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CHEMICAL COMPONENTS AND DIFFUSION
JOHN B. BRADY*

Department of Geological Sciences, Harvard University,
Cambridge, MA 02138

ABSTRACT. Chemical components for use in the description of a system involved in
a diffusion process may be selected according to the same criteria followed in the selec-
tion of components for an equilibrium system. The various possible sets of components
are not independent and may be interrelated through a component transformation.
Actual components are preferred over nonvariable components, since they simplify
descriptions and avoid theoretically nonmeasurcable quantities. Two systems involved
in an interdiffusion process may always be described using components that are actual
components of both systems. For example, ternary reciprocal exchange of alkalis be-
tween alkali feldspars and dioctahedral alkali micas may be described using binary
equations in terms of the exchange component, KNa_;, which is an actual component
of both minerals. Small quantities of additional components in approximately binary
systems may have significant effects on measured diffusion coefficients, if neglected.
Nevertheless, binary solutions to the continuity equation may be used, if the system is
constrained in any of several ways to some binary or to a single set of boundary con-
ditions.

INTRODUCTION

A phenomenological description of a diffusion process details the
macroscopic changes of a thermodynamic system that result from mass
transfer by diffusion. For any specific diffusion process, the form of the
phenomenological description given will depend on a number of arbi-
trary decisions concerning the manner of presentation. For example, any
of a large number of sets of chemical components may be used to specify
composition changes, fluxes, et cetera, as in describing an equilibrium
system. Because mass transfer is involved, a large number of possible ref-
erence frames are available, as in describing motion in any physical sys-
tem. Also, one of many possible empirical diffusion constants must be
selected, each of which may vary in magnitude with the choice of ref-
erence frame, components, and units. Of course the diffusion process is
independent of any decision on matters of presentation. Thus, at least in
principle, the various possible descriptions may all be interrelated.

One of the decisions concerning the form of a phenomenological de-
scription of a diffusion process, namely the selection of chemical com-
ponents, is discussed in this paper. The other decisions, selection of
reference frame and diffusion coefficient, are considered only briefly here,
for an extensive treatment of these topics may be found elsewhere (Brady,
1975). The discussion begins with a brief statement of the equations com-
monly used to describe diffusion. This will serve both to emphasize the
arbitrary choices involved in using these equations and to clarify the
notation used in the rest of the paper.

MULTICOMPONENT DIFFUSION EQUATIONS

One-dimensional, steady-state, isothermal, isobaric diffusion in a
homogeneous thermodynamic system of n components may be described
by the equations

* Present address: Department of Geology, Smith College, Northampton, MA 01060
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(Onsager, 1945). J;® is the flux of component i with respect to reference
frame R. C; is an arbitrary intensive variable, such as density or mole
fraction, giving the system composition in terms of component j. x is dis-
tance, t time, P pressure, T temperature. D;;®C is an empirical constant,
defined by equation (1), which relates the flux of component i with re-
spect to reference frame R to the gradient of composition variable C;.
The units of D;;%¢ depend on the choice of units for J;® and the units
of the composition variable C;.

In order to avoid the necessity of comparing the multitude of possible
diffusion coefficients it is convenient to express all flux equations in terms
of “standard” diffusion coefficients, D°;; (cm?/sec), defined by

n—1

Jv=— z D°, (%) (i=12,...n-1) (2)

j=1

(see Hooyman, and others, 1953; Brady, 1975). J;V is the flux of component
i with respect to the mean volume reference frame in units of (moles of
ifcm?sec). The mean volume reference frame is defined by the relation

Z ViJiv=0 (3)

i=1

where V; is the partial molar volume of component i (see Hooyman, 1956;
Kirkwood and others, 1960; Brady, 1975). p; is the molar density of com-
ponent j in units of (moles of j/cm?). Since the fluxes J;V are connected
by (8) and the molar densities p; by the thermodynamic relation

z Vidp; =0 (constant P, T) 4)

=1

only (n—1) fluxes and composition gradients are considered in (2) for an
n-component system. Flux equations with respect to other reference
frames R (mean molar frame, mean mass frame, et cetera) or using other
compositional variables C; (mole fractions, mass fractions, et cetera) may
all be given in terms of the standard diffusion coefficients, D®;;, if the ap-
propriate thermodynamic relations and relative velocities are known (de
Groot and Mazur, 1962; Brady, 1975).

