
Smith ScholarWorks Smith ScholarWorks 

Computer Science: Faculty Publications Computer Science 

5-1-2019 

Support for User Generated Evolutions of Goal Models Support for User Generated Evolutions of Goal Models 

Boyue Caroline Hu 
University of Toronto 

Alicia M. Grubb 
Smith College, amgrubb@smith.edu 

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Hu, Boyue Caroline and Grubb, Alicia M., "Support for User Generated Evolutions of Goal Models" (2019). 
Computer Science: Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/csc_facpubs/212 

This Conference Proceeding has been accepted for inclusion in Computer Science: Faculty Publications by an 
authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/212?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Support for User Generated
Evolutions of Goal Models

Boyue Caroline Hu
Department of Computer Science

University of Toronto, Toronto, Canada
boyue.hu@mail.utoronto.ca

Alicia M. Grubb
Department of Computer Science

Smith College, Northampton, MA, USA
amgrubb@smith.edu

Abstract—Goal models are used in early phase requirements
engineering to elicit stakeholders’ intentions, analyze dependen-
cies, and help stakeholders make trade-off decisions about the
project and its interaction with the environment. The Evolving
Intentions framework extended goal model analysis to evaluate
how models change over time, by creating simulation paths
showing possible evolutions of the model. More recently, we
extended this analysis to allow users to explore states along the
path and generate their own simulation paths. However, this
approach is limited by users’ ability to comprehend the state
space, which grows exponentially with the size of the model.
In this paper, we explore using filters to reduce the number of
viewable solutions enabling users to create their own simulation
results. We present our approach and initial validation, including
an analysis of prior models and a review of expert feedback.

I. INTRODUCTION

Goal-Oriented Requirements Engineering has been advo-
cated to help stakeholders make trade-off decisions at an early
stage. Goal models illustrate intentions, requirements and con-
straints to help stakeholders understand and evaluate potential
project scenarios and facilitate early decision making [1][2].

The Evolving Intentions framework allows stakeholders to
specify changes in their intentions and the project domain
over time and ask questions about a project’s evolution [3].
BloomingLeaf is a web-based tool that implements the Evolv-
ing Intentions framework and provides formal automated anal-
ysis of goal models [4]. BloomingLeaf uses the satisfaction
values and evolutionary functions assigned to the intentions in
the model, and produces a simulation path to show how the
fulfillment of each intention in the model changes over time.

A single simulation path might not be sufficient to under-
stand the domain. Stakeholders may want to create their own
paths that are different than the automatically generated one, in
order to gain more insights about the evolution of the project.
Thus, we added additional functionality to BloomingLeaf that
allows users to navigate to a state in the simulation path and
find all possible next states in the path [5]. As the model
becomes bigger, the state space of this problem (i.e., number
of possible next states) grows exponentially in the worst case.
Presenting all next states to users makes it difficult for them to
review and customize their simulation path. This problem of
choice selection has already been well studied by researchers
in psychology [6][7], where they found that unlike computers,
humans are less effective at making choices as the number

of options increases. The aim of this research project is to
improve the usability of our user generated simulation path
feature by reducing the number of next states presented to
users at each step.

We propose using filters to reduce the number of solutions
for each next state in the path. Due to the nature of goal
models as well as the fulfillment data involved in choosing
a next path, selecting appropriate filters is a nontrivial task.
In this paper, we present our approach to filtering next state
results. Using a student applying to graduate school as a
motivating example, we present an overview of the problem
of choosing a next state within the context of simulation in
the Evolving Intentions framework, modeled in Tropos [8][9].
We present our proposed filters based on the metrics in the
goal modeling literature [10]. We consider the effectiveness
of these filters using eight models from the literature and
unstructured interviews with experts. We explore two research
questions: (RQ1) To what extent does the filters approach
reduce computation time and the number of returned states?
(RQ2) To what extent do experts find this approach helpful?

The remainder of this paper is organized as follows. Sec. II
introduces our motivating example and relevant background.
Sec. III describes our extension to BloomingLeaf. Sec. IV
presents our initial validation to inform our research questions.
We compare our work with other analysis techniques in Sec. V
and conclude in Sec. VI.

