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Abstract Fixed-angle polygonal chains in 3D serve as an interesting
model of protein backbones. Here we consider such chains produced in-
side a “machine” modeled crudely as a cone, and examine the constraints
this model places on the producible chains. We call this notion producible,
and prove as our main result that a chain whose maximum turn angle is α is
producible in a cone of half-angle ≥ α if and only if the chain is flattenable,
that is, the chain can be reconfigured without self-intersection to lie flat
in a plane. This result establishes that two seemingly disparate classes of
chains are in fact identical. Along the way, we discover that all producible
configurations of a chain can be moved to a canonical configuration resem-
bling a helix. One consequence is an algorithm that reconfigures between
any two flat states of a “nonacute chain” in O(n) “moves,” improving the
O(n2)-move algorithm in [ADD+02].

Finally, we prove that the producible chains are rare in the following
technical sense. A random chain of n links is defined by drawing the lengths
and angles from any “regular” (e.g., uniform) distribution on any subset
of the possible values. A random configuration of a chain embeds into R

3

by in addition drawing the dihedral angles from any regular distribution.
If a class of chains has a locked configuration (and no nontrivial class is
known to avoid locked configurations), then the probability that a random

⋆ Supported by NSF CAREER award CCF-0347776 and DOE grant DE-FG02-
04ER25647.
⋆⋆ Chercheur qualifié du FNRS.

⋆⋆⋆ Supported by NSF Distinguished Teaching Scholars award DUE-0123154.
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configuration of a random chain is producible approaches zero geometrically
as n → ∞.

1 Introduction

The backbone of a protein molecule may be modeled as a 3D polygonal
chain, with joints representing residues and fixed-length links (edges) rep-
resenting bonds. The joints are not universal; rather successive bonds form
nearly fixed angles in space. The motions at the joints are then called dihe-

dral motions. The study of such fixed-angle chains was initiated in [ST00]
and continued in [ADM+02] and [ADD+02]. These papers identified flat

states of a chain—embeddings into a plane without self-intersection—as
geometrically interesting. A chain that can reconfigure in R

3 via dihedral
motions between any two of its flat states is called flat-state connected. A
chain that has a flat state but is in a configuration that cannot reach that
state (via dihedral motions, without self-intersection) is called unflattenable

or simply locked.1

We look here at a particularly simple but natural constraint on the “pro-
duction” of a fixed-angle chain. Our inspiration derives from the ribosome,
which is the “machine” that creates protein chains in biological cells. Fig. 1
shows a schematic cross section of a ribosome and its exit tunnel, based on
a model developed by Nissen et al. [NHB+00]. We consider a very simple
geometric model that roughly captures the exit point x of the ribosome:
the chain is produced inside a cone of some half-angle β, with the chain
emerging through the cone’s apex. See Fig. 2. This constraint immediately
implies that the maximum turn angle α in the produced chain is at most 2β.
We consider the somewhat stronger condition that α ≤ β. These conditions
are consistent with our analogy to the ribosome, where the cone is roughly
a half plane (half-angle β = 90◦) and the chain has obtuse angles around
110◦ (turn angle α = 70◦).

We show in Section 3 that this simple constraint guarantees that all
producible chains are flattenable and furthermore mutually reachable. There
are several interesting aspects to this result. First, we are naturally led in our
proof to a canonical form, called α-CCC, which bears a resemblance to the
helical form preferred by many proteins. Second, we show in Section 5 that
long “random” chains are locked with probability approaching 1, implying
that producible protein chains are rather special. Third, we show in Section 4
that, if we strengthen the production model to allow producing chain turn
angles of more than 2β, then locked chains can be produced. This example
shows the importance of our condition that α ≤ β (or a similar condition
such as α ≤ 2β).

1 In fact, this definition is slightly more specific than the usual notion of
“locked,” which says that there are two arbitrary configurations of the linkage
that are mutually unreachable.
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Fig. 1 The ribosome R in cross-
section. The protein is created in
tunnel t and emerges at x.
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Fig. 2 The chain is pro-
duced in cone Cβ, and
emerges at the origin into
the complementary cone Bβ

below the xy-plane.