Diffusion is generally a non-steady-state process and must be described
by a form of the continuity equation. Assuming that there is no volume
change and that the diffusion process is conservative, the continuity equa-
tion is given by
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(Landau and Lifshitz, 1959) or using (2)
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Equations (6) present the major barrier to a generalized analysis of diffu-
sion in real systems. No analytical solutions to (6) are known for systems
with n greater than two. Only if the diffusion coeficients D°;; are inde-
pendent of composition are analytical solutions available for multicom-
ponent systems (Fujita and Gosting, 1956; Kirkaldy, 1959; Oishi, 1965).
Equations (6) may then be written in the more tractable form

dpi n%l\ <62Pj> .
A = Do, (—& =1,2,...,n—1 7
< ot >1>'T'x L T\ oxe P,T,t g =l @

=1

Since most natural processes are non-steady-state and involve composition
dependent diffusion coefficients, the bulk of diffusion literature is confined
to considerations of binary systems. The following discussion, therefore,
will be concerned primarily with examples from two-component systems,
although many of the principles examined may be applied to multicom-
ponent systems.

ACTUAL COMPONENTS

We may now proceed to evaluate the sets of chemical components
available for use in the diffusion equations presented above. Let us begin
with some definitions. A chemical component is a specific chemical com-
position that may or may not correspond to the composition of any physi-
cally realizable substance (Gibbs, 1928, p. 63). The components used to
describe a phase (physically homogeneous substance) may be classified
into three types: actual components, possible components, and nonvari-
able components (Gibbs, 1928, p. 64; Thompson, 1959). By definition
actual components may be either added to or subtracted from a phase
without destroying the homogeneity of that phase. Possible components
may be either added or subtracted, but not both. Nonvariable components
may not be added or subtracted, independently of other components.
Possible components are a special case of actual components at some
compositional limit of the phase. Therefore, I shall refer only to actual
components and nonvariable components in the following discussion.

Of the two types of components, actual components are clearly
superior for the description of diffusion processes, for several reasons.
First, note that diffusion involves the addition or subtraction of quanti-
ties of components to or from a phase or system. If the components used
in the description may not be independently added to or subtracted from
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the phase of interest (that is, if they are nonvariable components), then
“extra” equations of constraint must be carried in the description (for
example, to ensure charge neutrality, stoichiometry, et cetera). While
these additional equations do not invalidate the description, they may
unnecessarily complicate it. A minimum number of equations of con-
straint are required if actual components are used.

A mineral is an n-component phase if all possible compositions of
that mineral may be expressed by a linear combination of not less than n
components (Thompson, 1959). Any set of n components sufficient to give
all possible compositions of an n-component phase may be called an wulti-
mate set of components for that phase (Gibbs, 1928, p. 79; Thompson,
1959). Any ultimate set of components for an n-component phase will
consist of n independent actual components. Any set of components that
includes even one nonvariable component must contain more than n
components, if the set is to be sufficient to give all possible compositions
of an n-component phase. Therefore, the minimum number of com-
ponents need to be considered if an ultimate set of (actual) components
is used.

The use of actual components also allows the empirical description
considered here to be related to a more fundamental description in terms
of chemical potential gradients, to which Onsager’s reciprocal relations
may be applied (Onsager, 1931a,b). Chemical potentials of actual com-
ponents of a phase, ¢, may be determined from the chemical composition
of ¢, if an equation of state for ¢ is known. However, the chemical poten-
tials of nonvariable components of a phase, ¢, may not be obtained from
the composition of ¢ and an equation of state. They are specified only if
¢ is in equilibrium with other phases such that the total assemblage has
as actual components the nonvariable components of ¢. Other partial
molar quantities of nonvariable components of ¢, such as the partial
molar volume V;, are neither measureable nor specified by the presence of
any assemblage in equilibrium with ¢. This fact generally decreases the
usefulness of any description in terms of nonvariable components and
makes it difficult to utilize several mean velocity reference frames (Brady,
1975). All these considerations lead to the conclusion that a description
in terms of an ultimate set of components is preferable to any other.

