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[AMERICAN JOURNAL OF SCIENCE, VOL. 275, OCTOBER, 1975, P. 954-983]

REFERENCE FRAMES AND DIFFUSION COEFFICIENTS

JOHN B. BRADY

Department of Geological Sciences, Harvard University,
Cambridge, Massachusetts 02138

ABSTRACT. Diffusion coefficients are empirical constants that express linear rela-
tionships between fluxes of chemical components and gradients in composition vari-
ables. Component fluxes must be measured with respect to some particular frame of
reference, so diffusion coefficients depend on the choice of reference frame as well as
the choice of composition gradient. Reference frames based on a mean velocity of all the
components, such as the velocity of the center of mass, are particularly convenient, for
results obtained using different mean velocity frames may be readily interrelated. Dif-
fusion data is best presented in terms of “standard” diffusion coefficients, D°;, based
on the mean volume reference frame. The continuity equation for a specific reference
frame R is given by

0pi d -
( ot )P,T,x == [ 9x ( JitF v )] P,T,t

where V2 is the local velocity of reference frame R with respect to a fixed point not
affected by the diffusion process. If there is a volume change during a binary diffusion
process in a single crystal, the continuity equation may be solved using a modified
distance scale based on appropriate lattice translations in the crystal of interest. Inter-
diffusion behavior may be predicted on the basis of isotopic self-diffusion measure-
ments; the exact relationship utilized for ionic crystals is not identical to Darken’s
equation for metallic crystals.

1. INTRODUCTION

The process of diffusion involves the net transfer of atoms due to
random thermal motions of atoms initially in a non-random distribution
and/or to non-random thermal motions of atoms subject to a driving
force. In order to describe and quantify this net movement of atoms,
macroscopic measurements must be made with respect to some specific
frame of reference, usually consisting of a set of identifiable points. In
principle, any set of reference points may be used as long as all measure-
ments are made with respect to the same set. In practice, however, it may
be inconvenient or impossible to use the same reference frame for all
measurements and applications. Since different reference frames lead to
different descriptions of diffusion and, therefore, to different diffusion
coefficients, it is wise to select for common usage those reference frames
that may be readily interrelated. For these reasons, an understanding of
the various ways to describe diffusion and to define diffusion coefficients
is a prerequisite to the discussion of any diffusion data or diffusion related
process.

Extensive discussions of the subject of reference frames may be found
in the chemical, physical, and metallurgical literature of the last 25 years.
Outstanding papers include those by Darken (1948), Hartley and Crank
(1949), Hooyman and others (1953), Hooyman (1956), Kirkwood and
others (1960). An excellent summary may be found in a textbook by de
Groot and Mazur (1962, p. 239 and following). Summaries may also be
found in the texts by Fitts (1962, chap. 8) and Haase (1969, p. 271 and
following). In spite of this rather thorough theoretical coverage of the
subject, a unified treatment of reference frames is not available. The
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several papers listed above utilize a number of different approaches, each
designed to suit the problems most often encountered by the authors. In
what follows I will reconsider the general topic of reference frames and
show how the results of several of the listed authors are interrelated. I
will then show how these results may be extended and modified to apply
to problems of diffusion in common minerals.

Throughout this paper I consider only macroscopic or phenomeno-
logical descriptions of diffusion. Macroscopically, diffusion is manifested
by local variations in the chemical composition of a physical system and
may be explained, using simple mass balance considerations, in terms of
the transfer of matter of definite chemical compositions into and/or out
of the system. Hence, one describes diffusion as a motion of quantities of
chemical components relative to some reference frame sufficient to pro-
duce the observed variations in chemical composition. The components
used in the description need not correspond to any moving atomic or
molecular species and may be selected on the basis of convenience (see
Brady, 1975). For the purposes of this paper I assume that the components
used are linearly independent and that the quantity of each component
may be independently varied in the systems considered.

The equations presented in the following paragraphs are all for one-
dimensional diffusion. To be complete, velocities, fluxes, forces, and dif-
fusion coefficients should be given as tensor quantities. However, a one-
dimensional representation is sufficient to convey the important concepts
and simplifies the already cumbersome notation. The generalization to
three dimensions is straightforward. The unit of quantity used throughout
is moles of component i or gram-formula units of i. This choice of unit
of quantity simplifies some of the discussion, particularly for the unit cell
reference frame. Quantities that have meaning only if a reference frame
is specified are written with superscripts to indicate a particular reference
frame, R. The following is a list of the symbols used in the text.

NOTATION

a — unit cell parameter (A)

A =A4+* — cation with charge +a

AV — parameters used to relate fluxes in reference frame R to

fluxes in reference frame V (dimensionless) (3.11)

b — unit cell parameter (A)

B = B+b — cation with charge +b

B! — mobility of component i; velocity of component i with re-

spect to the inert marker reference frame in response to a
unit force (mole-cm?/cal-sec) (7.1)

c — unit cell parameter (A)
C, — any one composition variable for component i
D;;®C — practical diffusion coefficient; relates flux of component i

with respect to reference frame R to gradient of component
j given in terms of composition parameter C; (3.6)
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“standard” practical diffusion coefficient; relates flux of com-
ponent i with respect to the mean volume reference frame
to gradient in molar density of component j (cm?/sec) (3.11)
inert marker diffusion coefficient defined in (6.13) and (6.10)
(cm?/sec)
Gibbs free energy (cal)
dummy subscripts used to represent various components
flux of component i with respect to reference frame R
(moles/cm*sec) (2.4)
phenomenological diffusion coefficient; relates flux of com-
ponent i with respect to reference frame R to the force pro-
duced by the chemical potential gradient of component j
(mole?/cal-cm-sec) (3.1)
phenomenological diffusion coefficient; relates flux of com-
ponent i to a set of independent forces given in (3.4)
(mole?/cal-cm-sec)
gram formula weight of component i (gm /mole)
number of moles of component i
number of moles of component i per unit cell

' ; mole fraction of component i (dimensionless)

pressure (bars)

charge on species i (esu)

gas constant (1.987 cal/mole-deg)

time (sec)

temperature (°K)

velocity of component i with respect to some laboratory
frame L (cm/sec)

a weighted average of the velocities of all components;
velocity of mean velocity reference frame R (cm/sec) (2.2)
velocity of component i with respect to mean velocity ref-
erence frame R (cm/sec) (2.3)

velocity of reference frame S with respect to reference frame
R (cm/sec) (2.6)

volume (cm?)

v ; partial molar volume (cm?/mole)
ani P, Tnjz£ j

; molar volume of a phase (cm?®/mole)

weight given the velocity of component i in obtaining mean
velocity VR (dimensionless) (2.1)
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X — distance (cm)
Z=17—" — anion or chemical component with charge —z
Yi — activity coefficient for component i (dimensionless)
Six — % ;(1) llff lii 113 ; Kronecker delta function (dimensionless)
G . .
I — (—) ; chemical potential per mole of component
alli P,Tnj £ j
i (cal/mole)
&t — modified distance parameter for reference frame R based
on unit cell edge c (dimensionless) (5.1)
pi — molar density of component i (moles/cm?)
¢ — electrical potential (cal/esu)
Superscripts

— any one composition variable

— inert marker reference frame (sec. 6)
— Kth component reference frame (2.10)
— laboratory reference frame (sec. 2)
mean mass reference frame (2.11)

— mean molar reference frame (2.8)

— any one reference frame

— mean volume reference frame (2.9)

— indicates that the value is given for a radioactive isotope

* LR ZZER=O
|

2. MEAN VELOCITY REFERENCE FRAMES

A great number of papers have been written on the general subject
of diffusion that make no mention whatsoever of the frame of reference
in which the diffusive velocities and fluxes discussed are to be measured.
The authors of nearly all these papers tacitly assume that the diffusive
fluxes and velocities they discuss are measured with respect to a single
identifiable point. This is equivalent to using a reference frame based on
a set of points, each of which remains in a fixed position relative to the
others at all times. I shall call this type of reference frame the laboratory
frame, L, for it is commonly used by experimentalists in the description
of transport processes. For example, fluxes in solid interdiffusion experi-
ments are given with respect to one end of the sample. Similarly, in
liquid diffusion experiments, fluxes are measured with respect to the con-
tainer that holds the liquid, sometimes called the “cell-fixed” reference
frame.

