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NORMALIZATIONS OF THERMODYNAMIC
PROPERTIES AND SOME IMPLICATIONS FOR
GRAPHICAL AND ANALYTICAL PROBLEMS
IN PETROLOGY

JOHN B. BRADY* and JAMES H. STOUT**

ABSTRACT. Petrologic problems may be analyzed using any of a variety of possible
choices of units. Although gram-formula units (moles) are commonly used, other units
of quantity are more appropriate for many applications. Gram-atom units offer the
numerical simplicity of gram-formula units and have the advantage of being conserva-
tive. A conservative unit of quantity is one for which the sum of the units of reactants
equals the sum of the units of products in a chemical reaction. For many graphical
problems, a conservative unit of quantity, such as gram-atom or mass units, should be
used. Since gram-formula units are not conservative, the lever rule can lead to incorrect
results when applied to composition axes based on units of gram-formula percent.
Similarly, the graphical evaluation of Gibbs energy relationships and chemical poten-
tials on energy-composition diagrams is facilitated by the use of a conservative unit of
quantity. Thermochemical data show consistent patterns when normalized on a gram-
atom basis, whereas with gram-formula units they do not. Mean atomic entropies of
formation are so similar for all complex oxides that they may be predicted with pre-
cision. This is partly due to the dominance of the entropy term for gaseous oxygen,
when the elements in their stable form are chosen as the standard state. In detail,
mean atomic entropies of formation show a positive correlation with mean atomic
weight for all silicates, a relationship that can be used to correct entropy estimates for
mass effects.
UNITS OF QUANTITY

Mass units.—Traditionally, the amount of a mineral or other solid
compound has been expressed in units of mass. Mass is a logical choice
for a unit of quantity, since it is easily measured with high precision. J.
Willard Gibbs (1928) used mass exclusively as the unit for chemical com-
ponents, developing the important relations of heterogeneous equilibria
in terms of specific (mass reduced) and partial specific quantities. Mass
units have the important property of being conserved in any chemical
reaction, which is convenient for bookkeeping and for many graphical
applications. In other words, the sum of the masses of the reactants is
equal to the sum of the masses of the products. Mass is also the unit of
quantity directly measured in many instances. Unfortunately, the use of
mass units has the disadvantage of obscuring the relatively simple stoichi-
ometry of most minerals, and therefore cumbersome numbers are required
to balance chemical reactions. For these reasons mass units, which are
widely used in the experimental literature, have been largely neglected
in most theoretical applications.

Gram-formula units.—Gram-formula units (moles) offer obvious ad-
vantages for any discussion of chemical equilibria. Because of the fact that
atoms combine in simple proportions, chemical reactions are easily bal-
anced in terms of gram-formula units and integer coefficients. However,
gram-formula units are not conserved in chemical reactions. In other
words, the sum of the number of moles of reactants is generally not equal
to the sum of the number of moles of products. While this feature is not
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overly troublesome, it is indicative of the problems implicit in the use of
gram-formula units. Gram-formula units are generally preferred over
mass units because they involve quantities proportional to the number of
atoms in mineral formulas. The problems with gram-formula units arise
because the constant of proportionality (number of atoms per formula) is
different for each formula.

Gram-atom units.—Gram-atom units have been typically used for ap-
plications that involve atom to atom interactions, such as those en-
countered in the physical interpretation of heat capacity (Debye, 1912).
Although their “per particle” quality is attractive, gram-atom units have
only rarely appeared in the petrologic literature (for example, Thompson,
1955). Gram-atom units are best defined operationally. To obtain the
number of gram-atom units of a mineral, either (1) divide its mass by its
mean atomic weight (Birch, 1952, 1961) or, equivalently, (2) multiply its
number of gram-formula units by the number of atoms per formula unit.
Comparative values of mass units, gram-formula units, and gram-atom
units are given in table 1 for some common minerals. Table 2 provides
an example of a chemical reaction balanced in terms of each of these
choices of units.

Gram-atom units conveniently provide some indication of quantity
without reference to mineral formulas, as do mass units. Formulas are
thus relegated to their proper role of identifying and giving ratios between
the elements involved. For example, there is no need to distinguish be-
tween Mg,Si,O; and MgSiO, when gram-atom units are used. The impli-
cations of this fact are clear when reading chemical reactions that have
been balanced in gram-atom units (table 2). Seven gram-atoms of Mg,SiO,
means two gram-atoms of Mg, one gram-atom of Si, and four gram-atoms
of O. One gram-atom of Mg,SiO, means 2/7 gram-atoms of Mg, 1/7 gram-
atoms of Si, and 4/7 gram-atoms of O.