TRANSFORMATION OF COMPONENTS

While the description of a diffusion process in terms of one ultimate
set of components is equivalent to a description in terms of another ulti-
mate set, different sets of components may be convenient for different
processes. It will be advantageous, therefore, to be able to interrelate two
descriptions given in terms of different sets of components. This may be
accomplished by following the procedures established for a transforma-
tion of the components used to describe an equilibrium system (for ex-
ample, calculating a norm from a chemical analysis). For a recent discus-
sion of component transformations see Greenwood (1975). See also
Korzhinskii (1959, chap. II).
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To investigate the effect of a transformation of components on the
description of a diffusion process, let us consider as an example the binary
system iron-sulfur. For “old” components we shall choose the physically
realizable compositional limits of the system, Fe and S. For “new” com-
ponents let us choose the compositions of troilite, FeS, and pyrite, FeS,.
Either of these two sets of components might be used to describe diffusion
in pyrrhotite (Fe,_,S); both are ultimate sets of components for pyrrhotite.
This particular example may be of geological interest, for diffusion in
pyrrhotite probably limits the rate of response of the pyrite-pyrrhotite
geothermometer to a change in temperature.

The “new” components FeS and FeS, are related to the “old” com-
ponents Fe and S by the stoichiometric relations

FeS=Fe + S 8
FeS,=Fe +2S ®)

Equations (8) express the fact that one mole of FeS may be made from
one mole of Fe combined with one mole of S, and similarly for FeS,. What
we need to know, however, is the total number of moles of FeS for a sys-
tem given the total numbers of moles of Fe and S. The best procedure
is generally to start with the inverse relations giving the total number of
moles of iron (ng.) and sulfur (ng) in terms of the numbers of moles of
troilite (np.s) and pyrite (ng.s,). We have by inspection, then,

Npe = Nypeg + Npeg,

9

Ng = Npeg + 2 Npes, ®)
Solving equations (9) for ng.s and ng,s, yields
Npes = 2 Npe — Ng

(10)

Npeg, = — Npe + Ng

which is clearly not of the same form as (8).

Equations (9) and (10) may be used to obtain relations among the
mole fractions Ny, Ny, €t cetera to give the composition of the system
in terms of the different sets of components:

No. — g, o 1
7 npe+ng 24 Nres,
(11)
Ny s _ 3Np.—1
‘ Npes + Npes, Ng.

Equations (10) may also be used to obtain the fluxes of the “new” com-
ponents, Jres™ and Jr.s,*, from measurements of fluxes of the “old” com-
ponents:

JFeSR =2 JFeR - an

12
JFes2R:—JFeR+JsR ( )
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where Jp.s® is the total number of moles of FeS passing a unit cross sec-
tion of reference frame R in unit time. Notice that all fluxes are given
with respect to the same reference frame R. If a different reference frame
is of interest, the above procedure must be combined with the procedures
outlined in Brady (1975) for relating various reference frames.

Particular care should be exercised with regard to the reference frame
used, for some reference frames depend on the choice of components. For
example, the mean molar frame, N, for our “old” components is not
identical with the mean molar frame, N’, for our “new” components.
Indeed, at any time during a diffusion process, the two mean molar frames
will have a relative velocity such that

JIN= TN I 19)

where p; is the molar density of component i and VN'N is the local velocity
of frame N’ with respect to frame N. The mean molar frame N (for the
components Fe and S) is defined by

JeN+JsN =0 (14)
and the mean molar frame N’ (for the components FeS and FeS,) by
JFeSN' + JFeSzN' =0 (15)

(de Groot and Mazur, 1962). Adding (13) written for i = FeS to (13) writ-
ten for i = FeS, and using (9), (12), and (15) we have

v 1 N
VN'N = <m—>< JFeSN + JFeSZN ) = ]:F (16)
e D) e

Substituting (16) into (13) written for component S yields

Js¥ = Js¥ 4 2 Jee (17)
or using (14)
N'— TN Ps _ JSN
J =] T+——) = — (18)
PFe NFe
It follows from (12), (14), and (18) that
. ]FeN
N — .
JFeS NFe
(19)
Jrogpy = I8
FeSo NFe

A comparison of equations (19) and (12) will serve to demonstrate the
importance of properly identifying the reference frames in use. Note also
that Jp,N = 0.