Although laboratory reference frames have obvious practical ad-
vantages, their general utility is severely limited by their multiplicity.
Indeed, there are potentially as many laboratory reference frames as there
are laboratories or experimentalists, and results obtained using such
frames may be difficult or impossible to compare. For example, two ob-
servers of a solid interdiffusion experiment might pick opposite ends of
the diffusion couple as the origin of their laboratory frames. If there is an
overall volume change during the diffusion experiment, the two labora-
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tory frames chosen would move with respect to one another. This means
that two observers of the same experiment would obtain different values
for fluxes and velocities of the same components.

These difficulties may be eliminated by reporting motion with re-
spect to a reference frame that is independent of the particular labora-
tory frame selected by an observer. Such a reference frame can be defined
by some weighted average of the velocities of all the chemical components
involved, such as the velocity of the center of mass. Whatever laboratory
frame is used to measure individual velocities in a given experiment, the
same result would be reported by all observers for component velocities
relative to the center of mass. This approach has its foundations in classi-
cal mechanics and was introduced to describe multicomponent diffusion
by Hooyman (1956). Following Hooyman’s terminology, I shall call ref-
erence frames of this type “mean velocity” reference frames.

Let v;* be the velocity of component i as measured by any one ob-
server with respect to any single laboratory frame L at one point in space
and at one particular time. Operationally, v;% would be a weighted aver-
age of the velocities of all the particles that contain component i. Selecting
a set of dimensionless weighting factors w;®, such as mass fraction, mole
fraction, or volume fraction, normalized according to the criteria

i wilt=1 @.1)

i=1

we may define an average or mean velocity, V&%, for the n components of
a given system as

VR = N\ w Ry L 2.2)
=

where the superscript R refers to the reference frame defined by (2.1) and
(2.2). Although the magnitude of v, and of the mean velocity VL may
vary from observer to observer, the velocity v;* of component i with re-
spect to the mean velocity

ViR = (v;\ — VRL) (2.3)

will be the same for all observers. On this basis, then, we may define the
flux, J;%, of component i with respect to mean velocity reference frame

R as
it = pvi® (2.4)

where p; is the molar density of i and where the flux, J;®, is given in units
of moles of i per cm? per second. J;® will be the same for all observers of

the same event.
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Comparing equations (2.1), (2.2), (2.3), and (2.4) it is clear that the
n fluxes in any mean velocity reference frame cannot all be independent.
Indeed, the fluxes are related by

n

Ezﬂfjszo : 2.5)

i=1 pi
Equation (2.5) provides an alternative definition for the reference frame
R and was used as such by Kirkwood and others (1960). These authors
also pointed out that the fluxes with respect to any two reference frames
may be related using the expression

it =Ji% + pi¥SF (2.6)

where VSt is the velocity of reference frame S with respect to reference
frame R. For mean velocity reference frames we have

SR — $SL _ $RL — Z (WS — wR)v L. 2.7)

k=1

Equations (2.6) and (2.7) point out a very useful feature of mean velocity
reference frames: results from various mean velocity frames may be easily
interrelated. This fact will be used to advantage in defining a “standard”
diffusion coefficient in section 3.

Commonly used reference frames of the mean velocity type include
the following:

1. Mean molar reference frame (also called number-fixed frame)

Wi = Ny = ¥ =0 (2.8)

i=1

where N; is the mole fraction of i and where V is the molar volume of
the phase in which the diffusion occurs.
2. Mean volume reference frame

w;V = p;V; z ViV = (2.9)
i=1

where V; is the partial molar volume of i.
3. Kth component reference frame

WiK = 8ix JKK =0 (210)

where §; is the “Kronecker delta” defined such that §;; = 0 if i == K and
8“;: 1 ifi:K.
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4. Mean mass (barycentric) reference frame
wi =N, =5V MJM=0 (2.11)

where N, is the mass fraction of i, f7 is the mass density of i, V is the
specific volume, and M, is the gram-formula weight of i.

Each of these reference frames may be particularly useful for a given
set of additional constraints. For example, the mean volume reference
frame is most convenient if there is no volume change during the diffu-
sion process. Also, the Ktk component reference frame simplifies the de-
scription of a diffusion process in which the Kth component does not
actively participate. Because of their general utility, much of the follow-
ing discussion will emphasize mean velocity reference frames.

3. FORCES, FLUXES, AND DIFFUSION COEFFICIENTS

The presence of material transport in a system as described by the
molar fluxes J;® clearly indicates a departure from equilibrium. On a
local scale, however, the departure from equilibrium for many transport
processes is not great. Therefore, it is a very good approximation to de-
scribe the changes of a system in terms of linear functions of the forces
that tend to restore equilibrium. This linear approximation has with-
stood the test of countless experiments. It was formulated independently
as the “laws” of Darcy, Fick, Fourier, and Ohm which govern specific
transport processes. Onsager (1931a, b) unified the various linear laws
using a formalism that emphasizes their interrelationships.

Isothermal, isobaric diffusion is a form of material transport linearly
related to the force produced by chemical potential gradients. While
chemical potential gradients are independent of the choice of reference
frame, the molar fluxes J;® are not. Thus, the linear relations between

fluxes J;* and forces <%> given by
0x Jpmt

n aM. i
JR=-— EL“'R< axJ >PY“ (i=12,....n) (3.1)

ij=1

will vary with the choice of reference frame. Equations (3.1) define the
phenomenological (diffusion) coefficients, L;;¥, for reference frame R. y;
is the chemical potential per mole of i, and its derivative with respect to
distance x is taken at constant pressure P, temperature T, and time t.
Note that in general the flux of any component i is linearly related to
the chemical potential gradients of each of the other components. In
other words, the contribution to the diffusion flux from any applied
force should be considered. It should also be noted that the degree to
which each force contributes to the diffusion flux of a given component
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depends directly upon the reference frame selected to describe the diffu-
sion flux.

