through the edge
ai−1ai, so we consider values of t for which this is the case.

We claim that, for such values of t, the direction of the edge a∗(t)a′i+1(t)
remains in the clockwise range from the direction of aiai+1 to the horizontal
leftward direction. By Lemma 2, the edge turns clockwise from its original
direction of aiai+1. If the direction were ever to reach horizontal leftward, it
would be impossible to connect a′i+1(t) to ai−1 by only turning right and using
a total turn angle less than 2π. (Turn angles only decrease while opening, and
the initial total turn angle excluding ai is less than 2π.) The vertices a′j(t)
thus remain in the clockwise wedge around a∗(t) from the direction of aiai+1

to horizontal leftward. These vertices are the possible centers of a clockwise
rotation affecting a∗(t). The resulting instantaneous direction of motion of
a∗(t) is thus in the clockwise range from the direction of the normal ray r to
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vertical downwards (the previous cone of directions rotated clockwise by π/2).
Furthermore, in the case of instantaneous motion along the direction of r, the
actual motion of a∗(t) is clockwise of the direction of r. Therefore, a∗(t) moves
away from the ray r for these values of t, so it could never cross r. 2

Lemma 5 Let A′(t) and A′′(t) be openings of a convex closed chain A at
ai+1 and at ai, respectively, with the same angle-opening δj(t) functions for
j 6= i, i+1. If A′(t) is R-weakly convex, then A′′(t) cannot be L-weakly convex.

PROOF. Because the lemma concerns only a single time t, we omit the t
argument. We apply a series of transformations that transform A′ into A′′;
refer to Figure 7. Because A′ is R-weakly convex, a∗ must be in the upper-
right quadrant of a′i+1. Now we make a new cut at a′i, and translate the entire
opened chain, except the fixed edge aiai+1, so that a∗ re-attaches to a′i+1. We
let a′′i denote the translated copy of a′i, and let a∗∗a′′i+1 denote the original fixed
edge. Now a′′i must be in the lower-left quadrant of a∗∗.

(a)

a′′i−1

a′i−1

a∗

a∗∗

a′′i

(b)

a′i+1
a′i+2

a′′i+2

a′′i+1a′i

Fig. 7. (a) An opened chain A′. (b) Translating part of the chain to switch the cut
vertex. This is a new opened chain A′′ except that the angle αi+1 is not yet opened.

Now we have a new opened chain, except that we have not taken care of the
opening of angles α′′

i and α′′
i+1. Because A′ opened the angle at a′i by rotating

the chain that we merely translated, and a′′i no longer has an angle to open, we
must rotate the translated chain to return it to the original orientation. This
rotation is counterclockwise, because the opening rotation at a′i was clock-
wise. Next, because a′′i+1 (previously a∗) has an angle not present in A′, we
must open that angle by again rotating the entire translated chain. Again the
rotation is counterclockwise to open a′′i+1. (Technically, we should also rotate
the entire chain to make a′′i−1a

′′
i horizontal, but this does not change weak

convexity.) During these counterclockwise rotations, a′′i might cross into the
lower-right quadrant of a∗∗, but a′′i cannot cross into the upper-left quadrant
of a∗∗. Therefore cutting at ai cannot produce an L-weakly convex chain. 2
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5 Unfolding Nested Bands

Having completed our study of unfolding cut chains, we now return the original
problem of unfolding bands. Our results on chains help understand the motions
of the top boundary A and the bottom B of the band. The rest of our study
focuses on the cut edge, which can cause intersection as in Figure 2 if we are
not careful.

After cutting a single hinge, a flattening motion is a continuous motion dur-
ing which each face moves rigidly but remains connected to each adjacent face
via their common hinge, and the final configuration is planar. If no intersec-
tion occurs during the motion, then this motion is a continuous unfolding.
If the resulting configuration is non-self-intersecting, but intersection occurs
during the motion, then we call the motion an instantaneous unfolding and
the resulting configuration an unfolded state. Thus in Figure 2 we would say
that the band has been flattened, but because it self-intersects it has not un-
folded. These notions can be defined precisely by specifying rigid motions of
the faces as functions of time that satisfy the connectivity constraints, similar
to openings of chains.