Gram-atom units offer an alternative that has many of the advantages
of both mass units and gram-formula units. Like gram-formula units,
gram-atom units are proportional to the number of atoms per formula
unit, but unlike gram-formula units, the constant of proportionality is
the same for all compounds. Like mass units, gram-atom units are con-
servative (an equal number of units appear on both sides of a balanced

TABLE 1
A numerical comparison of some alternative units of quantity

Gram- Mean

Gram-  For- Atomic Gram- Gram- Molar Gram- Gram-
Formula mula Weight Atom Oxygen Volume Cation Oxide
Mineral Formula Weight  Units (8) Units Units (cm?®  Units Units
Periclase MgO 40.311 1 20.156 2 1 11.248 1 1
Forsterite Mg.SiO, 140.708 1 20.101 7 4 43.79 3 3
Clino-
enstatite MgSiO, 100.396 1 20.079 5 3 31.47 2 2
Quartz SiO, 60.085 1 20.028 3 2 22.688 1 1

See text for definitions. Data from Robie, Hemingway, and Fisher (1978).
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chemical reaction). Unlike mass units, gram-atom units lead to chemical
reactions with simple integer coeflicients.

Gram-oxygen units—Another measure of quantity that has some use-
ful applications is the gram-oxygen unit. Gram-oxygen units are obtained
from the number of gram-formula units by multiplying by the number of
oxygens per formula unit. Like gram-atom units, gram-oxygen units are
typically simple whole numbers and are conserved in any chemical reac-
tion (see tables 1 and 2). Gram-oxygen units have the additional advan-
tage of being a first order measure of the volume of most solids in which
oxygen is the only major anion (see table 1). This is because most such
solids can be represented as nearly close-packed oxygen structures with
cations merely occupying voids. Anyone who wishes to convert modal data
into an approximate chemical analysis or vice versa (a modal norm) will
find gram-oxygen units most helpful. For compounds with major anions
other than oxygen, “gram-anion” units may be used. See Walker, Longhi,
and Hays (1975) or Thompson (1978) for applications of gram-oxygen
units.

Gram-cation units—The correlation between oxygen and volume led
Barth (1948, 1962, p. 62) to propose a “standard cell” for petrographic
calculations based on 160 oxygen ions. Barth’s normative manipulations,
however, were conducted in cation units following the procedures of
Niggli (1936). Gram-cation units, which differ by a constant (Avogadro’s
number) from Barth’s cation units, are yet another conservative unit of
quantity. Gram-cation units are obtained from gram-formula units by
multiplying by the number of cations per formula unit. Barth and Niggli
both demonstrate the utility of gram-cation units.

Gram-component units.—Other conservative units of quantity may
be defined on the basis of any independent set of chemical components.
Perhaps the most straightforward would be gram-oxide units, based on
the standard oxide components. The number of gram-oxide units of a
mineral is obtained from the number of gram-formula units by multiply-
ing by the sum of the number of oxide formula units in one formula unit
of the mineral. Other sets of components may be used to define different
gram-component units that are useful for certain applications. It is im-
portant to recognize, however, that gram-component units refer to a spe-
cific set of components, whereas mass units, gram-atom units, gram-oxygen

TABLE 2
The reaction forsterite = periclase + quartz balanced using various units
of quantity. An equal number of units appear on both sides of the
reaction written using any of the conservative units; in general,
this is not the case for gram-formula units

Gram-formula units: 1 (Mg.Si0,) = 2 (MgO) + 1 (5i0,)
Mass units: 140.708 (Mg.SiO,) = 80.623 (MgO) + 60.85 (3i0,)
Gram-atom units: 7 (Mg.Si0,) = 4 MgO) + 3 (5i0.)
Gram-oxygen units: 4 (MgSi0,) = 2 (MgO) + 2 (Si0y)
Gram-cation units: 3 (Mg.Si0,) = 2 MgO) + 1 (SiOy)
Gram-oxide units: 3 (Mg.Si0,) = 2 Mg0O) + 1 (5i0.)
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units, and gram-cation units are independent of any choice of components.

In the following sections we present several petrologic applications
for which gram-atom units and other conservative units offer advantages
over gram-formula units. We hope that these examples will not only em-
phasize the important differences between units of quantity but also
prompt others to seek additional applications of alternative choices of
units.