II. BACKGROUND

In this section, we introduce goal modeling and the Evolving
Intentions framework using our motivating example.

Graduate School Application (GRAD). Consider an under-
graduate student interested in graduate school. The student
wants to make sure he satisfies all the requirements and
doesn’t miss any opportunities. He needs to consider the
order of satisfying tasks (i.e., fulfilling requirements). One
key decision in this process is in which order should these
tasks be completed. For example, should Do Research Work
be completed before or after Internship. Fig. 1 shows the partial
goal model of this decision, consisting of the intentions of the
Student and his Recommenders (i.e., actors). These intentions
(i.e., goals, tasks, and soft goals) are connected by contribution
links and decomposition links (see legend in Fig. 1). The
Student’s root-goal Be Admitted to Graduate School is and



Fig. 1: GRAD Model: A goal model of a student’s graduate
school application.

decomposed into the goals Complete Undergraduate and Have
Successful Application, meaning that Be Admitted to Graduate
School is satisfied only if both Complete Undergraduate and
Have Successful Application are satisfied. Have Successful
Application is then and decomposed by tasks Finish Statement
of Purpose, Complete GRE, and Submit Recommendation
Letters, meaning that all three must be fulfilled to satisfy Have
Successful Application. All of the other links in Fig. 1 are
contribution links (see [8] for a full list of contribution types).
The + [resp. ++] link propagates some [resp. full] evidence
from the source to the target intention. The ++S link means
that only positive evidence is propagated to the target intention.

Evidence Pairs. When evaluating a goal model, we assign
evidence pairs (s, d) labels to intentions, where s ∈ {F,P,⊥}
is the evidence for (i.e., satisfaction) and d ∈ {F,P,⊥}
is the evidence against (i.e., denial) the fulfillment of an
intention [8]. F [resp. P] means there is full [resp. partial]
evidence for or against the fulfillment of an intention, and ⊥
represents null evidence. For example, in Fig. 1, Complete
Courses and Complete GRE have been assigned (⊥,F) in
the initial state, meaning there is full evidence against their
fulfillment (i.e., neither task is completed).

An intention can be assigned one of nine possible evidence
pairs, by taking the product of the sets s and d, resulting
in the following partial order from most satisfied to most
denied: (F,⊥); (P,⊥), (F,P); (⊥,⊥), (P,P), (F,F); (⊥,P),
(P,F); and (⊥,F). Evidence pairs can be assigned by the
modeler or as a result of propagation-based analysis from
another intention (via the links discussed above). See [11] for
a full set of propagation rules used in the Evolving Intentions
framework.

Evolving Intentions. As introduced in Sec. I, the Evolving
Intentions framework allows the fulfillment of intentions,
specified with evidence pairs, to change over time. We define
four functions to describe how the fulfillment of an intention

changes over a single time interval: CONSTANT, INCREASE,
DECREASE, and STOCHASTIC [11]. Functions indicate the
desired evolution of intentions, and are assigned prior to
analysis. For example, in the GRAD model the Complete
Courses task is assigned an INCREASE function (visually
represented by the I on Complete Courses in Fig. 1). With
an initial value of (⊥,F), this means that over time, there
will be increased evidence for and decreased evidence against
the fulfillment of Complete Courses, along the partial order
of evidence pairs. In the GRAD example, Complete GRE
also changes over time, and we define it using a step-wise
function over two intervals, where within each interval the
value remains CONSTANT. Complete GRE has the value (⊥,F)
in the first interval, and (F,⊥) in the second interval. This
pattern, known as DENIED-SATISFIED in the framework [11],
is primarily used to model tasks that will be completed in the
future. When these evolving functions are combined with other
goal model information, we can simulate possible evolutions
of the goal model.

BloomingLeaf Analysis. BloomingLeaf is a web-based tool
for modeling and analyzing goal models [4]. Stakeholders first
create a goal model and add appropriate evolving functions
before completing any analysis. The Analysis View, shown
in Fig. 2a, lists two different types of analysis: Simulate Single
Path and Explore Possible Next States.