2 Definitions

2.1 Chains and Motions

The fixed-angle polygonal chain P has n + 1 vertices V = 〈v0, . . . , vn〉 and
is specified by the fixed turn angle θi at each vertex vi, i = 1, . . . , n−1, and
by the edge length di between vi and vi+1, i = 0, . . . , n−1. When all angles
θi ≤ α for some 0 < α < π, P is called a (≤ α)-chain.2 We write P [i, j],
i ≤ j, for the polygonal subchain composed of vertices vi, . . . , vj .

A configuration Q = 〈q0, . . . , qn〉 of the chain P (see Fig. 3) is an em-
bedding of P into R

3, i.e., a mapping of each vertex vi to a point qi ∈ R
3,

satisfying the constraints that the angle between vectors qi−1qi and qiqi+1

is θi, and the distance between qi and qi+1 is di. The points qi and qi+1

are connected by a straight line segment ei. Thus, a configuration can be
specified by the position of e0 and dihedral angles δi, i = 1, . . . , n−2, where
δi is the angle between planes ei−1ei and eiei+1. The configuration is simple

if no two nonadjacent segments intersect.

2 Other work [ADM+02,ADD+02] focuses on the angle between adjacent edges,
which for us is π−α. Thus “nonacute chains” in that work corresponds to (≤ π/2)-
chains here. Our use of the turn angle is more in consonance with cone production.
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α

Fig. 3 Notation for a configuration Q.

A motion M = 〈m0, . . . , mn〉 of a chain P is a list of n + 1 con-
tinuous functions mi : [0,∞] → R

3, i = 0, . . . , n, such that M(t) =
〈m0(t), . . . , mn(t)〉 is a configuration of P for all t ∈ [0,∞]. The motion
is said to be simple if all such configurations M(t) are simple. We normally
assume that the motion is finite in the sense that, after some time T , M
becomes independent of t.

2.2 Chain Production

As mentioned above, our model is that the chain is produced inside an infi-
nite open cone Cβ with apex at the origin, axis on the z axis, and half-angle
(angle to the positive z-axis) β; see Fig. 2. In fact the production happens
in the closure Cβ of the cone (the cone plus its surface). Vertices and edges
are produced sequentially over time inside the cone Cβ and eventually exit
through the origin. The production process maintains the invariant that at
most one link, the last link produced, is (partially) inside the cone; once a
link is fully outside the cone it must remain so. The last produced link must
constantly touch the origin, with one half of the segment inside the cone
and the other half outside the cone. The rest of the chain can move freely
as long as it stays simple and never meets the cone Cβ .

More precisely, at time t0 = 0, the machine creates q0 at the apex of Cβ ,
q1 inside Cβ , and the segment e0 connecting them; see Fig. 4. In general, at
time ti, vertex qi reaches the origin, and qi+1 and ei are created at arbitrary
locations inside the cone Cβ . The vertex qi stays in Cβ between times ti−1

and ti, and stays outside Cβ after time ti. In total there are n + 1 critical
times satisfying 0 = t0 < t1 < · · · < tn.

Formally, a β-production F is a set of n + 1 continuous functions fi :
[ti−1,∞] → R

3, i = 0, . . . , n, such that, for all t ∈ [tj−1, tj ], fj(t) ∈ Cβ ,
F (t) = 〈f0(t), . . . , fj(t)〉 is a simple configuration of P [0, j], the segment
ej−1 is incident to the origin, and no segment ei intersects Cβ , i < j − 1.
A configuration Q is β-producible if there exists a β-production F with
F (∞) = Q. We say that a configuration is (≥ α)-producible if it is β-
producible for some β ≥ α.

One consequence of this model is that, as the last link produced exits
the cone Cβ , it must enter what we call the complementary cone Bβ. For
β ≤ π/2 (a convex cone Cβ), the complementary cone Bβ is the mirror
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Fig. 4 Production of e0 and e1 during t ∈ [t0, t1].

image of Cβ with respect to the xy-plane. For β ≥ π/2 (a reflex cone Cβ),
the complementary cone Bβ is the region of space exterior to Cβ . (This
region is smaller than the mirror image of Cβ in this case.) Fig. 5 shows an
example of production when β ≥ π/2.

x

y

v0

v1

v2

α=100
o

200
o

z

[cone interior]

[cone exterior]

v1

v0
(a) (b)

Fig. 5 Production in cone of β > π/2. Here β = 100◦, so that the full cone angle
is 200◦. The viewpoint is under the xy-plane. (a) e0 exits to the exterior of the
cone during t ∈ [t0, t1). (b) e1 is created at t = t1 inside the cone, forming, in this
instance, a turn angle of 100◦.