Equations (3.1) lead to the disturbing conclusion that for an n-
component system with r reference frames of interest, there are (r) (n)?
phenomenological coefficients. Fortunately, these coefficients are not all
independent. Onsager (1931a, b) has shown that provided the fluxes and
forces are properly chosen, the n? coeflicients for a single reference frame
are subject to the relations

LR =Lt (8.2)

leaving only (n)(n+1)/2 independent coeflicients for each reference frame.
Hooyman and de Groot (1955) have demonstrated that linear inde-
pendence of either the fluxes or forces is a sufficient, though not necessary,
condition for the Onsager symmetry relations (3.2) to hold. For mean
velocity reference frames the fluxes and forces of (3.1) are not indepen-
dent, being related by (2.5) and the Gibbs-Duhem equation

Z Ndy; =0 (constant P,T) (3.8)

respectively. The extra terms in (3.1) may be eliminated by using (2.5)
and (3.3) and selecting J,® and dy, as the dependent variables. The result
is an independent set of phenomenological equations for mean velocity
frames

n—1 n—1
wi® Ny Ak .
B=— L;® Sy + —— =% ( M i=12,....n—1
J j=21 J 1; * wa't Nj 0x Jp1t ( )

(3.4)

as given in de Groot and Mazur (1962, p. 242). Equations (3.4) define the
phenomenological coefficients Ly;® which express the linear relations be-
tween the fluxes J;® and a set of independent forces given by the terms
enclosed in brackets. The Onsager relations (3.2) become

L =L;® . (3.5)

This leaves (n-1)(n)/2 independent coefficients for a given mean velocity
frame. And since the various reference frames are related by (2.6), we are
left with the task of determining a total of only (n-1)(n)/2 independent
phenomenological coefficients.

While chemical potential gradients are theoretically meaningful as
the ultimate driving forces for diffusion, they have the unfortunate
quality of being difficult to measure. In crystals, they may be found only
by calculations based on measurements of composition gradients com-
bined with often-unavailable thermodynamic data. Therefore, it is com-
mon practice to describe diffusion processes in terms of “practical”
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diffusion coefficients D;;®C which are defined for mean velocity frames by
the relations

n—1

oC .
J®=— S* D ro <_> (i=12...n—1)  (3.6)
,-=2 ' X /Jpmt

where C; is some compositional variable. Note that the diffusion coeffi-
cients Dy;®C depend both on the reference frame R used to describe the
fluxes and on the particular composition variable C; whose gradient is
measured. Also, note that as in (3.4) only (n-1) independent fluxes and
forces are considered, with J,* and dC, being selected as the dependent
variables. The n fluxes are connected through equation (2.5), and the n
forces are connected through relations of the type

n

2 @dC;=0 (3.7)

i=1

which exist for the commonly used compositional variables. The o’s are
constants for a given composition. For example,

2 Vidp; =0 (constant P,T) (3.8)

i=1

where V; is the partial molar volume of i and p; is the molar density of i.

Once again with the definitions (3.6) a multiplicity of (n-1)%(r)(c)
diffusion coefficients has been introduced for r reference frames and c
compositional variables of interest. As before, these coefficients are not all
independent: the various reference frames may be related by (2.6), and
relations (perhaps unknown) obviously exist between the various com-
positional parameters such as mole fractions and molar densities. A maxi-
mum of (n-1)? diffusion coefficients remain. These, however, are not all
independent either. Comparing equations (3.4) and (3.6) we may see that
the diffusion coefficients D;;®C are linear functions of the phenomeno-
logical coefficients with

n—1 n—1

RN Ok

i Nk Ok

D;®C= ; E Ly® 8 + Ww.E N G,
k=1 j=1 P,T,C; % C;

(1=12,...n—1). (3.9

Since the phenomenological coefficients L;® are not independent, but re-
lated by the (n-1)(n-2)/2 equations (3.5), only (n)(n-1)/2 of the diffusion
coefficients D;;®¢ can be independent. The specific relations among the
D;;®¢ may be found for a given system by solving (3.9) for the L;* and
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using (3.5). This is only possible if the derivatives O
aCl P,T,C;i5# C;

are known. If an equation of state is unavailable, then the relations (3.5)
and (3.9) cannot be used, and (n-1)* coefficients must be determined. In
any event it will not, in general, be possible to choose fluxes and forces
such that D;;®C = D;R.C,

While it is clear that the diffusion coefficients for the various mean
velocity reference frames and compositional variables are interconnected,
we are liable to find any of the (n-1)*(r)(c) possible coefficients in use.
The undesirable consequence is that diffusion data from different labora-
tories may not be directly comparable without performing tedious cal-
culations. It would seem preferable to select a single reference frame R
and compositional variable C; to define a “standard” diffusion coefficient
through which all data would be reported and, thus, easily compared.
Following the precedent set by Hooyman and others (1953) let us use the
mean volume reference frame and the molar densities p; to define the
standard diffusion coefficients D°; with

n—1
9p; .
V= _ o = e e 1 — . .
Ji E D ,j< % >P’T’t (i=12, n—1) (8.10)

=1

Equations (3.10) reduce to Fick’s law at constant volume in a two-com-
ponent system. For diffusion with respect to a different mean velocity
reference frame R with fluxes J;® linearly related to fluxes J;V by

n—1
JR=S' ARV]Y (i=12...n-1) (8.11)
the flux equations become
n—1 n—1 a
R ARVDO, (ﬂ) (=12....n—1) . (3.12)
J g > A (),

If a different compositional variable C; is used the flux equations are

n—1 n—1

n—1
aPk acl]
R— _ Ai-RVD°- —_
Ji E z “ ) 3K <6C,>P,T,ci;& o 0X _lp,m,¢
=1

=1 k=1

(i=12...n-1) . (8.13)

Equations (3.13), which are identical to equations (55), p. 243 of de Groot

and Mazur (1962), may be considered a generalization of Fick’s law to
multicomponent diffusion.

Equations (3.13) reduce to particularly simple forms for two com-

ponent systems which may be described in terms of a single binary (or
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interdiffusion) coefficient, since (n-1)> equals one. Let us evaluate the
ARV of (8.11) for a two component system and mean velocity frame R.
This may be accomplished by rewriting equation (2.4) using (2.1), (2.2),
and (2.3) first for reference frame R

JE=pvil—pa |iw1Rv1L + WERVQL:I (3.14)
TR = R [ (v, — V1) :I (3.15)
and then for reference frame V
V= wz"[ (Vi — V2T :I . (3.16)
Comparing (3.15) and (3.16) we see that
A _w,t v
&= W,V LV = PR I . (3.17)

Using (3.13) and (3.17) we may give a general definition of the binary
diffusion coefficient D° in terms of any mean velocity frame R as

o= — 2 pe (B (0G (3.18)
' P2V2 0C;/ po \ 0X /o1t

taking component 2 as the dependent component (Hooyman and others,
1953). For the mean velocity frames presented above, (3.18) becomes (de
Groot and Mazur, 1962, p. 252)

N =— v Do dp1 _ D_ oON, ( mean molar ) (3.19)
V., X Jp ot V \9x /pot frame

.V =—De <ﬂ> ( mean volume > (3.20)
P,T,t

0x frame

o
Ji=— D° / 9p, :_D <6N1> < component 2 ) (3.21)
p2Va\ 0X /o1t N,V\ x /et frame

~

° ~
T =~ N, [/ 9p, __ D ~(6N1> ( mean mass > (3.22)
paVo\ 0X /o1t M,V\ 0x /prt frame

4. THE CONTINUITY EQUATION

The flux equations presented in section 3 involve gradients of chemi-
cal potentials or composition variables evaluated at any single time t.
Equations (3.4) and (8.13), therefore, are “instantaneous” flux equations.
They are valid to describe the process of diffusion only at a given point in
space and at one particular time. The one exception is the special case
of steady-state diffusion, in which the gradients of chemical potential or
composition do not change with time. In general, diffusion is a non-
steady-state process and must be described by a form of the continuity
equation.
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For diffusive mass transfer the equation of continuity is also com-
monly called the conservation of mass equation or the mass balance equa-
tion. It is typically given in terms of fluxes measured with respect to a
laboratory reference frame. As discussed in section 2, laboratory reference
frames have a number of undesirable features. In addition to those fea-
tures already mentioned, laboratory frames require the use of more diffu-
sion coefficients than mean velocity frames. Since there is, in general, no
equation similar to (2.5) to interrelate laboratory frame fluxes, it will be
necessary to determine n? diffusion coefficients D,;*C defined by

Jit=- i D¢ <

j=1

dC;
0x

) (i=12...,n) (4.1)

for any laboratory frame of interest. (The number of diffusion coefficients
may be reduced to (n) (n+1)/2 using (3.1) and (3.2) if an equation of state
is available.) It will be to our advantage, therefore, to express the con-
tinuity equation in terms of mean velocity frame fluxes.