Simulate Single Path presents the user with one possible
evolution of their model over a pre-specified number of time
points. For example, the screenshot in Fig. 2a shows a single
result of Simulate Single Path for the GRAD model at time
point seven. The full solution contains eleven time points and
the user can switch between time points using the slider below
the model. Fig. 2b illustrates other portions of this simulation
path for the tasks discussed above, focusing on the time points
(i.e., time points 5, 8, and 11) where the evaluations of these
tasks change. We omit the full model at each time point in the
path for brevity.

This simulation result also illustrates the evolving functions
we introduced above. Recall that Complete GRE was initially
denied (⊥,F) (see Fig. 1) and as a result of the DENIED-
SATISFIED function it is satisfied (F,⊥) at time point five
(see Fig. 2b). Complete Courses was assigned an INCREASE
function with an initial value of denied (⊥,F) (see Fig. 1).
In Fig. 2b, we see the evaluation of Complete Courses be-
comes more fulfilled; as it is partially satisfied (P,⊥) at time
point five and then satisfied (F,⊥) at time point eight.

Overall, the simulation illustrated in Fig. 2 gives the result
that the student can satisfy Have Successful Application by
satisfying (F,⊥) Complete Courses and Do Research Work
at time point eight and then satisfying (F,⊥) Internship at
time point eleven (see Fig. 2b). However, the student wants
to further explore the question: “What would happen if he
completes an internship next (by satisfying Internship), rather
than doing research?” The Explore Possible Next States anal-
ysis, allows users to step into any time point in the single
path solution and visualize all the possible next states. For



(a) Screenshot of BloomingLeaf’s Analysis view showing a result of Simulate Single Path
for the GRAD model at time point seven.

Time Step: 5

Time Step: 8

Time Step: 11

(b) Selected tasks at time
points 5, 8, and 11.

Fig. 2: Simulate Single Path result for the GRAD example.

example, when the student clicks Explore Possible Next States
from time point seven (as in Fig. 2a), the Next States pop-up
window is invoked displaying the first possible next state with
an indicator at the top displaying that there are 640 possible
states for the next time point. We exclude this initial pop-up
for space considerations, but it looks similar to Fig. 3a where
we have already applied our filters.

In BloomingLeaf, both Simulate Single Path1 and Explore
Possible Next States are encoded as a constraint satisfaction
problem (CSP). The number of possible next states for the
GRAD model, with only 14 intentions, is in the hundreds.
This is because CSP searches for all solutions that satisfy the
constraints in the model, and with very few constraints2, the
solution space grows exponentially Dn (i.e., state explosion
problem [12]), where D is the number of possible evidence
pairs and n is the number of intentions. While actual runtimes
for Simulate Single Path have been shown to be appropri-
ate [3], when we return the entire state space for a single
time point (as in Explore Possible Next States), this presents
a significant burden to the user as the number of returned states
grows. Our work aims to improve the interpretation of these
results for users.

III. EXTENSION OVERVIEW

As introduced in Sec. II, we allow users to create their
own simulation paths by exploring all possible next states
iteratively through the solution space. This creates an increased
cognitive burden on users as the size of the model grows.

1Called Simulation over All Evolving Intentions in [11].
2The state space can be reduced by adding additional evolving functions.

We assist users in selecting next states by introducing two
approaches to filtering the number of next states shown to the
users in BloomingLeaf (i.e., domain and solution reduction).

Domain Reduction. First, we look at adding additional
constraints to the CSP (i.e., domain reduction). We reduce
the domain of each Explore Possible Next States search by
allowing users to filter out conflicting and null evidence values.
As described in Sec. II there are nine possible evidence pairs
and of these four are conflicting values: (F,P), (P,P), (F,F),
and (P,F). Prior work and BloomingLeaf allows users to
prevent Strong, Medium, and Weak conflict values when using
Simulate Single Path [4] [8]. We adapt conflict avoidance as a
filter to be applied to the Explore Possible Next States feature.
This means stakeholders can find all the next states that do
not contain any conflicting evidence pairs. Similarly, we allow
users to filter out null evidence values (⊥,⊥) or None.