This complementary cone restricts the achievable turn angles in the
producible chains:
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Lemma 1 To produce a chain whose maximum turn angle is α using a cone

Cβ, we must have α/2 ≤ β ≤ π − α/2.

Proof Suppose θi = α. At time ti, when qi+1 is created inside the cone, qi

is at the apex, and qi−1 is outside. Because we stipulate continuous motion,
qi−1 must be inside the cone Bβ below the xy-plane, for it must have been
there throughout t ∈ [ti−1, ti). For the same reason, qi+1 must be in the
mirror image of Bβ with respect to the xy-plane, because ei is just about to
enter Bβ. The cone Bβ and its mirror image each form an angle min(β, π−
β) with the z axis, so in order for ei−1 and ei to fit those cones, α/2 ≤
min(β, π − β). 2

Note that arbitrarily sharp turn angles can be produced in a cone Cπ/2,
which might be viewed as a halfspace with a pinhole exit at the origin.

We will prove that there exists a simple motion between any two β-
producible configurations of the same chain, and that all such configurations
are flattenable. Next we define the notion of a “simple” motion.

2.3 Complexity of a Motion

There are of course many ways to define the complexity of a motion M . As a
first approximation, we could assume that each dihedral angle δM

i (t) of the
segment ei is a piecewise-linear function of time t, and the complexity T (M)
of the motion M is the total number of linear pieces over all functions δM

i (t).

That is, T (M) =
∑n−2

i=1
T (δM

i ), where T (δM
i ) is the number of linear pieces

in the function δM
i . Unfortunately, this definition is not acceptable, as it

restricts the range of possible motions M . The definition can be generalized
to allow arbitrary functions δM

i (t), given some corresponding measure of
complexity T (δM

i ), with the added restriction that for every time range
t ∈ [r, s] during which δM

i (t) is a linear function, that time range contributes
at most 1 to the complexity T (δM

i ). For example, if δM
i (t) is a piecewise-

polynomial function, T (δM
i ) could be defined as the sum of the degrees

of the polynomial pieces; or more generally T (δM
i (t)) might measure the

number of inflection points or monotonic pieces of δM
i (t).

The complexity of a production F can be defined in an analogous way,
where δF

i (t) is defined only for the time range t ≥ ti+1. The resulting value
will only account for the dihedral motions outside the cone Cβ . We still need
to add the complexity of the movement of point fi+1(t) before it exits the
cone for all i, i.e., at time t ∈ [ti, ti+1). If we assume that the chain exits
the cone at a constant rate, we only need to consider the vector uF (t) =
(0, fi+1(t)) for t ∈ [ti, ti+1), described in polar coordinates by the angle
ρF (t) of uF (t) with the z-axis, and the angle γF (t) of the projection of
uF (t) onto the xy-plane with the x-axis. The complexity will be expressed
by T (γF ) and T (ρF ), with the restriction that T (ρF ) be at least the number
of connected components in {t : ρF (t) = 0}. For example, the number of
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pieces in a piecewise-linear function, or the sum of degrees in a piecewise-
polynomial function, would qualify. We further impose on T (γF ) and T (ρF )
the same restriction as for T (δF

i ). The total complexity of the production

is then T (F ) =
∑n−2

i=1
T (δF

i ) + T (ρF ) + T (γF ).

3 Producible ≡ Flattenable

Key to our main theorem is showing that every (≥ α)-producible config-
uration of a (≤ a)-chain can be moved to a canonical configuration, and
therefore to every other (≥ α)-producible configuration of that chain.

3.1 Canonical Configuration

x

y

z

u0

u1

u2

π/6 π/4

π/4

π/5

Fig. 6 u0 lies on the cone Cπ/4.
(θ1, θ2, θ3) = (π/4, π/6, π/5), re-
spectively.