The equation of continuity has been derived numerous times for a
multitude of processes, so I will not repeat the derivation here. See
Landau and Lifshitz (1959, p. 1-2) for a general derivation. In the nota-
tion of this paper the continuity equation for any component i is

pi. _ _[8(pvi®) __(9]"
( ot >P,T,x I: 9x :IP,T,(: ( 0x >P,T,t ) <42)

Equation (4.2) is strictly applicable only to conservative processes in
which component i is neither added to nor subtracted from the diffusive
system (by reaction, for example). For constant volume diffusion, equa-
tion (4.2) has been called Fick’s second law. Recalling equation (2.6), we
may readily write the continuity equation for any reference frame, R, as

(";—Pt>= U ] (43)

where VR is the local velocity of reference frame R with respect to the
laboratory frame. The value of V" for a given mean velocity frame R may
be expressed in terms of laboratory frame fluxes by using (2.5) as well as
(2.6) (see Kirkwood and others, 1960). For the mean molar reference
frame, N,

WL =¥ Z T (4.4)

i=1

which upon substitution into (4.3) gives

N n L
(ﬂ) = _<&> —N; 2 (@I_“> . (4.5)
ot /p1x 0X /et &\ 0X Jpmt
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Similarly, for the mean volume reference frame

n

<%>p,m: {%)Pm‘i’i E(“aa; (Vk‘]kL)>p,T,t . (46)

k=1

We are now in a position to understand some of the problems of
treating non-steady-state diffusion. If a laboratory frame and equation
(4.2) are used, then a minimum of (n) (n+1)/2 diffusion coefficients must
be determined. And even for a two-component system, this would be
three diffusion coefficients that must be determined from two simultaneous
non-linear differential equations. If a mean velocity frame is used, a mini-
mum of only (n) (n—1)/2 diffusion coefficients are needed: one for a bi-
nary system, three for a ternary system. Thus, for a binary system there
may be some hope, if a mean velocity frame is used. However, the con-
tinuity equation for mean velocity frames (4.3) involves the term VRL
which complicates the solution.

As a consequence of these considerations, the overwhelming majority
of diffusion studies has been restricted to binary systems. Generally, a
mean velocity frame is chosen to limit the number of unknown diffusion
coefficients to one. In addition, simplifying assumptions are made that
lead to the conclusion that V®*t = 0. In such cases the laboratory frame,
L, would coincide with the mean velocity frame, R, and the continuity
equation is correspondingly simplified to the form of (4.2). The most com-
monly used assumption is that there is no overall volume change during
the diffusion process. This is equivalent to assuming that AV, 5, = 0 or
that V, and V, are constant, which means that vV = 0. Assuming con-
stant volume and using (3.20), the continuity equation (4.6) for the binary
case becomes

<ap1> :_<6le> :[ 9 ( Do [__3P1 >] . @)
ot Jpmx X /prt ox 0x _Jpmot/dpt

Equation (4.7), which is strictly valid only for constant-volume, binary
diffusion, has been solved for specific boundary conditions by Matano
(1933) using the methods of Boltzmann (1894). The Boltzmann-Matano
solution to (4.7), which may be evaluated using a graphical integration,
is typically used by experimentalists to determine D° when D° varies with
composition.

If D° can be shown to be independent of position x in the diffusion
couple, (4.7) simplifies to

<_‘9"1> — Do (_3””1 (4.8)
ot Jpox 0x2 Jp ot

which has many solutions for a great variety of boundary conditions (see
Carslaw and Jaeger, 1947; or Crank, 1956). The applicability of (4.8)



Reference frames and diffusion coefficients 967

may be tested for a given set of boundary conditions by comparing the
resulting composition profiles with those predicted by the appropriate
analytical solution. Diffusion studies using radioactive tracers are cor-
rectly described by (4.8) due to the very small composition changes in-
volved. Solutions to the continuity equation (4.3) for three or more com-
ponents have been given in analytical form only for systems in which the
diffusion coefficients D°;; are independent of composition (for example,
Fujita and Gosting, 1956; Kirkaldy, 1959; Oishi, 1965). Application of
these solutions to ternary diffusion problems may be found in Miller
(1959, 1960), Kirkaldy and Brown (1963), Carmen (1968a, 1968b), Cooper
and Varshneya (1968), Varshneya and Cooper (1972a, b, and c), and Gupta
and Cooper (1971).

5. AV, ixing AND THE UNIT CELL FRAME

Unfortunately, there are many interesting two-component systems
for which there is an overall volume change during a diffusion process.
In these cases, (4.7) is strictly incorrect and, though often used, may be a
poor approximation (Greskovich and Stubican, 1970). Correct solutions
of (4.3) which allow for volume changes have been obtained by several
individuals (Prager, 1953; Crank, 1956, p. 236; Balluffi, 1960; and
Wagner, 1969). Each of these solutions makes use of the Boltzmann sub-
stitution and solves for D°, as defined in this paper (D°® = D of Prager
and Balluffi; D° = DV of Crank (11.73); D° = D of Wagner). Balluffi
shows how his solution may be evaluated graphically. Of course, in all
cases the molar volumes must be known as a function of composition. In
addition, all these papers assume there is no change in the cross-sectional
area of the sample normal to the diffusion direction. This assumption,
while it has some basis in experiment (da Silva and Mehl, 1951; Resnick
and Balluffi, 1955) for fcc metals, has been given no general justification.

An alternative approach was proposed by Hartley and Crank (1949)
(reprinted in Crank, 1956, p. 219 and following). They suggested that a
modified distance scale (and consequent modified concentration scale) be
introduced to preserve the continuity equation in the form of (4.7), even
when there is a volume change. If the mathematical form of (4.7) is
maintained, then the Boltzmann-Matano approach can be used to obtain
the correct solution for D°. An interesting feature of the treatment by
Hartley and Crank is that the modified distance scales they proposed co-
incide with the set of points used to define various mean velocity refer-
ence frames. For example, their reference frame based on cross sections
“fixed with respect to total mass” can be shown to be identical with the
mean mass (barycentric) frame of this paper. In the barycentric case,
their modified distance parameter, £y, which is “measured so that equal
increments of &y always include equal increments of total mass” is clearly
consistent with the definition (2.11) of reference points or cross sections
across which there is no net mass flux.