In Fig. 2a of the GRAD example, the student is exploring
the next state from time point seven. Notice that the original
simulation had Strong as the Conflict Prevention Level, meaning
that the student does not want to include the strong conflict
values, i.e. (F,F), in the single path. In Sec. IV, we show how
these filters reduce computation times for next state results.

Solution Reduction. Second, we introduce solution filters
to exclude possible states reducing the number of total next
states shown to the user. CSP solvers treat all valid states
equally. For example, a state with all the intentions fulfilled
and another state with no intentions fulfilled differ in context
to users but are not distinguished by the solver. Stakeholders
have partial or full contextual information to favour some



TABLE I: List of filters used in the Next States analysis.

Domain Reduction Filters
Name Description Example Usage
Remove Con-
flict Values

Remove all solutions that contain conflict values for
any of the intentions: (F,P), (P,P), (F,F), and (P,F).

If the user is looking for absolute satisfaction or denial of
the intentions in the model, Remove Conflict Values will
eliminate all solutions that present evidence of both.

Remove No
Information

Remove all solutions that contain the (⊥,⊥) evidence
pair.

It the user want some evidence for or against each intention,
where no information would not help in the decision.

Solution Reduction Filters
Name Description Example Usage
Least/Most
Tasks
Satisfied

Keep only the solutions with the least/most number of
tasks with the evaluation label satisfied (F,⊥).

In the GRAD example, if the student is looking for the
minimum number of tasks he needs to complete to be
admitted to graduate school.

Least/Most
Goals
Satisfied

Keep only the solutions with the least/most number of
goals with the evaluation label satisfied (F,⊥).

This would be useful for the student in the GRAD example
to view the worst case and best case scenario.

Least/Most
Resources
Satisfied

Keep only the solutions with the least/most number of
resources with the evaluation label satisfied (F,⊥).

Consider a business person making budgets of all the
resources he needs, Least Resources Needed would give a
lower bound estimation and Most Resources Needed would
give an upper bound.

Least/Most
Actors
Involved

Keep only the solutions with the least/most number of
actors involved. An actor is involved when at least one
of their intentions is satisfied.

In the GRAD example, if the student were to ask whether
he can finish the entire application process all by himself.

Satisfaction of
the Most Con-
strained Goal

Keep only the solutions with the status of the most con-
strained goal being satisfied. Most constrained goals
are goals with the smallest domain in the model.

This usually helps when users want to explore the satisfia-
bility of some or all goals in the model.

states over others, which can make user generated simulations
feel more realistic for stakeholders. Based on the research
on goal model metrics [13], we define five filters over the
solution space and list them in Tbl. I. Most filters are based on
an attribute, allowing for the maximization or minimizations
of the characteristic. For example, the first row of Solution
Reduction Filters in Tbl. I lists Least/Most Tasks Satisfied.
Most Tasks Satisfied displays any permutation of states where
the maximum number of tasks are satisfied. In the GRAD
example (see Fig. 2a), the most number of tasks that can be
satisfied in the next state is 3 so all states with 3 tasks satisfied
will be shown. These filters reduce the number of solutions
shown to users helping them to pick a next state. In Sec. IV,
we demonstrate to what degree the number of states is reduced
by applying each of these filters.

Implementation in BloomingLeaf. In BloomingLeaf, once
the user has selected Explore Possible Next States and are
viewing the Next States pop-up window (see Fig. 3a), they
can complete the following actions:

• Browse through all next states. Users can switch between
states by selecting the indices at the top of the left panel,
or by entering a desired state number and clicking Go.

• Applying a filter by clicking on the check box next to the
filter name. For example, in Fig. 3a Most Goal Satisfied
has been applied.

• The Save button records the selected state and generates
the remainder of the path in the original analysis window.

• The Explore Next States button records the selected state
and then in the same window generates all states for the
following time point. This allows users to incrementally

generate next states until they have completed the path.