We begin by defining the canoni-
cal configuration of (≤ a)-chains,
called the α-cone canonical configu-

ration or α-CCC. To better under-
stand the constraints of a configura-
tion Q, consider normalizing all edge
vectors qiqi+1 to unit vectors ui =
(qi+1 − qi)/‖qi+1 − qi‖ which lie on
the unit sphere. The α-CCC is con-
structed to have the property that all
such vectors lie along a circle of radius
α/2 on that sphere. In other words,
the vectors ui lie on the boundary of
a cone with half-angle α/2.

To ease the description, we use the
cone Cα/2 (not Cα) to define α-CCC,
but note that the cone and the chain
could be rotated and translated. By
convention, we place u0 on the boundary of Cα/2 in the positive quadrant
of the yz-plane. Because Q is a configuration of P , the angle between ui−1

and ui is θi and so, on the sphere, ui lies on the circle of radius θi centered
at ui−1. Because θi ≤ α, this circle intersects the boundary of Cα/2. We set
ui to be the first intersection counterclockwise from ui−1 on the boundary
of Cα/2 (where counterclockwise is viewed from the origin). See Fig. 6 for
an example.

The position of the ui’s on the unit sphere as described above, along
with the position of q0, uniquely determine the position of the α-CCC of
the chain. Because the ui vectors all have positive z coordinates, we know
that the resulting configuration is simple. See Fig. 7. We can also show that
the α-CCC is completely contained in Cα/2:
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q0

Fig. 7 A chain in its α-CCC configuration. Here θi = π/4 for all i.

Lemma 2 If all unit edge vectors ui are contained in a cone Cβ for some

half-angle β > 0, then the configuration Q is inside q0 + Cβ, the cone

translated so its apex is at q0. Furthermore, if u0 6= u1, then only the first

bar of the chain can touch the boundary of q0 + Cβ.

Proof The proof is by induction on n. The claim holds for the 1-point chain
Q[n, n]. Assume Q[1, n] is contained in a cone with apex q1. Now q1 is in the
cone with apex q0, so the cone with apex at q1 is contained in the one with
apex at q0. Furthermore, the boundary of these cones intersect only if q1 is
on the boundary of q0 + Cβ , and in that case, the intersection is contained
in the line of support q0q1. 2

In the α-CCC, ui is always different from ui+1.

3.2 Canonicalization

Next we show how to find a motion from any (≥ α)-producible configuration
of a (≤ α)-chain to the corresponding α-CCC.
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Theorem 1 If a configuration Q of a (≤ α)-chain P is (≥ a)-producible

by a production F , then there is a motion M from Q to the α-CCC, with

T (M) ≤ T (F ) + 3n.

Proof Suppose that Q is β-producible for β ≥ α, and that F is a β-
production with F (∞) = Q. By scaling time appropriately, we can arrange
that ti = i, and the configuration freezes at time n+1, i.e., F (t) = F (n+1)
for t > n + 1.

We construct a motion M from Q to the α-CCC, constructed inside
Cβ . A key idea in our construction is to play the production movements
backwards. More precisely, for all i = 0, . . . , n, we define mi(t) = fi(n+1−t)
for the (reverse) time interval t ∈ [0, n+2−i]. (Beyond reverse time n+2−i,
the original production time is less than n + 1 − (n + 2 − i) = i − 1 and
thus fi is no longer defined.) To complete the construction, we just have to
define mi(t) for t > n + 2 − i, that is, the motion of the part of the chain
that has already re-entered the cone Cβ.