GIBBS ENERGY-COMPOSITION DIAGRAMS

Standard thermodynamic texts contain a convenient graphical pro-
cedure for determining the stable assemblages of phases at a specific tem-
perature and pressure based on the phase compositions (mole fractions)
and relative “molar” Gibbs energies of the phases (for example, Darken
and Gurry, 1953, chap. 13). The procedure was devised originally by Gibbs
(1928, p. 118 and following) who developed it using specific (mass re-
duced) Gibbs energies and mass fractions (wt percent). The stable min-
eral assemblages are determined from the Gibbs energies of the phases by
using a “tangent line” technique (tangent plane for 3 component systems)
to generate tie lines that define the lowest Gibbs energy values for the
system (see fig. 1). The use of mole fractions and molar Gibbs energies
can lead to incorrect results, if care is not taken to evaluate the meaning
of molar Gibbs energy in each instance.

In figure 1 the molar Gibbs energies (kJ/gfu) of the minerals peri-
clase, forsterite, clinoenstatite, and quartz (taken directly from Robie,
Hemingway, and Fisher, 1978, for 1000 K and 10° pascals) are shown
along with chemical compositions plotted in terms of the mole fraction of
SiO, (see table 3 for notation). Following the tangent line procedure, one
would predict from these data that the assemblage forsterite + quartz is
more stable at 1000 K than any clinoenstatite-bearing assemblage of the
same composition. Of course this result is inconsistent with both petro-

T T
.
.
T=1000K 2
S i
P=10°Pa ,
Per
-1000 [
AG, (kJ/gfu)
~2000 | B
1 1
o] 173 172 1
MgO Mg,Si0,  MgSiO; sio,

fsio, )

MOLE FRACTION Si0, (= + e
hg0* fsio,

Fig. 1. Gram-formula unit Gibbs energy-composition diagram for the system MgO-
Si0,. The “stable” mineral assemblages are defined by the solid tie lines, which give
the lowest Gibbs energy values. Note that the assemblage forsterite + quartz appears to
be stable. See table 3 for notation.
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graphic and experimental observations under these conditions, so one is
tempted to conclude that one or more of the thermodynamic data are in
error. Similarly, if one wishes to evaluate graphically the chemical poten-
tial of SiO, in the assemblage forsterite + enstatite at 1000 K and 10°
pascals, one obtains a value greater than that of pure Si0O, under the same
conditions. These incorrect conclusions result from the fact that each of
the Gibbs energies is normalized in a different way. In essence, the verti-
cal scale of figure 1 is different for each mineral and depends on the
mineral formulas used.

These difficulties may be easily overcome by constructing Gibbs
energy-composition diagrams with conservative units. The data of figure 1
are shown in figure 2 with Gibbs energies normalized on a gram-atom
basis (mean atomic Gibbs energies) and with compositions expressed as
atom fractions (gram-atom percent). Figure 2 is consistent with the ob-
served phase relations. Figure 2 may also be used to evaluate the mean
atomic chemical potential (partial gram-atomic Gibbs energy) of any
component that falls on the composition axis used. For the example of
forsterite 4 enstatite, the mean atomic chemical potential of SiO, in that
assemblage at 1000 K and 10° pascals is —247.109 kJ/gau. Similar benefits
would accrue from Gibbs energy-composition diagrams based on any
other conservative unit of quantity, such as mass units or gram-oxygen
units.

TABLE 3
Summary of notation

a; = the number of units of component j in one unit of component i
by, = the number of units of component 1 in one unit of component j
C; = “old” component j

(o = “new” component i

gau = gram-atom units

gfu = gram-formula units

gou = gram-oxygen units

G = Gibbs energy

AG, s = Gibbs energy of formation from the elements per gfu at 298 K
AGq s = Gibbs energy of formation from the clements per gau at 298 K
AH,’M = enthalpy of formation from the elements per gau at 298 K