We now describe the particular flattening motion that will lead to our unfold-
ing, though it requires some effort to prove non-intersection, particularly of
the final state. The flattening motion is based on squeezing together the two
parallel planes z = zA and z = zB that contain A and B, keeping the planes
parallel and keeping each chain on its respective plane. At time t ∈ [0, 1],
the squeezing motion reduces the vertical separation between the two parallel
planes down to (1− t)(zA− zB), that is, it linearly interpolates the separation
from the original zA − zB down to 0.

The squeezing uniquely determines the hinge dihedral angles necessary to
keep the vertices of the band on their respective moving planes (assuming
exactly one edge of the band has been cut). See Figure 8 for an example
of the projected motion. For nested bands, the motion increases the interior
angle at every vertex of each chain in projection. This property can be seen
by examining any two adjacent faces that are being “squeezed”. Both faces
rotate continuously to become more horizontal. If we forced one of the faces
to keep its vertices in the parallel planes, but allow the second face to only
follow this motion rigidly (i.e., the dihedral angle at the hinge remains fixed),
then the edges of the second face would no longer be on the horizontal planes.
To compensate, the second face must perform a (dihedral) rotation about the
hinge. In fact, the interior angle at the hinge must increase (flatten), causing
the interior angles of the chains to increase (open). Because the interior angle
at a vertex of a nested band can open only to π, the opening chain will always
have only right turns. Thus we can apply the analysis of opening chains from
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Section 4. For example, Lemma 4 tells us that the opening chains never become
spirals, so in particular never self-intersect while flattening (a fact already
known from the slice-curve result of [8,10]).

Fig. 8. A view from above of a nested band during a squeezing motion. The original
configuration has a lighter shade. For each trapezoid, the height increases and its
parallel edges rotate clockwise relative to their original positions.

As the parallel planes squeeze together, each band face remains a trapezoid in
the projection. Edges aiai+1 and bibi+1 remain parallel and retain their orig-
inal lengths throughout. Hinge projections lengthen as the band is squeezed,
which causes the trapezoid angles to change. Because bi and bi+1 move or-
thogonally away from aiai+1, acute trapezoid angles increase toward π/2 and
obtuse angles decrease toward π/2.

The goal of this section is to show that the band does not self-intersect if
we cut a specific hinge. We mention that self-intersection of the band in 3D
implies self-intersection in projection, so it suffices to prove that there is no
self-intersection in projection to establish that there is no self-intersection in
3D.

Suppose that we cut hinge aibi and hold ai−1ai fixed along the x axis in the
positive direction. The motion separates two copies of ai; we call the stationary
one ai, and call the moving one a∗, as in Figure 5. Correspondingly, for the
outer chain, the direction of bi−1bi remains fixed (it moves away from ai−1ai

because the trapezoid enlarges in projection, but remains parallel), and b∗ is
a “moving” endpoint. Thus the cut hinge is split into edges aibi and a∗b∗. See
Figure 9.

Call a chain A safe if it is either convex, or it is R-weakly convex and the

11



ai

bibi−1

bi+1

bibi−1

bi+1

b∗

aiai−1

ai+1

ai−1

ai+1

a∗

(a) (b)

Fig. 9. (a) Projection of the inner convex chain A and part of the outer chain B.
Hinge aibi and the normal cone of vertex ai are shown. (b) The result of cutting at
aibi and flattening.

hinge aibi is left of or in the normal cone at ai, or it is L-weakly convex and
aibi is right of or in the normal cone at ai. An opening of the band is safe if the
opened inner chain A is safe. See Figure 10. We will prove that safe openings
of the band never self-intersect, i.e., are unfoldings. Then we will prove that
there is always a suitable hinge aibi that leads to a safe opening.

bi+1

bibi−1

ai−1 ai

ai+1

Fig. 10. After cutting at ai, the inner chain will become R-weakly convex if a∗ ends
up above the line determined by ai−1ai (dotted). In this case, the cut is labeled safe
if hinge aibi (dashed) is left of or in the normal cone at ai (which is not the case in
this figure).

Our next lemma covers an opened band by a clockwise-turning family of rays
emanating from the inner chain A, dependent only on the cut edges and not
on the outer chain B. This covering will allow us to prove nonoverlap of the
opened band—in fact, an infinite version of the band with no bounding outer
chain—in certain cases using the nonoverlap of A.

12



Lemma 6 For any safe opening of the band, there is a function r assigning
a ray r(p) from each point p on the chain A such that

(1) r is a continuous function;
(2) the direction of r(p) rotates only clockwise as p moves along A from a∗

to ai;
(3) the total turn angle made by r(p) as p travels along A from a∗ to ai is at

most 2π;
(4) the ray r(p) is locally exterior to the polygon formed by A and the edge

aia
∗; and

(5) the ray r(ai) passes through bi, and the ray r(a∗) passes through b∗.