During the time interval (n− i, n+1− i), the edge ei is entering the cone
Cβ through the origin, P [0, i] is outside Cβ , and P [i+1, n] is inside Cβ . We
maintain the invariant that P [i, n] is in α-CCC, contained in a cone Cα/2

translated and rotated to some position C ′
α/2. See Figure 8. So the dihedral

u
+z

Cβ

C´α/2

Fig. 8 Cone Cα/2 is nested inside Cβ. The diameter of the former is no more
than the radius of the latter.

angle of ej does not change for j > i, i.e., P [i + 1, n] is held rigid. Because
P [0, i] moves freely outside of Cβ according to the reversed movements of
the β-production, we can only control the dihedral angle of ei in order to
maintain that C ′

α/2 (and so P [i + 1, n]) stays inside Cβ .
Again, consider the vectors uj. The invariant means that all uj, j =

i, . . . , n − 1, touch the boundary of some circle σ of radius α/2 on the unit
sphere centered on the apex of the cone, and σ must be inside Cβ . For any
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position ui, we place σ so that its center is on the great arc between ui

and u+z, where u+z is the unit vector along the the z-axis. This implies
that ui is the farthest point from u+z on σ and since, by the production
constraints, ui is in Cβ , σ is in Cβ as well and the invariant is satisfied.
As long as ui 6= u+z, this position of σ is unique and the resulting motion
is continuous because the production is continuous. When ui = u+z, a
discontinuity might be introduced, but these discontinuities can easily be
removed by stretching the moment of time at which a discontinuity occurs
and filling in a continuous motion between the two desired states.

At time t = n + 1 − i, vertex i enters Cβ and the invariant needs to be
restored for the next phase. At that time, the vector ui−1 lies in Cβ , and
ui is on a circle τ of radius θi centered at ui−1. Let σ′ be the desired new
position for σ, that is, the circle whose radius is α/2, and whose center is
on the great arc between ui−1 and u+z. We know that σ′ and τ intersect
and all intersections are inside Cβ because σ′ is in Cβ . See Figure 9(a). We
first move ui along τ to the first intersection between σ′ and τ counterclock-
wise from ui−1 on σ′ (Figure 9(b)) by changing the dihedral angle of ei−1,
and simultaneously moving σ accordingly as described above by changing
the dihedral angle of ei. This can be done while maintaining the invariant
because the intersection of τ and Cβ is connected. We then rotate σ about
ui to the position σ′ (Figure 9(c)) by changing the dihedral angle of ei.
This motion can be done while maintaining the invariant because the set of
dihedral angles of ei for which σ is in Cβ is connected.

τ

σ

σ′

u
i

u
i-1

σ′=σ

u
+z

Cβ

(a) (b) (c)

τ

σ

σ′
u
i

u
i-1

u
i

u
i-1

Fig. 9 Restoring the invariant. View looking down u+z. (a) σ and σ′ are both
radius α/2, determined by Cα/2, which moves inside Cβ, centered on u+z. τ is of
radius θi. (b) ui walks to the ccw point of σ′

∩ τ . (c) σ is rotated about ui. Here
α/2 = 30◦ < θi = 50◦ < α = 60◦ < β = 70◦.

The complexity of all dihedral motions outside of Cβ is
∑n−2

i=1
T (δF

i ).
The dihedral motions of ei during times t ∈ (n− i, n+1− i) mirror exactly
γF (n+1− t), except at discontinuities, which correspond to times for which
ui = u+z, which is exactly when ρF (n + 1− t) = 0, so the total complexity
of these dihedral motions is bounded by T (ρF ) + T (γF ). Finally, whenever
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a vertex attains the apex of the cone, we perform three dihedral rotations
(linear functions of time) to restore the invariant. Summing it all, we obtain

T (M) ≤
∑n−2

i=1
T (δF

i ) + T (ρF ) + T (γF ) + 3n = T (F ) + 3n. 2

Corollary 1 For any two simple (≥ α)-producible configurations Q1 and Q2

of a common (≤ α)-chain, with respective productions F1 and F2, there is a

simple motion M from Q1 to Q2—that is, M(0) = Q1 and M(∞) = Q2—

for which T (M) ≤ T (F1) + T (F2) + 6n.

Proof Because Q1 and Q2 are (≥ α)-producible, the previous theorem gives
us two motions M1 and M2 with M1(0) = Q1, M1(∞) = α-CCC, M2(0) =
Q2, and M2(∞) = α-CCC. By rescaling time, we can arrange that M1(t) =
M2(t) = α-CCC for t beyond some time T . Then define M(t) = M1(t) for
0 ≤ t ≤ T , M(t) = M2(2T − t) for T < t ≤ 2T , and M(t) = Q2 for t > 2T .