] = joules

kJ = kilojoules

K = degrees Kelvin

M = mean atomic weight

N; = mole fraction of component i

Np¥ = gram-unit fraction of component D in component X

ny = number of units of component A

Ng; = n units of “old” component C,

Ngr, = n units of “new” component C’;

fisio, = number of gram-formula units of SiO,

ﬁs.02 = number of gram-atom units of SiO,

n,x = number of units of component A in one unit of component X
P = pressure

R = gas constant

AS: s = entropy of formation from the clements per gau at 298 K

AS; s = cntropy of formation from the elements per gou at 298 K

T = temperature
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A mole fraction composition axis may be used successfully for these

diagrams if the Gibbs energies are normalized on a gram-component
basis (“mean molar” Gibbs energies), where the component units are
gram-formula units of the endmember components. In the example of
figure 1 the endmember components are oxides, so the Gibbs energies
should be given in gram-oxide units. This is accomplished by dividing
the molar Gibbs energy of each mineral by the sum of the number of
moles of the endmember oxides in one gram-formula unit of the mineral
(1 for Per and Qz, 3 for Fo, and 2 for En). Alternatively, if all the mineral
formulas are normalized to have the same number of gram-component
units per gram-formula unit, which commonly means the same number
of atoms, cations, or oxygens per mineral formula, then the molar Gibbs
energies for these formulas will “automatically” be normalized correctly
for use with a mole fraction axis.
Either way of using a mole fraction composition axis requires Gibbs ener-
gies normalized in a way that depends on the choice of endmember com-
ponents used. Mean atomic or specific Gibbs energies, however, are inde-
pendent of any choice of components.

THE LEVER RULE

One of the keystones of the application of phase diagrams is the lever
rule, a relationship between the bulk chemical composition of a system
and the relative proportions of phases present. The lever rule is based on
the principle that “part of it, plus the rest of it, equals all of it” (for ex-
ample, Darken and Gurry, 1953, p. 316). This principle seems straight-
forward and, in fact, cannot be faulted for compositions given in any
conservative unit of quantity. However, it is relatively easy to obtain in-
correct results by applying the lever rule to phase diagrams with composi-
tions expressed in mole percent.

Consider again the minerals forsterite and quartz in the system MgO-
Si0,. Assume for the moment that forsterite and quartz can coexist and
that they occur together in a rock with the bulk composition of clino-
enstatite. In figure 3A the compositions of interest are shown using a mole

t The fundamental relation (Gibbs, 1928, eq. 96)
G=mnye oG +nge ( oG (P, T constant)
ong /) ngp ong Jny

is valid for any choice of unit of quantity for n, and np. To make the equation inten-
sive, both sides are divided by (n, 3— np) to yield (at constant P and T)

G _ (.G +[ G _(0G ] L S
(ny + ng) on, Ing ong /ny ong /ng (ny + ny)

For gram-formula units this equation becomes

G .
e = fia + (s — f22)Np

where fi4 is the partial molar Gibbs energy (chemical potential) for component A. These
equations, on which the tangent line procedure is based, serve to define the “mean
molar” Gibbs energy [G/(fiy + fip)] and to demonstrate further the incorrectness of using
molar Gibbs energies in figure 1.
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T=1000K
P=10°Pa

-240 | g
86, (kJ/gau)

-2471
-250

-260 | ) . g
0 arr ars 1
MgO MgSiQ,  MgSio . S0,
n,
GRAM-ATOM FRACTION SiO, (=A—S'°+ )
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Fig. 2. Gram-atom unit Gibbs energy-composition diagram for the system MgO-
8iO,. The stable assemblages obtained from the tie lines in this figure correctly reflect
naturally observed mineral assemblages.

percent composition axis based on the endmembers MgO and SiO,. Ap-
plying the lever rule to figure 3A, one would conclude that for the bulk
composition MgSiO, the assemblage would be 75 mole percent forsterite
and 25 mole percent quartz. However, if the same compositions are shown
using a mole percent composition axis based on endmembers Mg.SiO,
and SiO,, one obtains a different result. Applying the lever rule to figure
3B, one concludes that for the bulk composition MgSiO,, the assemblage
would be 50 mole percent forsterite and 50 mole percent quartz. These
inconsistent and incorrect results may be avoided if the composition axes
are based on a conservative unit of quantity.