(Only Property 4 requires safeness.)

PROOF. First we assign r(aj) for each vertex aj. We set r(ai) to the ray from
ai passing through bi, and set r(a∗) be the ray from a∗ passing through b∗.
Thus we obtain Property 5. For each j 6= i, let [uj, wj] denote the clockwise
range of directions of rays that are left of the two incident edges aj−1aj and
ajaj+1 (and hence locally exterior to A). We set the direction of r(aj), j 6= i,
according to three cases:

(1) If the direction of r(ai) is in the clockwise range [uj, wj], then we set the
direction of r(aj) to the direction of r(ai).

(2) Otherwise, if the direction of r(a∗) is in the clockwise range [uj, wj], then
we set the direction of r(aj) to the direction of r(a∗).

(3) Otherwise, we set the direction of r(aj) to the direction in the middle
of the range [uj, wj], i.e., r(aj) is the angular bisector of the exterior
(nonconvex) angle at aj.

Finally, we make r a continuous function over points on A by linearly inter-
polating the direction from r(aj−1) to r(aj) for points along the edge aj−1aj,
keeping the rays left of the edge. Thus we obtain Property 1.

Next we show Property 2 for the points along any edge aj−1aj. We split into
three cases. If r(aj−1) and r(aj) are exterior angular bisectors of aj−1 and aj,
respectively, then the claim follows because the exterior angles are nonconvex,
so r(aj−1) is left of the edge normal (at aj−1), while r(aj) is right of the edge
normal (at aj). If r(aj−1) has the same direction as r(a∗), then r(aj−1) must be
strictly left of the line from aj+1 to aj (in direction), while r(aj) is nonstrictly
right of this line, so the claim follows. The case when r(aj) has the same
direction as r(ai) is symmetric. Thus we obtain Property 2.

Next we show Property 3. Along each edge aj−1aj of A for which r(aj−1) and
r(aj) are angular bisectors, the ray turns 1

2
(τj−1+τj):

1
2
τj−1 turn from r(aj−1) to

a normal to aj−1aj, and 1
2
τj turn from that normal to r(aj). Thus the total turn
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caused by such edges is at most 1
2

∑
j 6=i,i+1(τj−1+τj) =

∑
j τj−τi−1

2
(τi−1+τi+1).

In the original chain A before opening, the total turn angle
∑

j τj is 2π, and
opening the chain only decreases the turn angle τj at each vertex aj, so

∑
j τj

remains at most 2π. Thus the total turn of ray from being normal to a∗ai+1 to
being normal to ai−1ai, visiting the angular bisectors of aj, j 6= i, in between,
is at most 2π − τi. If the projected trapezoid angle at ai (∠ai−1aibi) is acute,
then this total turn has already accounted for reaching (in fact, going beyond)
the direction of ray r(ai); if the angle is obtuse, however, then we must also
add the clockwise angle from the normal of ai−1ai to r(ai) to the total turn.
Similarly, if the projected trapezoid angle at a∗ (∠b∗a∗ai+1) is obtuse, then we
must add the clockwise angle from r(a∗) to the normal of a∗ai+1 to the total
turn. Before the opening, the sum of these two clockwise angles is τi, and the
flattening of the trapezoids only decreases these projected angles. Thus, the
additional turn remains at most τi. The total turn angle of the rays is therefore
at most 2π, proving Property 3.

Finally we show Property 4. The property holds along any edge aj−1aj of A,
with respect to that edge, because rays r(aj−1) and r(aj) are both chosen to
be left of the edge aj−1aj, and because by Property 2, r(aj) is clockwise of
r(aj−1) in the halfplane left of aj−1aj. It remains to show Property 4 at ai and
a∗ with respect to the closing edge aia

∗. Assume without loss of generality that
A is either convex or R-weakly convex. (Otherwise, imagine opening from the
other side, swapping the roles of ai and a∗.) In either case, a∗ai+1 is an edge
of the convex hull of A. Because the incident projected trapezoid of the band
is left of this edge, a∗b∗ and hence r(a∗) are left of this edge. Thus r(a∗) is
exterior to A. For convex chains, the same argument shows that r(ai) is left
of the edge ai−1ai and hence exterior to A, completing the proof in this case.
Now consider R-weakly convex chains. By safeness, aibi and hence r(ai) is left
of or in the normal cone at ai. By Lemma 4, a∗ is right of this normal cone.
Hence, r(ai) is locally outward with respect to the edge aia