2

Lemma 3 An α-CCC of a (≤ α)-chain is β-producible for any α/2 ≤ β ≤
π − α/2. The complexity of the production is at most 2n − 1.

Proof Let Q be a α-CCC positioned in Cα/2 with q0 at the origin. Let q(t)
be the point at distance t from q0 along Q. The position F (t) of the produced
portion of the α-CCC at time t is Q translated so that q(t) is at the origin
and deleting all the edges of Q completely inside Cα/2. By Lemma 2, all
edges of F (t) except for the edge containing the origin are contained in the
cone Bα/2. F is thus a valid β-production for any α/2 ≤ β ≤ π − α/2. The
β-production doesn’t use any dihedral rotation so T (δF

i ) ≤ 1, ρF (t) = α/2
for all t so T (ρF ) ≤ 1, and γF is constant for every edge, so T (γF ) ≤ n 2

Corollary 2 If a configuration Q of a (≤ α)-chain has a β-production F
for some β ≥ α, then it has a β′-production F ′ for all α/2 ≤ β′ ≤ π − α/2
and T (F ′) ≤ T (F ) + 5n + 1.

Proof Using Theorem 1, let M be the motion from Q to an α-CCC, and let
M ′ be the reverse motion from the α-CCC to Q. Let R be the sum of the
edge lengths of the chain. The production F ′ first produces a α-CCC in Bα/2

using Lemma 3. The α-CCC is then translated by a distance R/ sinα/2 in
the negative direction along the z axis. At this point, the sphere centered at
qn and of radius R doesn’t intersect the outside of Bα/2. Keeping qn fixed,
we perform the motion M ′ to obtain configuration Q. 2

3.3 Connection to Flat States

Finally, we relate flat configurations to productions and prove our main
result that flattenability is equivalent to producibility.

Lemma 4 All flat configurations of a (≤ α)-chain have a β-production F
for any β satisfying α ≤ β ≤ π/2. Furthermore, T (F ) ≤ n.
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Proof Assume the configuration is in the xy-plane. Any such flat config-
uration can be created using the following process. First, draw e0 in the
xy-plane. Then, for all consecutive edges ei, create ei in the vertical plane
through ei−1 at angle θi−1 with the xy-plane, then rotate it to the desired
position in the xy-plane by moving the dihedral angle of ei−1. During the
creation and motion of ei, it is possible to enclose it in some continuously
moving cone C of half-angle β whose interior never intersects the xy-plane:
at the creation of ei, C is tangent to the xy plane on the support line of
ei−1 and with its apex at pi, and thus contains ei. During the rotation of
ei, ei will eventually touch the boundary of C. We then move C along with
ei so that both ei and the xy-plane are tangent to C. When ei reaches the
xy plane, we translate C along ei until its apex is pi+1. Viewing the con-
struction relative to C and placing C on Cβ gives the desired β-production.

2

Corollary 3 (≤ π/2)-chains are flat-state connected. The motion between

any two flat configurations uses at most 8n dihedral motions.

Proof Consider two flat configurations Q and Q′ of a (≤ π/2)-chain. By
Lemma 4, Q and Q′ are both (π/2)-producible, and so by Corollary 1, there
exists a motion M such that M(0) = Q and M(+∞) = Q′. 2

Corollary 4 All α-producible configurations of (≤ α)-chains are flatten-

able, provided α ≤ π/2. For a production F , the flattening motion M has

complexity T (M) ≤ T (F ) + 7n.

Proof Consider an α-producible configuration Q of an (≤ α)-chain P . Be-
cause α ≤ π/2, the chain P also has a flat configuration Q′ [ADD+02]. By
Lemma 4, Q′ is producible, and so by Corollary 1, there exists a motion
M such that M(0) = Q and M(+∞) = Q′. The bound on T (M) is by
composition of the bounds in Lemma 4 and Corollary 1. 2

We note that the restriction in our results to α ≤ π/2 accords with
the generally obtuse (about 110◦) protein bond angles, which correspond to
turn angles α of about 70◦.

4 A More Powerful Machine

We now show that our result does not hold without the assumption α ≤ β,
under a somewhat stronger model of production that also breaks Lemma 1
that α ≤ 2β.