The approach of Hartley and Crank is perhaps best illustrated using
a modified distance scale for crystals based on the length of a unit cell
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edge. For example, if there is a volume change during a diffusion process,
it should be clear that the individual unit cell dimensions will vary in a
manner proportional to the local volume change. Let us restrict the dis-
cussion to crystals with orthorhombic or higher symmetry. Then using
the appropriate unit cell edge, say c, to define a distance parameter, {y°
ensures that equal increments of £y° involve an equal number of unit
cells. It is possible, therefore, to derive a continuity equation similar to
(4.7) using the distance parameter £y¢ and a mass balance argument.

The unit cell of a crystal is a particularly convenient frame of ref-
erence for conceptualizing the many diffusion problems for which the
total number of unit cells is constant. For a unit cell reference frame to
be practical, however, it must be possible to relate diffusion coefficients
determined using the unit cell frame to the standard diffusion coefficients,
De°;;. This will always be possible if the chemical components used in
the description are properly selected (Brady, 1975). Specifically, if com-
ponents are chosen such that the total number of moles of these com-
ponents per unit cell is constant, then equal increments of £x¢ will involve
equal numbers of moles as well as equal numbers of unit cells. The dis-
tance parameter, £y, therefore, would mark the distances between a set
of points that may be used to define a mean molar reference frame, N.
The flux of component one across a unit cross section identified with a
particular £x¢ would then be given by J,N evaluated at that £y, The flux
across the ab face of a single unit cell is (ab) (J;¥), where a and b are the
cell parameters normal to the diffusion direction.

Let us define the distance parameter, £x° as follows

deye = 9% (5.1)
C

where c is the length of the unit-cell edge in the diffusion direction. The
modified concentration parameter, n;¢, in this case defined as the number
of moles of component i per unit cell, is simply the mole fraction N; times
the total number of moles per unit cell:

ne =N, (E‘Tl_’c) . (5.2)

Recalling (3.19) and using (5.1) and (5.2), the flux of component one
across the unit-cell face ab is given by

(ab) oN, D° /9n,¢
(ab)],¥N=— L pe (L2 =—— . (5.3)
' \Y 0X Jpmt c® \0éx/p,1t

Equation (5.3) is strictly true only if the total number of moles per unit
cell is not a function of composition so that V/(abc) is constant. The
modified continuity equation can be determined by considering the
change in content of component one in the unit cell per unit time in
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terms of the divergence of the flux of component one across unit-cell faces
ab. The modified continuity equation is

(5 wnee =Ll 1)1, -

égN C‘ 651\ P,T,t P,T,t

(5. [SETELL, o
ot / p1.gc déxc\ ¢ Loéxldp,re/ o1t

Equation (5.5) is clearly in the same mathematical form as (4.7). It
may be evaluated graphically with the usual Boltzmann-Matano proce-
dure using a plot of N, versus £&y°. To obtain £y for each position x = X,
equation (5.1) must be integrated to yield

X
b= f% (5.6)

where x = 0 when &y¢ = 0 which is at the “Matano interface” defined by

Ny (+®)
f £ye AN, = 0 (5.7)
Nj(—=)
or alternatively by
0 + o
[ NNy de = NN () di (58)
vl 0

where N; (+ «) and N, (— =) correspond to the compositions far re-
moved from the site of diffusion, as specified by the boundary conditions.
Using (5.1), (5.8) becomes

_f 0[———N1(—°:)_N1:|dx - f E—N’_I\E(M)]dx . (5.9

If there is no change in the cross-sectional area of the sample, that is if
the product (ab) is constant, then ¢ may be replaced by V in equations (5.1)
and (5.5) to obtain the result of Cohen, Wagner, and Reynolds (1953,
1954). Thus, using the unit cell reference frame, a solution for D° may
be obtained when there is a AV by purely graphical means from the
composition-distance profile and knowledge of the cell parameter c as a
function of composition.
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For monoclinic or triclinic crystals, the situation is more compli-
cated. First of all, the diffusion direction should be parallel to one of the
“principal” diffusion axes (Nye, 1957) so that the diffusion flux is one-
dimensional. The principal diffusion directions generally will not all co-
incide with the crystal axes, as is the case with crystals of orthorhombic or
higher symmetry, so the modified distance parameter would have to utilize
a lattice translation which may not correspond to any commonly used
unit cell dimension. However, since angular changes as well as volume
changes may occur when the composition varies, the diffusion flux across
any one crystallographic plane may not be easily determined. Therefore,
the simple approach used here is not directly applicable to monoclinic or
triclinic crystals if the crystallographic angles o, 8, and y change appreci-
ably with composition.

For some common minerals, though, the variations of lattice angles
accompanying compositional changes are small. Since diffusion paths are
highly structure sensitive, it is probably valid to assume for these minerals
that the variations in orientation of the principal diffusion directions are
also small. Thus, it may be a very good approximation to treat these
crystals in the manner discussed above, selecting distance parameters
based on lattice translations parallel to the principal diffusion directions.
The “unit cell” in this case may not correspond to any unit cell normally
used. While only an approximation, this approach may yield reasonable
results for some otherwise complex monoclinic or triclinic minerals.

6. INERT MARKER REFERENCE FRAME

Observations by Kirkendall (1942), Smiegelskas and Kirkendall
(1947), and Hartley (1946) combined with subsequent analyses by Darken
(1948) and Hartley and Crank (1949) have led to the definition of a ref-
erence frame and associated diffusion coefficients different from any yet
considered in this paper. Deeply involved in the definition of this addi-
tional reference frame is the question, “What is diffusion?” or “Is all the
flux measured in a given reference frame appropriately called ‘diffusive
flux’?”. These questions were raised, and answers were clearly presented
by both Darken (1948) and Hartley and Crank (1949). The conclusion
reached in both papers was that a distinction should be made between
a flux due to ‘“diffusion” of an individual component relative to the
others and a flux due to the “bulk flow” of all components at the same
rate in the same direction. This distinction is of considerable practical
importance, for Hartley’s and Kirkendall’s experiments demonstrated
that if one component diffuses more rapidly than the other in a binary
interdiffusion experiment, a bulk flow will occur. As the concept of a bulk
flow generated by diffusion can be confusing, I strongly recommend the
excellent discussions by Darken (1948) and Hartley and Crank (1949) to
any reader who finds this concept unfamiliar.

In order to measure flux due to diffusion only, a reference frame is
defined in terms of a set of points, each of which moves with the local
bulk flow. Operationally, this would consist of a set of “inert” markers,
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which do not participate in the diffusion, but which will move with the
bulk flow. For Kirkendall, these inert markers were platinum wires in a
copper-brass diffusion couple. We can define, then, inert marker diffusion
coefficients, D;;'C, in terms of the fluxes, JI, given with respect to the inert
marker reference frame, I, as

9G; .
2 D, L.c (——)PN (i=12...n) (6.1)

where C; is some compositional parameter. As in the case of the labora-
tory frame (4.1), there is, in general, no relation similar to (2.5) which
relates the n independent fluxes of the inert marker frame. Inert marker
diffusion coefficients have been called “intrinsic” diffusion coefficients by
Hartley and Crank (1949) and others. However, the title inert marker
coeflicient is to be preferred since the term “intrinsic” is also commonly
used to describe diffusion in pure crystals in the absence of “extrinsic”
effects due to impurities, grain boundaries, et cetera.