∗. Therefore, in all
cases, we have Property 4. 2

Lemma 7 For any ray assignment r on a safe opened chain A satisfying
Properties 1–4 of Lemma 6, no two rays r(p) and r(q) intersect for two points
p 6= q of A. 8

PROOF. Consider any two points p and q on A, and assume by symmetry
that q appears after p in the clockwise order around A. Let ` be the directed
line from p to q. For the rays r(p) and r(q) to intersect, they have to be on
the same side of `.

Suppose first that r(p) and r(q) are both right of `, as in Figure 11(a). For

8 Thereby avoiding total protonic reversal [11].
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Fig. 11. Three cases of rays r(p) and r(q) attempting to cross.

these rays to intersect, r(q) must be clockwise of r(p) in the halfplane right
of `. As we move a point x from p to q clockwise around A, r(x) must rotate
continuously clockwise by Properties 1 and 2 of Lemma 6. During this motion,
r(x) sweeps the clockwise angle from r(p) to the reverse direction of `, then
it sweeps the π clockwise angle from the reverse direction of ` to the forward
direction of `, and finally it sweeps the clockwise angle from the forward direc-
tion of ` to r(q). If r(p) is counterclockwise of r(q) in the halfplane right of `,
the first and last angle must overlap, summing to more than π, and hence r(x)
must sweep an angle more than 2π during x’s motion, contradicting Property 3
of Lemma 6. Therefore r(p) and r(q) cannot intersect right of `.

It remains to consider the case when both r(p) and r(q) are left of `. For these
rays to intersect, r(p) must be clockwise of r(q) in the halfplane left of `. As a
first subcase, suppose that the entire subchain of A from p to q is nonstrictly
left of `, as in Figure 11(b); in particular, this subcase happens when A is
convex. As in the previous case, if we move a point x from p to q clockwise
around A, r(x) must rotate continuously clockwise by Properties 1 and 2 of
Lemma 6. If r(p) is clockwise of r(q) in the halfplane left of `, then r(x) must
at some point locally enter the polygon, contradicting Property 4 of Lemma 6.
Hence r(p) and r(q) cannot intersect in this subcase.

We are left with the subcase when A is weakly convex and the subchain of
A between p and q is at some point right of `, as in Figure 11(c). This last
property implies that ` intersects A between p and q. Assume without loss of
generality that A is R-weakly convex. and thus a∗ is above the horizontal line
h through ai−1ai. (Otherwise, imagine opening from the other side, swapping
the roles of ai and a∗.) Now h partitions the chain A into two convex subchains,
where the subchain above h precedes the subchain below h in the clockwise
order of A. For ` to intersect A between p and q, p and q must be on opposite
sides of h, and by the clockwise ordering, p must be above h and q must be
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below (or on) h. By R-weak convexity, both a∗ and p are in the upper-right
quadrant from ai. In particular, the line `′′ through the closing edge aia

∗ and
the line `′ through ai and p both have positive slope. Now `′ partitions the
portion of A clockwise after p into two convex subchains, and if we direct `′

from p to ai, the subchain nonstrictly left of `′ contains p. For ` to intersect A
between p and q, q must be on the subchain right of `′, which is in the lower-left
quadrant of ai. Hence, the slope of ` must be positive and at most the slope
of `′. (Note that the slope of a line does not depend on the line’s orientation.)
Furthermore, the slope of `′ is at most the slope of `′′. By Properties 1, 2, and
3 of Lemma 6, the direction of r(ai) must be in the clockwise range from the
direction of r(q) to the direction of r(p). In particular, this cone of directions is
in the halfplane left of `. By the slope arguments above, this cone is contained
in the nonconvex clockwise wedge from the ray starting at ai through a∗ to
the horizontal leftward ray starting at ai. But then r(ai) locally enters the
polygon, contradicting Property 4 of Lemma 6. 2

Lemma 8 For any ray assignment r on a safe opened chain A satisfying
Properties 1–5 of Lemma 6, the union of rays r(p) over all points p on A
covers the opened band.