Demonstration of Filters on the GRAD example. As we
introduced in Sec. II, the student, in the GRAD example,
is exploring the question: “Should Do Research Work or
Internship be satisfied first?”

Instead of continuing to generate new random paths, the stu-
dent decides to pick a next state himself to customize this path.
Using BloomingLeaf, the student selected time point seven
(see Fig. 2a), where Internship and Do Research Work were
partially satisfied (P,⊥), and clicked Explore Possible Next
States. This resulted in over 600 states for the next time point,
which is unrealistic to review. Thus, the student applies filters
to make this task more manageable (as shown in Fig. 3a).
He first applies Remove Conflict and Remove (⊥,⊥) to find a
state without any conflict value or no information, reducing the
number of states to 64. He then selects Most Goals Satisfied
to find the states where some of his goals are satisfied. This
results in 32 states, as shown in Fig. 3a. He reviews some
of the 32 states and selects one where Internship is fulfilled
and Do Research Work is not. Using this new state for time
point eight, the student generates the remainder of the path,
where Be Admitted to Graduate School is eventually satisfied.
The student realizes that both options are valid and decides to
complete an internship before completing research.

To illustrate selecting a next state, fragments of some alter-
native next states are demonstrated in Fig. 3b. Do Research
Work would still be satisfied before Internship if Alternative 1
is selected. Alternative 2 and 3 do not indicate any order of
the two tasks being satisfied. As a result, all three alternatives
are not the desired next state in this example.



(a) Screenshot of the Next States pop-up window in BloomingLeaf, showing
the GRAD model on the centre canvas with three filters selected.

Alternative 1

Alternative 2

Alternative 3

(b) Alternative Next States for
Time Point 8

Fig. 3: Demonstration of Next State analysis in BloomingLeaf with filters.

IV. VALIDATION

In this section, we describe our initial validation of our
extension and explore two research questions: (RQ1) To what
extent does the filters approach reduce computation time and
the number of returned states? (RQ2) To what extent do
experts find this approach helpful? We define computation time
as the time required for our CSP solver to find a solution.
To explore these research questions, we analyze effectiveness
by measuring the changes in runtimes and reductions in
the number of solutions presented to users, and we analyze
usability by gathering expert opinions on the approach.

Effectiveness Evaluation. As shown in the GRAD example,
the number of states returned to the student was greatly
reduced from over 600 to 32 states by applying the filters.
To ensure that these results were not unique to the GRAD
example, we investigate RQ1, how each filter reduces the
number of returned states and computation time. We selected
eight models from the goal modeling literature of varying
sizes (i.e., number of intentions and links). We added evolving
functions to the Scheduler model, as it was an untimed model.
For each model, we used Simulate Single Path to create paths
with at least ten time points and then selected Explore Possible
Next States from time point four. Since path lengths varied by
model, we chose time point four prior to analysis because a
next state of time point five would be at most in the mid-
point in the path. Tbl. II lists the results of our analysis
with each column representing a single model. The first two
rows list attributes of the model. The middle block lists the
initial number of returned states for selecting Explore Possible

Next States at time point four and the number of solutions
returned after applying each filter independently. For example,
the GRAD model is shown in the first column of Tbl. II.
We can see that by selecting Remove All Conflict Values, the
number of returned states is reduced from 711 to 64.

Based on the results in Tbl. II, without preferences most
models resulted in hundreds of states and applying filters
resulted in a reduction of the number of states returned to
the user. We examined the cases where filters did not reduce
the number of states and found that the contents of the model
caused these anomalies. For example, in the GRAD model
Least/Most Resources Needed did not impact the number of
states because there is no resources in the GRAD model.
Also, Remove All Conflict Values resulted in zero states in the
Bike Lanes Full and the Spadina Plan models because there
were intentions connected by both + and - links, resulting in
conflict.