The compositions and endmembers of figure 3, A and B, are shown in
figure 4, A and B, using gram-atom percent composition axes, Applying
the lever rule to either A or B of figure 4, one concludes that for a bulk
composition of MgSiO,, the assemblage would be 70 gram-atom percent
forsterite and 30 gram-atom percent quartz. When using conservative

251 Qz- 75% Fo

[ 173 172 1 A-
| | I |
I T —T 1
MgO Mg,Si0,  MgSi0, sio,
MOLE PERCENT Si0,
50% Qz 50% Fo B
o 2 1
1 | ]
I T 1
Mg,Si0, MgSiO, sio,

MOLE PERCENT SiO,

Fig. 3. The relative proportions (mole percent) of quartz (Qz) and forsterite (Fo)
-are evaluated using the lever rule for a bulk composition of MgSiO, and endmembers
(A) MgO-Si0, and (B) Mg.SiO,-SiO;. For the two choices of endmembers, the lever rule
gives two different answers.
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~—30% Qz—~ 70% Fo

0 37 s 1
1 ] | i
F T T 1
Mgo Mg,Si0, MgSiO; sio,
GRAM-ATOM PERCENT Si0,
-~——30% Qz — 70% Fo
o o 1
| 1 S
r T 1
Mg,Si0, MgSiO, sio,

GRAM-ATOM PERCENT SiO,

Fig. 4. The relative proportions (gram-atom percent) of quartz (Qz) and forsterite
(Fo) are evaluated for the same bulk composition and endmembers as in figure 3,A
and B. In this case, however, the answer is the same for both choices of endmembers.
units, the choice of endmembers for the composition axes does not affect
the lever rule results.

A practical example of the significance of these observations is shown
in figure 5. Consider a bulk composition X (35i0, « 2A1,0;) in the system
8i0,-Al,O; as it is cooled through the two-phase field of liquid plus mull-
ite. The relative proportions of liquid and solid at 1670°C that would
be predicted by applying the lever rule are indicated in figure 5 to be 60
mole percent solid and 40 mole percent liquid. As we shall see, these pro-
portions are not correct for a liquid of formula A(9SiO, * Al,O;) and a
solid of formula B(2SiO, « 3Al,0;). In this case the most straightforward
way to demonstrate the correct relative proportions of liquid (A) and solid
(B) relies on a fundamental property of composition axes. By definition,
a composition axis based on any unit of quantity gives graphically the
fractions of the endmember components for any intermediate bulk com-
position. Therefore, if bulk composition X can be expressed in terms of
a composition axis with A and B as endmembers, the desired relative pro-
portions of liquid (A) and solid (B) in figure 5 will be a trivial result. In
other words, we need to perform a coordinate transformation from “old”
endmembers SiO, and AL,O, to “new” end members A(9SiO, « ALOj;)
and B(2SiO, * 3Al1,0,).

2000 Lauio

Al04 + LIQUID
3A1;05° 250, IMULLITE}+ LIQUID L

L1850", 18400

1800

60 mole % X iomole's 8| | A03+3ALO; 25103

1600

Sio+LiquID

TEMPERATURE IN DEGREES CENTIGRADE

|
|

T 3ALOy- 2510y 38
|

i
'
|
i
1400

5i0,

70 10 56 80 a0
MOLE PERCENT Al;04

Fig. 5. The system SiO,-Al,O, (Morey, 1964). For the bulk composition X, the lever
rule incorrectly predicts an assemblage of 60 mole percent solid and 40 mole percent
liquid. The actual proportions of solid and liquid are derived in the text.
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In order to transform from one independent set of components to
another, the first step is to express the compositions of each of the “new”
components (C’;) in terms of the compositions of the “old” components
(Gy). For an n-component system, this requires n stoichiometric equations
of the form

1¢,= z a5 G (1
je=1

’

where the coefficients a;; give the number of units of “old
in one unit of “new” component i.*

Next, the (n X n) matrix of coefficients a;; is inverted by whatever
method is most convenient to give a different (n X n) matrix of coefficients
b;i. Finally, the bulk compositions given in terms of numbers of units of
“old” components (nc;) are converted into bulk compositions in terms of
numbers of units of “new” components (nq,) by equations of the form?

nCIi = 2 le an (2)

j=1

component j

where the coefficients bj; give the number of units of “new” component i
in one unit of “old” component j. We present these equations in general
form because of their usefulness in dealing with problems similar to the
one at hand. The basis for these procedures in linear algebra is well
known (for example, Anderson, 1974, p. 76; Rabenstein, 1970, p. 161; see,
also, Greenwood, 1975).

For the components of interest in the previous example (fig. 5), the
stoichiometric relations (1) become

A = ALSi,0,, = 9 8i0, + 1 ALO,
B = Al,Si,O,, =2 SiO, + 8 ALO, ,

where the unit of quantity is the gram-formula unit (mole) of each com-
ponent. The matrix of coefficients a;; is therefore

(25 )

The inverse of this matrix (the by;) is

3/25 —1/25
—2/25 9/25 )

# Ordinarily, the unit of quantity will be the same for both “old” and “new” com-
ponents, but it need not be. In fact, the unit of quantity could be different for each
component. The procedure is unchanged by the choice of units.