In contrast, the standard diffusion coefficient for a two component
system, D°, does not depend on the choice of components.! This may be

1The subscripts have been omitted from D°,, since there is only one independent
Doy for a binary system.
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demonstrated by expressing the fluxes of (19) in terms of the binary diffu-
sion coefficients D° and D°’ for the “old” and “new” components, re-
spectively. The flux of component i with respect to the mean molar ref-
erence frame N is given by (de Groot and Mazur, 1962, p. 252)

=) (20)
: \Y% ox P,T,t

where V is the volume of the phase of interest per mole of “old” com-

ponents. Using (20) along with the first equation of (19) we have

, Do/ aN e — Do aN . ‘eN
Jres = =2 (—S) - ——(—) = Ir o1
A% 0X /Jopmt Np. V 0x /Jpmt Fe

where V' is the volume of the phase of interest per mole of “new” com-
ponents. And noting that

A% \Y% 1 \Y%

\_/’ =_=— = — = e 22
Npes + nFeSg INye PFe NFe ( )
(21) becomes
por= D ((dNr. ) (23)
NFe: d NF‘eS
Finally, evaluating the derivative in (23) using (11) we obtain
DO/ — DO (24)

Thus, a description of diffusion in pyrrhotite in terms of the components
Fe and S may be readily related to one in terms of FeS and FeS,. The
same binary diffusion coefficient D° will be obtained using either of these
two ultimate sets of components.

This result appears to be quite general. For any binary system there
is only one standard diffusion coefficient D°, regardless of which ultimate
set of components is used. Unfortunately, this simple result may not be
extended to multicomponent systems where each diffusion coefficient must
be carefully labeled according to the components used for the composi-
tion gradient and related flux. However, the methods discussed above
may be used to interrelate fluxes for different choices of components, and
the diffusion coefficients obtained for one set of components can be re-
lated to those obtained for other sets of components. For discussions of
similar problems concerning multicomponent systems see Gupta and
Cooper (1971), Cooper (1974), and Schonert (1960).

EXCHANGE COMPONENTS

Buckley (ms) and Anderson and Buckley (1973, 1974) have argued
that the use of actual components as “diffusing” components in some in-
stances may be inconvenient, misleading, or inaccurate. Buckley (ms) cites
as an example the exchange of Mg+? and Fe+? between garnet and or-
thopyroxene. He points out that while diffusion of FeSiO; in pyroxene
(where it is an actual component) is meaningful, diffusion of FeSiO; in
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garnet (where it is not an actual component) is not meaningful and con-
versely that the diffusion of Fe;AlSi,O,, is meaningful in a garnet but
not in a pyroxene. Buckley concludes from this that the total number of
components needed to describe diffusion in a polyphase system is in-
creased, if one is constrained to use actual components of the phases in-
volved. Therefore, Buckley (ms) and Anderson and Buckley (1973, 1974)
recommend the use of oxides of the elements for “diffusing” components.
But the use of FeO as a “diffusing” component in garnet is little improve-
ment over the use of FeSiO,. Neither is an actual component of garnet
so that both have all the disadvantages of nonvariable components dis-
cussed above.

The difficulties in using actual components presented by Buckley
(ms) are not encountered, if one begins with an appropriate selection of
actual components for the phases or systems of interest. In the garnet-
orthopyroxene example mentioned above, this would mean choosing the
“negative” component FeMg_, as one of the actual components for both
minerals (see below). Indeed, there must always exist a set of actual com-
ponents that contains the minimum number of components necessary to
describe any diffusion process. To verify this, consider a generalized ex-
change of mass between two thermodynamic systems. Each of these two
systems may be either a phase or a collection of phases. Any mass involved
in the exchange must be subtracted from one of these systems and added
to the other. There is no mass diffusing that is subtracted from one sys-
tem and not added to the other. Therefore, it must be possible to de-
scribe the mass involved in the exchange using components that are actual
components of both systems.*