The bottom section of Tbl. II lists the computation times
for Explore Possible Next States with and without removing
conflict or none values. For example, the computation time
of the Scheduler model was reduced from 317 ms to 187
ms [resp. 173 ms] by removing conflict [resp. none] values.
We were not able to collect runtime data from all models
because removing all conflict or none values resulted in an
over-constrained model with no valid solution. Apart from
the results for the Bike Lanes Full model, these measured
reductions would not be observable by users; thus, we will
focus future effort on reducing the number of solutions. We
conclude that the applicability of each filter varied based on
the model structure, but overall applying solution reduction



TABLE II: Results of the Effectiveness Study: Measurements of the computation times, and the number of solutions shown
to users, as the result of applying each of our proposed filters over eight selected models, of varying sizes.

Model Name G
R

A
D

B
LE

[1
1]

W
M

E
[1

1]

Sc
he

du
le

r
[1

4]
Sp

ad
in

a
Pl

an
Sp

ad
in

a
O

pp

Sp
ad

in
a

Pr
o

B
ik

e
La

ne
s

Fu
ll

Num. Intentions 14 8 20 18 43 38 28 30
Num. Links 18 7 16 20 55 35 31 37
Measurement Number of Solutions
Explore Possible Next States - No Pref. 771 486 3882 6369 20 5832 36 51152
Remove All Conflict Values 64 110 30 1173 0 200 8 0
Remove No None 512 0 3056 4093 16 4608 32 45056
Most tasks satisfied 32 486 96 288 20 972 36 51152
Least tasks satisfied 66 486 264 105 20 1944 36 51152
Most actors involved 514 468 3456 504 20 3888 18 51152
Least actors involved 257 18 426 105 20 1944 3 51152
Most resources needed 771 486 3882 4536 20 5832 36 51152
Least resources needed 771 486 3882 1833 20 5832 36 51152
Most goals satisfied 192 2 3882 504 10 24 36 68
Least goals satisfied 195 352 3882 713 10 3072 36 3448
Satisfaction of the most constrained goal 771 486 3882 6369 0 5832 36 51152
Measurement Computation Time in milliseconds
Explore Possible Next States - No Pref. 131 119 286 317 88 388 96 4141
Remove All Conflict Values 121 47 N/A 187 N/A N/A 92 N/A
Remove No None 97 N/A 226 173 86 N/A 89 1444

N/A indicates that no measurement was collected because the model was over-constrained.

filters reduced the number of returned states, answering RQ1.

Expert Analysis. Normally, we would investigate RQ2 in the
context of a controlled experiment with a significant number
of participants. Since our implementation is still a “proof of
concept” any results would be greatly confounded by our inter-
face. Instead, we gathered expert feedback about our extension
and implementation, by walking volunteers through a mock
trial of our proposed study treatment. We solicited expert
feedback of graduate students and professors at the University
of Toronto through the Software Engineering group mailing
list. We defined an expert as someone who has conducted
research in goal modeling or formal reasoning techniques. Five
experts volunteered to review our tool and technique and we
interviewed them individually. We gave each expert the GRAD
model and asked them to answer the question: “For this student
to be successfully admitted to graduate school, in which order
should the five tasks be completed?” After generating a path
and selecting Explore Possible Next States, we asked them
to select a next state without and then with filters. We timed
how long it took them to find an answer and asked them to
comment on where they spent the most time.

The experts took between two and six minutes to complete
this task and selected between three and six filters. Anecdo-
tally, most of the experts time was spent on deciding which
filters to apply. Two of the experts commented that the names
of the filters were not self-explanatory so it was not clear
which filters would help solve the problem. All experts agreed
that the initial number of states returned was too many to
consider. One indicated that it would be much easier for them
to re-build the model and add more constraints to it in order to

reduce the number of solutions. Another expressed concerns
that users might not have sufficient RAM to process these
large problems. As a result, the participants only did the task
with filters as requested by them. One suggested that it would
be easier for the users if we can filter based on the status of
a specific intention. Finally, all of the experts agreed that the
filters saved them time and effort.

These interviews were not intended to provide conclusive
evidence and have obvious threats to validity (e.g., exper-
imenter expectancies, low sample size). Instead, they were
intended to inform the design of our future experimentation.
Thus, these results are far from conclusive in answering RQ2,
but it has strengthened our hypothesis that users will find
filters useful. We need to make significant improvements in
BloomingLeaf to help users select appropriate filters.