$The eqs (2) imply a post-multiplication of the vector ng, by the matrix of coeffi-
cient by;. Alternatively, vector ng; may be premultiplied by the transpose of the matrix
of by;.
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The relations (2) for bulk composition X (85i0O, * 2A1,0,) are given by
3/25 —1/25

—2/25 9/25

Thus, with the relative numbers of moles of solid (B = 3/5) and liquid
(A = 1/5) in hand, we may proceed to determine the relative percentages
of solid and liquid.

(/5 8/5 = (3 2) - (

) i 3/5
N olid — _ = =
T R+ i 1/5+3/5 o/

There will be 75 mole percent solid (Al:Si,O,5) and 25 mole percent liquid
(Al,Si,0,,). These numbers may be contrasted with the 60 and 40 mole
percent predicted from the lever rule in figure 5. Clearly the molar pro-
portions one obtains from the lever rule may be significantly in error.

Unfortunately, the molar proportions determined by any correct pro-
cedure depend on the choice of formula for the phases involved. If B had
been expressed as 3(AlgSi,O,;) rather than AlgSi,O,;, the result would
have been 50 mole percent liquid (ALSi,O,,) and 50 mole percent solid
(Al;4Si4Oy,). This formula-specific character of gram-formula units is a
potential source of misunderstanding that does not exist for conservative
units.

Most published phase diagrams are in units of wt percent. Since mass
units are conservative, the lever rule is fully applicable to wt percent dia-
grams. A proof of the general validity of the lever rule when conservative
units are used is given in appendix 1. Interestingly, a survey of common
texts showed that all “rigorous” derivations of the lever rule are given in
terms of a conservative unit of quantity. Several texts do ostensibly use
gram-formula units, but a careful reading reveals that the result is always
couched in gram-component units (for example, Prigogine and Defay,
1954, p. 180; Moore, 1962, p. 128). Of the texts surveyed, only Reisman
(1970, p. 145 and p. 222) is complete enough to consider the pitfalls of
gram-formula units.

Mineral formulas may be normalized to contain the same number
of gram-component units (commonly the same number of atoms, cations,
or oxygens) so that the usual mole percent for the normalized formu-
las is equivalent to gram-component percent. For example, if A, B,
and X of figure 5 had all been given with formulas all containing
10 oxides (A = 9Si0, + Al,O,, B = 4Si0, ¢« 6Al,0,, X = 6Si0, * 4AL,0,),
then the correct relative proportions would be 60 mole percent solid
(A1,,81,0,) and 40 mole percent liquid (AL,Si,O,,) as determined graphi-
cally. This procedure, which is advocated by Korzhinskii (1959, p. 34), is
cumbersome because it requires mineral formulas to vary with the choice
of composition axis endmembers. The procedure is most appropriate for
systems of isomorphous minerals, such as feldspars or olivines. We recom-
mend a regular usage of gram-atom units to avoid potential problems.
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MEAN ATOMIC THERMODYNAMIC PROPERTIES

One of the most logical applications of gram-atom units is for the
normalization of thermochemical data. Since to a first approximation the
energies associated with a solid are due to the thermal vibrations of the
constituent atoms, energies expressed on a per atom basis should be simi-
lar for many minerals. An example would be the well-known law of
Dulong and Petit (Moore, 1962, p. 696) which predicts that the heat
capacities of solids (at constant volume) will approach a value of 3R per
gram-atom unit at high temperatures. Figure 6 shows the Gibbs energies
of formation from the elements at 298.15K and 10° pascals for all the
silicates listed in Robie, Hemingway, and Fisher (1978). Taken directly
from this compilation, the Gibbs energies are expressed per gram-formula
unit of each mineral. Only minerals with the same number of atoms per
formula show related values. However, if the same data are normalized
on a gram-atom basis (fig. 7), a consistent pattern emerges. Not only does
figure 7 emphasize a fundamental similarity among silicate minerals, but
it also brings out differences that are not simply due to the number of
atoms in the mineral formula.