It will be useful to relate the inert marker diffusion coefficients,
D", to the standard diffusion coefficients, D°;, defined in (8.10). Re-
calling (2.6) we have

TN =T g (6.2)

Summing both sides of (6.2) over all i and using (2.8), VI¥ may be ex-
pressed in terms of the ], Substituting the results for vI¥ in (6.2) we have

J¥=J-N 2 Ji . (6.3)

For a two component system, then,

JN=1T= Ny (W + ) =N = N It (6.4)
Substituting for J;¥ from (3.19) and for J;! from (6.1), (6.4) becomes

;\_,. De° M) =N, I: —D,,b» ( aP1> _ D121’P< 3P2> :l
V, oX Jprt 0X Jprt X
—N, l: —D,,l» ( 3P1> — D, p< ) :I((, 5)
oX Jpr

Using the thermodynamic relation

(_5P2> -V (6.6)
3P1 P, T 2

Dl,,lp ] —N1 [DnI’P— Xl DQ‘ZLp]' (6‘7)

-

<

equation (6.5) leads to

o
DV—N[
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If we then take the traditional approach and neglect D,.'r and D,,"#,
we obtain the relation

D° = (p.V,)Dy,"r + (p1V1)Daolp (6.8)

which was given by Hartley and Crank (1949, eq 31) for the case of con-
stant volume, an assumption we have not made. Actually, Hartley and
Crank’s DV is equivalent to D° in all respects except their conception of
it. They stated that their DV is meaningless, if there is an overall volume
change. However, mathematically their DV has meaning for all systems.
Compare their equation (4) with equation (2.9) of this paper. A relation
similar to (6.8) was also obtained by Darken (1948, eq 7)

D° = N,D,"» + N;D,,"» (6.9)

which follows from (6.8) if V, =V, =7V,
Although (6.1) is consistent with the classical definition of inert
marker diffusion coefficients, I prefer the following alternative definition

]‘I _ n D[jI,N <6Nj) . (6.10)
ST E \Y% ox P,T,t

=1

This definition leads to simpler mathematical forms for several important
relationships. For example, let us relate the diffusion coefficients DTN
to the standard diffusion coefficient D° for a two component system.
Using (3.19) and (6.10) equation (6.4) becomes

_ D°/éN, - N [—DIJ'N " D,,¥ :|(6N1
V \ ox /et * v v X Jprt
D, LN LN
—Nll: Dt ) Da (aN‘ (6.11)
v \Y X /et

from which it follows that
D° =N, [Dy;"¥ — D,0] + Ny [D,.hN — D, IR . (6.12)

1f we then define D,* and D,! as

D,!'= DN — D,,I¥ } (6.13)
D,! = D,,"~ — D, ¥

(6.12) may be written as
D° = N,D,T + N,D,I . (6.14)

Equation (6.14), which has the simple form of Darken’s relation (6.9), is
valid even if V; =£ V, and also if D;,I:N and D,,»'N are not negligible.

In order to obtain the values of the diffusion coefficients D,! and D,!
in (6.14) a measurement of D° is necessary. This is not sufficient, however;
a measurement of the velocity, VIV, of the inert marker frame relative to
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the mean molar frame is needed for the following relation (see (6.2) and
(6.3), using also (6.10) and (6.13)):

. aN N
v=—v| 3 x| =D (2 +D'I( :
Y I ' < ax )P,T,t C N ax Jeme &-19)

i=1

VIN = < D,I-D,I )<6N1> . (6.16)
X Jp1t

Darken (1948) derived a form of (6.16) for the special case where V, =
V, = V and, therefore, V¥t = ¥V = 0. Equation (6.16) may be used with
(6.14) to solve for D," and D,! at a given composition from measurements
of D° (as in the last section) and ¥~ (as follows). To obtain VI¥ at a single
position and time, the velocity of a marker, ¥, at that position and time
(relative to the laboratory frame) must be determined by a series of meas-
urements, at several times, of the position of the marker. The marker
velocity is then compared with the velocity, ¥¥%, of the mean molar ref-
erence frame at the same position and time.

In a binary interdiffusion experiment, the location of the points or
cross sections that define the mean molar reference frame may be obtained
in a fashion similar to that used to locate the “Matano interface” (5.7) or
(5.9). Indeed, the Matano interface itself is a mean molar reference cross
section. That this is true may be seen from (5.7) or (5.9) which require
that the x = 0, £&4¢ = 0 cross section be one such that the cumulative flux
of atoms across the cross section in one direction equals the cumulative
flux of atoms across the cross section in the other direction. Other cross
sections across which the cumulative atom fluxes in both directions bal-
ance are given by

Ni(4w)

f £y AN, = k (6.17)

Nj(—w)

Ny ()N, e = N, — N, (+) dx +k (6.18)
‘_{:[ C :| fl: ¢ :I

where k is a constant, different for each cross section. Equations (6.17)
and (6.18) define an x = 0, £4¢ = 0 plane which is a mean molar reference
cross section (see fig. 1). Thus, to evaluate VI¥, one needs to determine the
k for the mean molar reference plane which coincides in position with
the inert marker used to determine ¥ at the appropriate time. One then
determines VT for the mean molar plane identified with that k by a
series of calculations at several times of the position of that plane. Alter-
natively, one could use (5.6) and (5.9) to locate the plane associated with

or
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Fig. 1. “Concentration” versus “distance” profile for a binary interdiffusion experi-
ment with the “Matano interface” of equation (5.11) shown in (A) and a mean molar
plane k of equation (6.18) shown in (B) with k = [N;(+e) — Ny(—o0)] X [20 distance
units].

a given £y at various times, which would involve more effort than using
(6.18).

7. DARKEN’S EQUATION AND TRACER DIFFUSION COEFFICIENTS

There is reason to believe that the inert marker frame coefficients
presented above are in some ways more “fundamental” than the mean
velocity frame diffusion coefficients; hence, the often used name “intrinsic”
diffusion coefficients (suggested by Hartley and Crank, 1949). The argu-
ment is based on the assumption that the principal effect of the motion
of one component upon the motion of another component is the flux
due to bulk flow. Therefore, if the effect of a bulk flow is eliminated by
using an inert marker frame, then the flux of a component might be ex-
pected to depend only upon gradients of its own chemical potential. In
other words, an assumption is made that the off-diagonal terms in the
phenomenological equations (3.1) are necessary only to account for flux
due to bulk flow.

The validity and consequences of the assumption of negligible off-
diagonal (i£j) phenomenological coefficients, L;;!, for the inert marker
frame have been discussed by many individuals (Bardeen and Herring,



Reference frames and diffusion coefficients 975

1951; LeClaire, 1953; Manning, 1961, 1968; Shewmon, 1963; Howard and
Lidiard, 1964; Ziebold and Cooper, 1965; Carmen, 1968a, b). The con-
sensus is that the assumption is not correct but may be a good approxima-
tion for many systems. Carmen (1968a, b) argues that it is a poor approxi-
mation for “complex Darken systems” where a single component may be
present in more than one diffusing species. Manning (1968) uses an atom-
istic approach to demonstrate that the assumption cannot be strictly
correct for diffusion in solids by a vacancy mechanism. Nevertheless, the
estimated errors that might be caused by neglecting the off-diagonal terms
in the inert marker frame are within the range of uncertainty of measure-
ment on many solids or other ‘“simple Darken systems”. With this in
mind, it is worthwhile to explore a very useful consequence of the as-
sumption.