The stronger model of production separates the creation of the next
vertex vi+1 from the moment that the previous vertex vi reaches the origin.
Specifically, we suppose that vi+1 is not created at ti, but rather imagine the
time instant ti to be stretched into a positive-length interval [ti, t

′
i], allowing

time for vivi−1 to rotate exterior to the cone prior to the creation of vi+1 (at
time t′i). This flexibility removes the connection in Lemma 1 between the



Geometric Restrictions on Producible Polygonal Protein Chains 13

half-angle β of the cone and the turn angles α produced, permitting chains
of large turn angle from any cone. Indeed, the sequence of motions depicted
in Fig. 10 exploits this large-angle freedom to emit a 4-link fixed-angle chain
that is locked.
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Fig. 10 Production of a locked chain under a model that permits large turning
angles to be created. For clarity, the cone is reflected to aim upward. (a) e0 =
(q0, q1) emerges; (b) turn at q1; (c) turn at q2 and dihedral motion at q1 places
e1 in front of cone; (d) e2 nearly fully produced; (e) chain spun about e2 (or
viewpoint changed); (f) rotation at q3 away from viewer places chain behind cone;
(g) e3 emerges; (i) final locked chain shown loose; the turn angle θ3 at q3 can be
made arbitrarily close to π.

5 Random Chains

This section proves that the producible/flattenable configurations are a van-
ishingly small subset of all possible configurations of a chain, for almost any
chain. Essentially, the results below say that, if there is one configuration
of one chain in a class that is unflattenable, then a randomly chosen con-
figuration of a randomly chosen chain from that class is unflattenable with
probability approaching 1 geometrically as the number of links in the chain
grows. Furthermore, this result holds for any “reasonable” probability dis-
tribution on chains and their configurations.

To define probability distributions, it is useful to embed chains
and their configurations into Euclidean space. A chain P =
〈θ1, . . . , θn−1; d0, . . . , dn−1〉 ∈ [0, π/2]n−1×[0,∞)n is specified by its turn an-
gles θi and edge lengths di. A configuration Q = 〈δ1, . . . , δn−2〉 ∈ [0, 2π)n−2
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of P is specified by its dihedral angles. We also need to be precise about
our use of the term “unflattenable” for chains vs. configurations. A simple
configuration Q is unflattenable or simply locked if it cannot reach a flat
configuration; a chain P is lockable if it has a locked configuration.

We consider the following general model of random chains of size n.
Call a probability distribution regular if it has positive probability on any
positive-measure subset of some open set called the domain, and has zero
probability density outside that domain.3 For Euclidean d-space R

d, a prob-
ability distribution is regular if it has positive probability on any positive-
radius ball inside the domain. Uniform distributions are always regular.

For chains of k links, we emphasize the regular probability distribution
PΘ,D

k obtained by drawing each turn angle θi independently from a regular
distribution Θ, and drawing each edge length di independently from a reg-
ular distribution D. Similarly, for not-necessarily-simple configurations of a
fixed chain P , we emphasize the regular probability distribution obtained
by drawing each dihedral angle δi independently from a regular distribu-
tion ∆. We can modify this probability distribution to have a domain of all
simple configurations of P instead of all configurations of P , by zeroing out
the probability density of nonsimple configurations, and rescaling so that
the total probability is 1. The resulting distribution is denoted QP,∆, and
it is regular because of the following well-known property:

Lemma 5 The subspace of simple configurations of a chain P is open.

Proof Consider the space [0, 2π)k−2 of all configurations of P . The simplicity
of a configuration Q of P can be expressed by the O(k2) constraints that no
two nonadjacent segments intersect. These (semi-algebraic) constraints are
all of the form g(Q) < 0 where g(Q) = g(δ1, . . . , δk−2) is a multinomial of
a constant number of terms in sin(δi) and cos(δi). Each constraint defines
an open set in the configuration space. The conjunction of the constraints
corresponds to the intersection of these finitely many sets, which is open. 2

First we show that individual locked examples immediately lead to pos-
itive probabilities of being locked. The next lemma establishes this prop-
erty for configurations of chains, and the following lemma establishes it for
chains.