PROOF. The chains A and B, together with the hinges aibi and a∗b∗, define
a bounded but possibly self-intersecting polygon, namely, the opened band.
For each point p on A, let b(p) denote the first point of the boundary of this
polygon that is intersected by the ray r(p). By boundedness of the polygon,
the ray r(p) must exit the band. By Property 4 of Lemma 6, r(p) cannot
immediately exit at p; and by Lemma 7, r(p) cannot exit by intersecting A
at any other point q because then r(p) would intersect r(q). By Lemma 7,
r(p) cannot exit by intersecting either of the hinges, because then it would
intersect r(ai) or r(a∗). Thus, r(p) must exit the polygon by intersecting B at
some point b(p).

By Property 1 of Lemma 6, b(p) varies continuously along B. By Lemma 7,
b(p) 6= b(q) for any two points p 6= q of A. By Lemma 5, b(ai) = bi and
b(a∗) = b∗. Thus, as we vary p along A from a∗ to ai, b(p) varies continuously
and monotonically along B from b∗ to bi. At any point p during this motion,
the ray r(p) covers the segment pb(p) contained by the band. These segments
define a ruling of the band, starting at a∗b∗, ending at aibi, and in between
moving along the two other boundary chains A and B.

The consequence is that the continuum of segments pb(p), and hence the
containing rays r(p), cover the band. This consequence can be seen perhaps
more clearly by dividing the ruling at the finitely many key times when p is a
vertex of A or b(p) is a vertex of B. Then we effectively divide the problem into
the regions of time between these key times, where we simply have a linear
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ruling of a quadrangle. 2

Combining Lemmas 7 and 8, we obtain the following important consequence:

Corollary 9 Any safe opening of a band does not self-intersect.

Now we turn to proving that a safe opening always exists. By Lemma 1, there
is a vertex ak whose hinge is counterclockwise of the normal cone at ak, while
the hinge at ak+1 is clockwise of its respective cone. For the cuts at both
vertices to produce unsafe inner chains, cutting at ak must produce an L-
weakly convex chain, while cutting at ak+1 must produce an R-weakly convex
chain. See Figure 12.

ak+1ak

Fig. 12. Two successive vertices, ak and ak+1, whose cuts produce different weakly
convex chains (indicated by the curves below the vertices).

But by Lemma 5, this situation is impossible. Thus, we can always find a
suitable vertex to cut so that the inner chain opens to a safe position, which
by Corollary 9 implies that we can always find an edge to cut along so that
a nested band has an unfolded state. This completes the proof of our main
result:

Theorem 10 Every nested band has an unfolded state.

The nonintersection of the final state turns out to be the main challenge for our
unfolding motion, and we can use it to establish non-intersection throughout:

Theorem 11 Every nested band has a continuous unfolding motion.

PROOF. The squeezing motion that we have defined has the property that
all the points with the same original height have the same new height at any
time t during the squeezing motion, and vice versa for t < 1. To see this,
parameterize a point p on the band by its original height zp divided by the
height z of the original band. After partially squeezing the band to height zS,
the new height of p will be zS(zp/z).
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Now, suppose that two points p and q intersected at some time t < 1 during
the squeezing motion. At this time, the points have the same height, so at
their original positions at time 0, p and q must also have the same height h.
We can view the motion of p and q as the development of a slice curve z = h.
But by the results of [8,10], p and q can never intersect.

We conclude that no intersection can occur until the final flattened configu-
ration of the band, which is a singularity where the above arguments do not
apply. By Theorem 10, there is a cut that produces an unfolded state. There-
fore, by making the same cut and applying the squeezing motion, we obtain
a continuous unfolding of the band. 2

6 Remarks

We note that another natural continuous unfolding motion exists, consisting of
n−1 peeling moves. After cutting a hinge that produces an unfolded state, we
begin by performing a dihedral rotation about its neighboring hinge, so that
two trapezoids become coplanar. Subsequent moves are simple dihedral rota-
tions about successive hinges, and each step adds one more trapezoid to the
coplanar subset. Because this motion is not necessary for our results on nested
bands, a detailed proof of its correctness is omitted. We mention it, though,
because follow-on work establishes that this motion unfolds non-nested bands,
even those that contain polyhedron vertices on their boundaries [1].

Even with it established that arbitrary bands can be unfolded without over-
lap, it remains interesting to see whether this can lead to a non-overlapping
unfolding of prismatoids, including the top and bottom faces. It is natural to
hope that these faces could be nestled on opposite sides of the unfolded band,
but we do not know how to ensure non-overlap.
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