Two isotopes of the same element are chemically quite similar. The
electron shells surrounding each of the slightly different nucleii of the
two isotopes behave identically in many interactive situations. Therefore,
it is not unreasonable to assume that the motion of either isotope in re-
sponse to an identical chemical force (chemical potential gradient) would
be the same (in the absence of gravitational effects). This assumption was
expressed by Darken (1948) as an equality of mobilities, B;!, which give
the velocity of a component in response to a unit force. In terms of equa-
tion (3.1), B;! is defined as follows (neglecting the off-diagonal coefficients):

Ji=—L1 O = _B,! L)(% (7.1)
) X /ot \4 0X /et

and Darken’s equality would be
(B)* = B! (7.2)

where the * refers to a radioactive isotope of component i.

The next step is to compare the diffusion coefficient determined in
a tracer “self-diffusion” experiment (mixing of two isotopes of the same
element) with the inert marker coefficients (6.13). To do this we must
relate the mobilities, B;1, to the inert marker diffusion coefficients. Writ-
ing (6.10) for a two component system and using (6.18) we obtain upon
comparison with (7.1)

N 0 D,T/oN
ST\ ™ :__1( > 73
L ' ( v >< 0x >P.'r.t v X /et 73)

and
D, — B,IN, ( Ipa — B! (—M——> . (7.4)
6N1 P, T alan P, T
The molar chemical potential, y;, is related to the mole fraction, N;, by
= /J.io + RTlnNiyi (75)

where y; is the activity coefficient necessary to correct for non-ideality.
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Using (7.5) to evaluate (7.4) we have:

D,! = B,'RT [M = B,RT [ 1 +<M) :I . (16)
alan P,T alan P,T

In a tracer “self-diffusion” measurement, there is, ideally, only mixing of
isotopes of the same element. For isotopic mixing, which is chemically
ideal, (7.6) becomes:

D,)* = (B,)*RT . (1.7)

Since the mole fraction of the minor isotope in a tracer self-diffusion ex-
periment is very small, the diffusion coefficient measured, D°, will be
equal to the intrinsic diffusion coefficient of the tracer, (Di})*, (see 6.14).
This is strictly true only in the binary isotopic end member systems. For
a detailed phenomenological discussion, see Howard and Lidiard (1964,
p. 207 and following). Using (7.2), (7.6), and (7.7), then, we obtain the
desired relation

alnyl
DI=Dn*| 1 +(—L— : 7.8
t=e0 [14(550). ] o
Using the identity
l: all'lyl :l: 31ny2 ] (79)
dInN; | pr olnN, _|p g

which follows from (7.5) and the Gibbs-Duhem equation (3.3), we may
substitute (7.8) into (6.14) to obtain a version of Darken’s equation (1948,

eq 18)
De =[ N,(D,1)* + N,(D,1)* ][1 +<%> , :I . (7.10)

The practical importance of (7.10) is great indeed. To the extent
that (7.10) is correct, measurements of diffusion coefficients using radio-
active tracers may be used to predict binary interdiffusion behavior. This
is particularly important for those interested in determining diffusion
coefficients which are very small, for example, in minerals at metamorphic
temperatures. This is a result of the fact that small concentrations of a
radioactive isotope may be detected with considerably more precision
than small concentrations of non-radioactive species.

8. IONIC CRYSTALS

Crystals that have an appreciable ionic character such as halides,
oxides, and silicates present some additional constraints which have not
been considered above. Specifically, the strict stoichiometry required to
maintain electrical neutrality leads to a coupling of fluxes for an inter-
diffusion experiment in an ionic crystal. Nevertheless, nearly all the re-
sults given above are valid for ionic crystals if the components used in the
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description are actual components of the crystal considered. Actual com-
ponents of a crystal may be both added to and subtracted from a crystal
without destroying the homogeneity of that crystal (Gibbs, 1928, p. 64;
Thompson, 1959; Brady, 1975). In the absence of external electric fields,
any actual component of a given crystal must be electrically neutral.
Therefore, the constraints of stoichiometry or electrical neutrality are
automatically satisfied in any description, if actual components are used.
The results of section 7, however, are not correct for ionic crystals. In
particular, Darken’s equation (7.10) is subject to modifications, which we
shall now consider.

In ionic crystals either the positive ions move or the negative ions
move, rarely both (Jost, 1952). Therefore, in the following discussion we
shall consider the motion of cations in a network of stationary anions;
results are equally applicable to the opposite case of mobile anions. If
the anions do not diffuse, then they will behave as inert markers. So for
most ionic crystals the inert marker reference frame will coincide with the
unit cell reference frame and also with the mean molar frame (for a
judicious choice of components). Therefore, the two inert marker diffu-
sion coefficients (6.13) for a binary system must be identical (see 6.16).
This means that there will be no “Kirkendall effect” for interdiffusion in
ionic crystals and that the Matano (1933) interface will always coincide
with the initial crystal-crystal interface, even if there is a AV,piqin.

In section 7 a relationship (7.10) between tracer self-diffusion coeffi-
cients and the standard binary diffusion coefficient was obtained by re-
lating inert marker diffusion coefficients to self-diffusion coefficients. The
same approach cannot be valid for ionic crystals, since the equality of the
two inert marker coefficients combined with equation (7.8) would imply
that the self-diffusion coefficients for the two components of a binary
crystal must be equal. Experimentally, this is not the case (Askill, 1970),
so equation (7.8) must not be valid for ionic crystals. A scrutiny of the
steps followed in obtaining (7.8) will reveal that it is equation (7.1) that
is in error for ionic crystals. The reason (7.1) is incorrect is that a force
has been neglected, the force that prevents any deviations from stoichi-
ometry. Since the mobility, B;T, gives the velocity of diffusion in response
to a unit force, (7.1) cannot be correct if all the forces are not considered.

It is not unreasonable to assume that the force that maintains stoi-
chiometry in ionic crystals is the large electrical potential gradient that
would develop if any deviations from stoichiometry did occur. The re-
sponse of a diffusing species to an electrical potential gradient is propor-
tional to both its charge, q;, and its mobility, B;I, so that the flux of

0x

species 1 in response to an applied field <ﬁ) would be
P,T,t
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(Jost, 1952). The flux of species i in response to both an electrical poten-
tial gradient and a chemical potential gradient is then

= (), ol e

Assuming that (8.2) includes all the appropriate forces we might
proceed as in section 7 to find a relationship similar to (7.10). Unfortu-
nately, there is one further stumbling block. The chemical potential
gradient indicated in (8.2) must be written for a charged species, since it
is only for the motion of a charged species that (8.2) is needed to replace
(7.1). However, the chemical potential of a charged species in a stoichi-
ometric ionic crystal is an undefined quantity. This dilemma may be
resolved by considering explicitly the possibility of vacancies and non-
stoichiometry (see Howard and Lidiard, 1964) or by making a simplifying
assumption that will lead to a result that may be tested experimentally.
We will take the latter approach here, manipulating the chemical poten-
tials of charged species as if they were meaningful and then expressing
the result in terms of measurable quantities.