For many mineral pairs (or assemblages) that might be involved in a
diffusional exchange, the only actual components common to both min-
erals (or assemblages) are components that do not represent physically
realizable compositions of the minerals (or assemblages) considered. This
is perhaps best explained in terms of a simple example involving two
phases in the same ternary system. Consider the exchange of Na and K
between an alkali feldspar and a dioctahedral alkali mica. These two
binary phases have only one actual component in common. Although not
apparent on some commonly used compositional diagrams (fig. 1A), the
intersection of the line of actual components for the alkali feldspars and
the line of actual components for the muscovite-paragonite series gives
the composition of the shared actual component, KNa_; (fig. 1B). That
KNa_, is an actual component of both the alkali feldspars and the

2 An actual component of an assemblage of phases is a component that may be both
added to or subtracted from the assemblage without the addition of an extra phase
(Thompson, 1959). An ultimate set of components for an n-component assemblage of
phases is a set of n components sufficient to give all variations in the bulk composition
of that assemblage. If one chooses ultimate sets of components for two systems such that
the intersection of the two ultimate sets is as large as possible, then this intersection
will be a set of actual components of both systems sufficient to describe all diffusional
exchange between the two systems.
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Fig. 1. Compositions of the alkali feldspars and dioctahedral alkali micas shown on
two different ternary composition diagrams based on the components NaAlSi,O,,
KAISi,O,, and AIO(OH) (A) and the components NaAlSi,0,((OH),, NaAlSi,O., and
KNa_, (B).
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dioctahedral alkali micas is evident from figure 1B and the stoichiometric
relations

KNa_, = KAISi,O, — NaAlSi, O,
(25)
KNa_, = KALSi,0,,(OH), — NaALSi,;0,,(OH),

KNa_, is an example of what I shall call an exchange component.? It does
not happen to correspond to the composition of any feldspar or mica but
is just as valid as any other actual component. For example, the composi-
tion of any alkali feldspar may be expressed as a linear combination of
KNa_, and NaAlSi;O,. In fact, using KNa_, as a component for alkali
feldspars is analogous to using S as a component for pyrrhotite. S is given
by the stoichiometric relation

$ = Fe$, — FeS (26)

and does not correspond to the composition of any pyrrhotite.

In many respects, the exchange component KNa_, is an ideal “dif-
fusing” component for the description of alkali exchange between feld-
spar and mica, or any other two alkali-bearing minerals. To begin with,
the use of KNa_, enables one to describe a ternary reciprocal exchange
in terms of one diffusing component. Since KNa_, is an actual component
of both phases, constraints of stoichiometry and electrical neutrality are
automatically satisfied. In addition, the driving force for alkali exchange
is a gradient in the chemical potential of the exchange component, given

by

PKNA_; = MEAIS30g — MNaAlSizOg (in feldspar)

@7)

MENA_; — MKAlgSigO1o(0OH)g — MNaAlgSigOyg(OH)g (in mica)

(see A. B. Thompson, 1974). Isothermal alkali exchange will cease only
when the chemical potential of the exchange component is the same
throughout the phases involved.

When described in terms of the flux of the exchange component,
KNa_,, alkali exchange between two binary phases in the same ternary
system becomes mathematically equivalent to the case of interdiffusion
in a binary system, when more than one phase is involved. The continuity
equation has been solved for this latter case using the Boltzmann substi-
tution (Jost, 1950, 1952, p. 75; Appel, 1968). The solution allows for a
discontinuity in the concentration-distance profile but requires that the

*To my knowledge the use of exchange components like KNa_, for the description
of thermodynamic systems originates with J. B. Thompson, Jr. who demonstrates their
convenient features in his lectures on phase equilibria (compare Thompson and Wald-
baum, 1968, p. 1995; Waldbaum and Thompson, 1969, p. 1282). D. M. Burt (1972, 1974a,
1974b) has used exchange components extensively, calling them “exchange operators”.
For other examples of the use of “negative” components see Thompson (1972) or
Korzhinskii (1959, chap. II).
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magnitude of the discontinuity not change with time, for all time greater
than t = 0 (compare Carslaw and Jaeger, 1947, p. 70).*

For a one-dimensional, isothermal, isobaric, isochoric exchange of
alkalis between an alkali feldspar and a dioctahedral alkali mica, equa-
tion (6) may be written as

(), - (R, ] o
at P,T,x ax ox pr,td/PTt

If both the feldspar and mica are initially uniform in composition and
juxtaposed across a planar boundary, appropriately oriented to ensure
one-dimensional diffusion, then the solution to (28) modified after Jost
(1950) and Appel (1968) is

PKNa_l

o —1 dx
D= (g ) | gy (29)

prNa_;(—)

PKN;\_1(+°°>
1 dx
o — N -
> =5 ) X dprva_y (30)

PKNa__y

where pgxa_,(+%) and pgy._,(—) are the molar densities of KNa_; far
removed from the site of the diffusion. Equation (29) provides the solu-
tion for one side of the initial interface, and (30) for the other.