Also shown in figure 7 are the mean atomic enthalpies of formation
of each mineral. Observe that variations in mean atomic Gibbs energies
are closely correlated to variations in mean atomic enthalpies. In fact,
the difference between AG;..s and A .. is so nearly constant that
AGg .ys may be consistently predicted from AH; ., for silicates within 1
percent of the accepted values. This rather surprising observation requires
some further discussion.

Constancy of (AHf‘ggg — Afif_ggg) is of course a constancy of ASMQS
(mean atomic entropy of formation from the elements). The AS; .o for the
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Fig. 6. Molar Gibbs energies of formation for all silicates as listed in Robie,
Hemingway, and Fisher (1978). The horizontal axis is simply a means of separating the
individual points for comparison. The silicates are shown in the same order that Robie,
Hemingway, and Fisher present them. Silica minerals are shown at the extreme right.
Several minerals are off scale.
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silicates of figures 6 and 7 are shown in figure 8. On the expanded scale
of figure 8 relatively small differences among the ASMQS for silicates are
visible. Although a few minerals (notably fayalite, tephroite, and rhodo-
nite) are out of line, the mean atomic entropies of formation for most
silicates are really very similar. This similarity is probably a consequence
of two facts: (1) oxygen is a major element in all the silicates, and (2) ex-
cept for H, F, and Cl, oxygen is the only major element to have a gaseous
standard state. The entropy change associated with converting gaseous
oxygen to oxygen in a solid silicate apparently overwhelms other entropy

differences.
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atomic enthalpies of formation from the elements for the silicates of figure 6. Note the
consistent separation of the two functions.

-40
Aét,zvt
-60
(J/ K-gau)
-80 }

Ortho & Ring

Chain

T T
Sheet

Framework

22

34

SILICATES

60

Fig. 8. Mean atomic entropies of formation for the silicates of figure 6. Fayalite,
tephroite, and rhodonite are the three least negative points.
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We can verify the important role of oxygen in two ways. First, if
oxygen does control the AS; s, then the consistency of AS“98 should ap-
ply to minerals other than silicates for which oxygen is a major element.
Figure 9 shows the AS; 4 for all the silicates, multiple oxides, carbonates,
sulfates, et cetera listed in Robie, Hemingway, and Fisher (1978). Although
the scatter in figure 9 exceeds that of figure 8, the uniformity is still evi-
dent. Secondly, the importance of oxygen should lead to consistent en-
tropies when expressed in gram-oxygen units. Figure 10 shows AS; 595 for
anhydrous silicates; again, the consistency is striking. Hydrous silicates
do not fall on the trend of figure 10, because hydrogen is also gaseous in
its standard state. Navrotsky (1974) showed a similar uniformity of AS;
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Fig. 9. Mean atomic entropies of formation for the silicates, multiple oxides, car-
bonates, sulfates, phosphates, molybdates, uranates, and tungstates as listed in Robie,
Hemingway, and Fisher (1978).
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Tig. 10. Entropies of formation per gram-oxygen unit of the anhydrous silicates
listed in Robie, Hemingway, and Fisher (1978).
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at 1000 K for a large number of binary oxides, although the observed
variation is greater for simple oxides due to higher cation to oxygen ratios.

Throughout figures 8 to 10, minerals that have high mean atomic
weights seem to have aberrantly high entropies. The predictive value of
figures 8 to 10 may be best utilized by either ignoring minerals of high
mean atomic weight or by exploiting any entropy-mass relationship that
may exist. Figure 11 shows the entropies of figure 9 as a function of mean
atomic weight. Although the scatter is significant, there is a clear trend to
the data in figure 11 showing a positive correlation between mean atomic
weight and entropy. A linear fit to this trend may be used to correct
entropy estimates for mass.

A summary of various averaged values for mean atomic entropies of
formation is given in table 4. Note that for individual structure groups
the standard deviation from the entropy mean is very low. An obvious
application of these data would be to obtain Gibbs energies of formation
from enthalpy data, where third law entropies are not available. This
method compares favorably with other methods available to estimate
Gibbs energies from enthalpy data, namely by estimating the third law
entropies (see Latimer, 1952; Saxena, 1976; Helgeson and others, 1978).
In particular, this procedure has the advantages of simplicity and con-
sistency; it seems to work fairly well for all oxygen-based minerals. A
similar approach works for chlorine- and fluorine-based minerals (com-
pare Schmalzried and Navrotsky, 1978, p. 152). This procedure is not well
suited to estimate third law entropies. A 8 percent error in AS;,,s may
lead to a 10 percent error in the standard third law entropy at 298 K, due
to the magnitudes of the numbers involved.