Let us begin by considering a general binary ionic crystal composed
of various combinations of two cations, 4+ and B+*?, and a single anion
or negatively charged component Z—% We shall explicitly include the
charges +a, +b, and —z to allow for the possibility of the cations having
different charges. This binary ionic crystal will have actual components
A, Z, and B, Z;, where the subscripts indicate the number of moles of the
cations and anions in one mole of the component. An alkali feldspar
would be an example of a binary “ionic” crystals with 4+a = K+, B+b
= Nati, Z—% = (AlSi;Og)~%, and actual components KAISi,Os and
NaAlSi;O;. Wustite would be another example (different in the respect
that +a 5~ +b) with 4+ = Fet+?, B+ = Fe+3, Z—2 = 0-2, and actual
components Fe,O, and Fe,O,.

If the crystal is in local homogeneous equilibrium, the following re-
lations must be satisfied (Prigogine and Defay, 1954, p. 69)

BayZ, = Ly a3,y (8.3)
BB,z = Zugyn + bp, . (8.4)

We have also from (3.3)
Nu,z, dpa,z, + Np,z, dpg,z, =0 . (8.5)

If we assume that the chemical potential of Z—7 is not a function of com-
position, then (8.3), (8.4), and (8.5) lead to

<61U‘A+“> = _1 <a'u‘AZZa> = _ NBsz < Opp+b > . (8.6)
x P,T,t z x P,T,t N, 9x P,T,t

ZZB

The validity of the assumption leading to (8.6) is discussed by Cooper
and Heasley (1966). See also Wagner (1930) and Jost (1952, p. 146).
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Let us simplify the notation slightly by letting AZ = 4, Z,, BZ =
B, Z,, A = A+* and B = B+, Then using (8.6), (8.2) may be written for
the fluxes of 4 and B, respectively

N, 1 /8 42 ¢
Al =—B,! 24z £ —_— 8.
] * < v ) z \ ox )P,T,t+ a( ox )P,T,t:' ®.7)

N 1 /N ] o
1 — 4B 2Bz [_<_AZ>(J‘_AZ> — b<—> :| 8.8
1= ? < v > z \Npg X Jpmt X /prt ®5)

where we have used the fact that the density of 4 is z times the density
of AZ. Due to the constraint of electrical neutrality, the fluxes of 4 and
B with respect to the unit cell frame (= inert marker frame) must satisfy
the relation

al T+ bJf=0 . (8.9)

Using (8.9), (8.7) and (8.8) may be solved for <8—¢> yielding
P,T,t

ox
( ¢ _ (NAZ\ (bBg! — aB,") /aﬂAZ> . (8.10)
X Jpmot z /(aZNAZ B,' + b®Np, BBI)\ X Jpmt
Substituting (8.10) into (8.7), it follows that
1R.1
Ji=— <N;4z\ (BAO Bg') (b) (aN;tz + bNIBZ) ( a#AZ) . @11
v } [a*N.z B4 + b2Npz Bp!] \ ox /et

In order to express the final results completely in terms of actual
components, note that stoichiometry requires

Jat = 2] 47" (8.12)
and that (8.3) requires (since v, = v,;)
BAI - ZBAZI . (8.13)

Combining (8.11), (8.12), and (8.13) then
N B.,;! Bg;! (b) (aN,; + bN J
JAZI — < _AZ\ ( AZ BZ ( I) ( OAZ IBZ) / ,U¢AZ> (8. 14)
v / [a®N4z Byz! + b*Npgz Bg,!] \ 0X /et

or using (7.2), (7.5), and (7.7) (which are still valid even though (7.1) is
not)

Jut = =L (Das)* (Dsg)* (b) (aNay + bNsz)
A - —
V¥ [a®NLz (Dag))* + b*Nyy (Dgzl)*]

[1+(—‘”“m> ](—GN“Z> . (8.15)
dInN,z / p1 90X /pnt

Finally we must note that the mean molar reference frame for com-
ponents 4, Z, and B, Z, does not coincide with the unit cell frame (=
inert marker frame), although the mean molar frame for components
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Ay, Z,y, and B,, Z,, does (see sec. 5). Using (3.19) written for these latter
components and performing a simple component transformation (Brady,
1975), we obtain

Jad = ——2 E1—"—("’N“) . (8.16)
(aNAZ + bNBZ) \% 0x P,T,t

On comparing (8.15) and (8.16) it follows that

o (DAZI)* (DBzI)* (aNAZ + bNBZ)2 r aln‘)’Az
D° = 1+ —= (8.17)
[a*Nz (D4z0)* + b?Npz (Dgzl)*] |_ dlnN,z / 7

which is the relation we have been looking for. If a = b then (8.17) re-
duces to the simple form

Do — (Daz)* (Dss)* FL%MMM> ](m&
[Nz (Daz)* + Ngz (Daz)*] L 9NN,z / pr

as given in Manning (1968, p. 21).

Equations (8.17) and (8.18) have the potential to perform the same
important function for ionic crystals that Darken’s equation (7.10) per-
forms for metallic crystals: relating relatively easy to measure self-diffu-
sion coefficients to relatively hard to measure interdiffusion coefficients.
Equation (8.17) is only an approximation, though, subject to the validity
of (8.6). Unfortunately, I know of no experimental verification of (8.17),
so it should be used with caution. Equation (7.10), on the other hand, is
clearly incorrect for ionic crystals, although it is commonly used for ionic
crystals in the literature (for example, Buening and Buseck, 1973, p. 6856;
Wei and Wuensch, 1973, p. 564). Cooper and Heasley (1966) give a rela-
tion (their eq 14) similar to equation (8.15) but not identical with it. I
believe their equation (14) to be incorrect, and Cooper agrees (personal
commun., 1974).

Unfortunately, not all binary ionic crystals are suited to the above
analysis. Consider, for example, the binary system of the plagioclase
feldspars (NaAlSi,Og—CaAl,Si,Og). Interdiffusion in this system involves
the exchange of Na and Si for Ca and Al. While we might measure the
tracer diffusion coefficients of Ca or Al, there is no way to ensure that
doped Ca and Al remain coupled in a tracer experiment in anorthite as
they must in an interdiffusion experiment between anorthite and albite.
One simplification, which might be useful in practice, would be to assume
that the motion of the coupled pair CaAl is limited by the motion of Al,
measure the diffusion of an Al isotope, and proceed as in (8.17).

9. CONCLUDING REMARKS

Several points made in the preceding paragraphs deserve reiteration.
(1) Fluxes and diffusion coefficients are meaningless quantities unless re-
ferred to a specific reference frame. (2) Certain reference frames are pre-
ferred for common usage due to the ease with which they may be inter-
related; mean velocity frames are particularly convenient. (3) All diffusion
data should be reported in terms of “standard” diffusion coefficients
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based on the mean volume reference frame. (4) Volume changes may be
significant in many diffusion processes and can be handled for single
crystals using a unit cell reference frame. (5) Self-diffusion data may be
used to predict interdiffusion behavior; the approximation for ionic
crystals is different than for metallic crystals.

The discussion above has emphasized diffusion in single crystals, but
many of the results are not so restricted. Indeed, selecting a reference
frame can be particularly important for geologists considering diffusion
in natural polycrystalline materials. For example, metasomatic zones
generally lack complete information on the initial distribution of material
so that a laboratory frame is unavailable. However, assumptions about the
starting configuration and diffusion process may still be evaluated using

some of the other reference frames considered in this paper (for example,
Thompson, 1975).
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