Exchange components may be readily applied to a great many other
mineral pairs and assemblages. For example, the exchange of Fe+? and
Mg+? between garnet and orthopyroxene discussed by Buckley (ms) may
be conveniently described in terms of the exchange component FeMg_,
as may similar exchanges between olivine and orthopyroxene or garnet
and cordierite. Similarly, oxygen isotopic exchange may be described in
terms of the diffusion of O1*0°_,. For diffusion in multicomponent,
multiphase systems several exchange components may be used. In all
these cases, the use of exchange components provides the simplest de-
scription complete with all the advantages of actual components.

APPROXIMATELY BINARY SYSTEMS

Few natural or experimental systems are strictly binary; nearly all
contain small quantities of impurities (additional components). To deal
rigorously with all these additional components would mean having to
solve equations (6) for a multicomponent system, which is difficult at best.
Yet if we neglect even very small quantities of impurities and treat nearly
binary systems as exactly binary systems, we run the risk of encountering
nonreproducible results. Indeed, there is abundant experimental evidence

* Jost uses the correct approach but gives an incorrect result. His equations [4] (1950)

and [1.337] (1952) should be modified to the mathematical form of (29) and (30) of this
paper, which agree with Appel’s result.
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that very small quantities of impurities may have a significant effect on
the magnitude of measured diffusion coefficients (Shewmon, 1963). This
is due to the fact that many impurities have associated defects such as
vacancies which may greatly facilitate diffusion. Fortunately, however,
there are several circumstances for which a binary approach will be use-
ful even when the system examined is not constrained by stoichiometry
to be binary. These will be considered in the following paragraphs as-
suming for simplicity that there is only one extra component (8) in addi-
tion to the two major components (1 and 2).

A case to which the binary equations may be correctly applied occurs
when the quantity of component 3 (mole fraction of 3) in the phases in-
volved does not vary during the diffusion process. If the mole fraction of
3, N;, does not change, then a binary description is quite correct, even
if there is no stoichiometric constraint on 3. The diffusion coefficient de-
termined, however, is valid only for the given constant N; and must be
redetermined for other constant N,’s. A constant mole fraction of com-
ponent 3 during the diffusion process means either that the chemical
potential of component 3, p,, does not vary with N, at constant N, or
that the diffusion of component 3 is very slow compared to the diffusion
of components 1 and 2. The case of diffusion at constant Nj;, when the
diffusion coefficients are all independent of composition, is a special case
of ternary diffusion that was emphasized by Gupta and Cooper (1971).
These authors pointed out that there will always be two directions in
composition space (that is, two choices of component 3) for which diffu-
sion will occur at constant N,. See also Cooper and Varshneya (1968) and
Varshneya and Cooper (1972a,b,c).

If N, is not constant and the diffusion coefficients depend on com-
position, a binary solution may still be used if one is interested in only
a single set of boundary conditions. Cooper (1968) has shown that for a
semi-infinite diffusion couple with given boundary conditions, N, (+)
and N, (—), the diffusion path (in composition space) will be unique.
In other words, for each value of N, there will be a unique value of N,,
N,, and D° (for the given boundary conditions). Therefore, a single ex-
periment will suffice for a single set of specific boundary conditions, but
other measurements will be necessary for other values of N, (+) and
N, (—).