Lemma 6 For any regular probability distribution Q on simple configura-

tions of a lockable chain P , if there is a locked simple configuration in the

domain of Q, then the probability of a random simple configuration Q of P
being locked is at least a constant c > 0.

Proof Let Q′ be a locked simple configuration in the domain of Q. Let C
be the component of the space of simple configurations containing Q′, and
let D be the intersection of C and the domain of Q. Because C is open and

3 A closely related but more specific notion of regular probability distributions
in 1D was introduced by Willard [Wil85] in his extensions to interpolation search.
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thus D is open, there exists a constant ε > 0 such that the ball B of radius ε
centered at Q′ is contained in D, and all Q′′ ∈ B are locked as well. Choose
c to be the probability of choosing a configuration in B, which is positive
by regularity. 2

Lemma 7 For any regular probability distribution P on chains, if there is

a lockable chain in the domain of P, then the probability of a random chain

P being lockable is at least a constant ρ > 0.

Proof Consider the space of all chains and configurations of those chains,
C = [0, π/2]n−1 × [0,∞)n × [0, 2π)n−2. As described in Lemma 5, the con-
straint that a particular configuration is locked can be phrased as a set of
open semi-algebraic constraints, except now the constraints depend on all
3n − 3 variables (not just the dihedral angles). Intersecting all these open
semi-algebraic sets results in a subspace L ⊂ C of all locked configurations
of all chains. Projecting this open set down to L′ ⊆ [0, π/2]n−1 × [0,∞)n

by dropping the dihedral angles results in another open semi-algebraic set,
because open semi-algebraic sets are closed under projection.

Now let P ′ be a lockable chain in the domain of P , let C be the compo-
nent of L′ containing P ′, and let D be the intersection of C and the domain
of P . Because C and thus D is open, there is a constant ε > 0 such that
the ball B of radius ε centered at P ′ is contained in D, and all P ′′ ∈ B are
lockable. Choose ρ to be the probability of choosing a chain in B, which is
positive by regularity. 2

Next we show that these positive-probability examples of being locked
lead to increasing high probabilities of being locked as we consider larger
chains.

Theorem 2 Let Pn be a random chain drawn from the regular distribution

PΘ,D
n . If there is a lockable chain in the domain of PΘ,D

n for at least one

value of n, then

lim
n→∞

Pr [Pn is lockable] = 1.

Furthermore, if Qn is a random simple configuration drawn from the regular

distribution QPn,∆, then

lim
n→∞

Pr [Qn is flattenable] = lim
n→∞

Pr [Qn is producible] = 0.

Both limits converge geometrically.

Proof Suppose there is a lockable chain of k links. By Lemma 7,
Pr[Pk is lockable] > ρ > 0. Break Pn into ⌊n/k⌋ subchains of length k.

Each of these subchains is chosen independently from PΘ,D
k and is not lock-

able with probability < 1 − ρ. Now Pn is lockable (in particular) if any
of the subchains are lockable, so the probability that Pn is not lockable
is < (1 − ρ)⌊n/k⌋ which approaches 0 geometrically as n grows. Likewise,
by Lemma 6, the probability that Qk is locked is > cρ for some constant
0 < c < 1, and so the probability that Qn is flattenable is < (1 − cρ)⌊n/k⌋

which approaches 0 geometrically as n grows. 2
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Thus, producible configurations of chains become rare as soon as one
chain in the domain of the distribution is lockable. The locked “knitting
needles” example of [CJ98,BDD+01] can be built with chains satisfying
α ≤ π/2 by replacing the acute-angled universal joints with obtuse, fixed-
angled chains of very short links. Thus for any regular distribution including
such examples in its domain, we know that configurations of (≤ α)-chains
are rarely producible for the case we have considered, α ≤ π/2. We do
not know of any nontrivial regular probability distribution PΘ,D

n whose
domain has no lockable chains. In particular, for equilateral (all edge-lengths
equal) fixed-angle chains, it is not known whether angle restrictions can
prevent the existence of locked configurations. As protein backbones are
nearly equilateral, it is of particular interest to answer this question.

Future directions for research include resolving the locked question just
mentioned, incorporating the short side-chains that jut from the protein
backbone, and more realistically modeling the ribosome structure.
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