CONCLUDING REMARKS

In the preceding paragraphs we have attempted to demonstrate the
value of a proper choice of units for petrologic problems. We have found
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Fig. 11. Mean atomic entropies of formation as a function of mean atomic weight
for the silicates, multiple oxides, and carbonates of figure 9. The line and equation are
a least squares fit to the data.
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TABLE 4
Average values of mean atomic and mean gram-oxygen entropies
of formation from the elements for various mineral groups

—AS: s (J/K-gau) A8y (J/K-gou)
(anhydrous (anhydrous
Mineral group (inclusive) (selected) inclusive) selected)
Ortho- and ring .
silicates 57.83(4.77)* 58.97(3.39)° 96.11(5.13) 97.63(2.47)
Chain silicates 56.97(2.49) 57.55(1.66)° 94.99(3.96) 96.07(2.12)¢
Sheet silicates 61.51(2.31) 62.16(1.52)4 — —
Framework silicates 58.09(2.81) 57.57(2.02)° 93.30(2.66) 92.90(2.33)°
All silicates 58.27(3.76) 58.74(2.90)* 94.97(4.31) 95.77(3.08)*
Multiple oxides 54.92(2.99) — 96.22(5.39) —
Carbonates 54.85(4.10) 56.19(3.08)¢ 87.99(4.59) 90.32(1.83)8
Sulfates 62.19(2.36) — 93.83(3.15) —
Other complex
oxides 58.46(2.80) 58.99(2.11)" 93.28(6.92) 92.08(6.14)"
All complex
oxides 58.06(4.13) 58.30(2.97)! 93.90(5.27) —

2 Data taken from Robie, Hemingway, and Fisher (1978). Values in parentheses are
standard deviations from the mean.

* Excluding fayalite, tephroite.

¢ Excluding rhodonite.

4 Excluding fluorphlogopite.

¢ Excluding stishovite.

f See footnotes b, ¢, d, e.

¢ Excluding siderite, rhodochrosite, cerussite.

" Excluding trisodium uranium oxide.

! See footnotes b, ¢, d, e, g, h.

gram-atom units to be especially useful because of their conceptual sim-
plicity, the simple numbers they entail, and their conservative nature.
The examples discussed clearly indicate the utility of conservative units
for any graphical analysis. In addition, the examples show that by an ap-
propriate choice of units, new relationships among old data may emerge.
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APPENDIX 1

If the lever rule is to work for the composition axis shown in figure (Al), the fol-
lowing relation must be satisfied:

np¥
Np¥— N4 ne¥+npt — NpA np¥
= - 3 Al
NpE — N P MAX + Ny~ (A1)

where ng® is the number of units of component B in one unit of component X and
Np¥ is the composition (gram-unit fraction) of component X in terms of the end mem-
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ber components C and D (for example, mass fraction of D in X). To prove the equality
(Al) it is necessary to express ng® and np™ in terms of n,* and ny*. If the units used
are conservative, the required stoichiometric relations (eq 1 in text) will be

1A = (1 — Np4)C + (Np4)D
1B = (1 — NpB)C + (NpP)D

where the sum of the coeflicients on either side of these relations is one. It follows from
the definition (see text) of the coefficients in egs (A2) that

ng® = (1 — Np*)n ¥ + (1 — NpP)ny©
npT = (Np*)n,* + (Np®)n,*
from (A3) it is apparent that

(A2)

(A3)

(ne® + np¥) = (X + np¥). (A4)
Using (A4) and (A3), (A1) becomes
Np* n, ¥+ N2 np® Nyt = ny™
(0¥ + np¥) (n X + np¥)
Np2 0¥+ NpB np¥ — Np2 0¥ — Np? n,¥ = Np® ng¥ — Np ng~
(Np® — Np#)ng® = (Np® — Np#) ng*

confirming the validity of the lever rule for any composition axis based on a conserva-
tive unit of quantity. Eqs (A2) do not in general apply to gram-formula units, unless
the formulas of the minerals are normalized as discussed in the text.

(Np® — Nyp*)

- oNM-N e
R Ny - N k-
c A X B )
+ = :I 1
"
0 Nn Nn Nn 1
n
N, = ° —
nCOnD

Fig. AL A composition axis based on the endmember components G and D. The
compositions of components A, B, and X are also shown. The unit of quantity is not
specified.
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