An alternative approach which may be used for some systems is to
constrain an otherwise ternary system to behave as if it were binary by
externally buffering the value of one or more chemical potentials. As an
example let us consider diffusion in the common olivines. Although the
compositions of many common olivines may be largely represented by a
linear combination of the components Mg(SiO,); and Fe+2,(Si0O,)s,
most olivines contain some ferric iron as well. Assuming that charge
balance is maintained by the introduction of vacancies, open square O,
on metal sites along with the ferric iron, we may represent the presence
of ferric iron in olivine in terms of the component [J,Fe+3, (SiO,),. The
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O,Feq(Si0g)s

Mgg(SiOg )y Feg(SiO4)y

Fig. 2. A ternary composition diagram for the compositions of common olivines
containing ferric iron, assuming that local charge balance is maintained by the presence
of vacancies. The lines through the points labeled y = 14 and y = 14 each represent a
series of compositions with the same ferric-ferrous ratio. The points labeled y = 14 and
y = 14 have compositions given by the formula Fe*%_s; ([] Fe*’,); (SiOy),.

ferric component along with the ferrous and magnesian components de-
fine a ternary system (fig. 2).

A potentially interesting set of binary subsystems contained within
this ternary olivine system would correspond to the lines in figure 2
which radiate from the Mg, (SiO,); corner (that is, those drawn to points
labeled y = 14 and y = 14). Each of these lines is the locus of composi-
tions with a constant ferric-ferrous ratio. All compositions along any one
such line may be represented by a linear combination of the components
Mg,(SiO,); and Fe+2,;, (O Fet3,), (SiO,),, where the y will be different
for different lines (that is, for different ferric-ferrous ratios).

Assuming that the ternary olivines of figure 2 form an ideal solution,
a constant ferric-ferrous ratio means that the chemical potential of Fe is
constant (for constant pressure and temperature). To see that this is true
note the equilibrium condition

pre = Vo [Ureg (51045 — B[ oFey (S104)5) (31)

Substituting expressions for the chemical potentials in terms of mole
fractions into (31), assuming ideality (Thompson, 1967, eq 4), yields

o o NFes (8i04) 3
pre = Vo |  pFeq (51043 — B° O oFey (51093 T oRTln
[ oFey (8i04)3

(32)
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If pre is constant, then (Npe, (siog)g / N [ oFey (8104);) Must also be con-
stant and conversely, since the other terms in (32) have definite values at
a given pressure and temperature (the ,°; terms give the chemical poten-
tials of the pure end members and ¢ is a constant depending on the num-
ber of exchangeable sites per mole of the chosen components). Therefore,
if we could externally constrain up., possible olivine compositions would
lie along one of the lines y in figure 2, and the diffusion is constrained to
be binary.

An experiment corresponding to the desired conditions would en-
tail controlling o, in addition to having an iron oxide present. If the
olivines in the experiment were initially equilibrated separately at the po,
of the diffusion run, and if the Fe+?, «<—> OFe+3, exchange is as rapid as
the Fe+2? <—— Mgt? exchange, then the diffusion may be treated as bi-
nary (to the extent that the olivines are ideal). Buening and Buseck
(19738) have measured Fe-Mg diffusion in olivines under conditions simi-
lar to those suggested here. They found a significant po, dependence of
their measured binary diffusion coeflicients. I suggest that what they
have determined are binary diffusion coefficients for interdiffusion be-
tween forsterite and various fayalites with different ferric-ferrous ratios
(that is, for different values of y (fig. 2)). A similar approach might be
utilized to measure interdiffusion in other Fe—Mg solid solutions.

CONCLUSIONS

Of the many possible sets of components available for use in describ-
ing diffusion in an n-component system, an ultimate set of (actual) com-
ponents is preferred because (1) a minimum number of equations of
constraint are necessary, (2) a minimum number of components need be
considered, and (8) inherently nonmeasureable quantities are avoided.
Descriptions of diffusion in terms of one ultimate set of components may
be easily transformed into descriptions in terms of another ultimate set
of components. Special care must be exercised, however, when the ref-
erence frames used depend on the choice of components. The description
of many diffusion problems may be simplified if one is willing to use
actual components, which may contain negative amounts of atoms. Par-
ticularly convenient are “exchange components” like KNa_;, as demon-
strated above for the case of ternary reciprocal exchange between alkali
feldspars and dioctahedral- alkali micas. Small quantities of additional
components in approximately binary systems may significantly affect dif-
fusion processes and should not be neglected. However, solutions to the
continuity equation for a two component system may be used if (1) the
system is constrained by stoichiometry to be binary, (2) the system is con-
strained by kinetics to-be binary, (8) the system is constrained to be binary
by externally buffering certain chemical potentials, or (4) only one set of
boundary conditions is of interest.
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