V. RELATED WORK

We are not the first to look at optimizing goal model
analysis and results. This work builds on the prior goal
model analysis work of Giorgini and collaborators [8][9] and
extends the Evolving Intentions framework [3][11]. Similarly,
Aprajita et al. worked on visualizing how intentions change
over time [15]. Our initial set of solution reduction filters was
loosely based on the work of Franch et al. [13]. They created
metrics over goal models and hoped to create additional
metrics to assist the needs of goal model analysis.

Matthew et al. investigated exploiting the “key” decisions
within goal models to improve the efficiency of propagation-
based analysis results for very large goal models [16]. As
discussed in Sec. IV, one of our experts recommended apply-
ing filters based on the status of specific intentions. Future



work could incorporate this idea of “key” decisions. Nguyen et
al. proposed finding incremental solutions in goal model
analysis based on changes in intentions and past results [17].
Future work could incorporate these optimization functions.
Although our domain reduction filters refine the CSP, they do
not result from any changes in the intentions.

Others have investigated preferences in goal models.
Liaskos et al. allowed users to indicate preferences between
mandatory and optional goals, giving priorities to some
goals [18]. By indicating preferences, their work assisted
analysis algorithms to efficiently search for solutions. Jureta et
al. also considered preferences in goal models, by describing
systems-to-be in terms of candidate solutions and optional
requirements to be used as criteria for comparison in anal-
ysis [19]. Some may view our work as allowing the user to
state preferences of evidence pairs in analysis results.

The concept of filters was also used in prior work in the
domain specific modelling literature. Zarrin et al. used filter,
together with map and reduce, as lists of operations within a
function to specify domain specific languages [20]. Melnik et
al. defined a similar concept in order to use semantics to guide
the implementation for particular schema definition languages
and mapping languages for model operators (e.g., Compose,
Extract and Merge) [21]. Our work differs in that we are not
applying these filters directly to the structure of the model, but
filtering possible evaluations of the model.

VI. CONCLUSION & FUTURE WORK

In this paper, we introduced using filters to reduce the state
space of our Explore Possible Next States analysis, improving
users’ ability to create their own simulation results. Using the
motivating example of a student desiring to be accepted into
graduate school, we described filters for domain and solution
reduction, and our implementation in BloomingLeaf. As a
preliminary validation of our filters, we measured changes in
the computation time and the number of returned states across
a variety of models, and interviewed experts in order to gain
insights into how we can improve our analysis. We found
that applying solution reduction filters reduced the number of
returned states in RQ1, and found some evidence that experts
found filters helpful in RQ2.

In future work, we will investigate using stakeholders stated
or implicit preferences, over their goal models, for the purpose
of creating context dependent filters and guiding users in se-
lecting the most appropriate filters. We measured the solution
reduction filters in isolation. Going forward, we will consider
interactions between filters and evaluate the effectiveness of
combining filters. We will complete a more extensive study
for the Solution Reduction filters, by measuring reductions
across multiple paths and at multiple time points. As part of
our Next State analysis, we will explore allowing users to
update the evidence pair assignments for each intention in the
model, which will allow us to prune the solution space using
these new values. Finally, in future work we will empirically
validate the effectiveness of our approach with goal model
users.

VII. ACKNOWLEDGEMENT

We thank Marsha Chechik and the members of the Software
Engineering group at the University of Toronto for their
assistance. Boyue Caroline Hu completed this research with
the support of a University of Toronto Excellence Award.

REFERENCES

[1] J. Horkoff, T. Li, F.-L. Li, M. Salnitri, E. Cardoso, P. Giorgini,
J. Mylopoulos, and J. Pimentel, “Taking Goal Models Downstream: A
Systematic Roadmap,” in Proc. of RCIS’14, May 2014, pp. 1–12.

[2] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja, M. Sal-
nitri, J. Mylopoulos, and P. Giorgini, “Goal-Oriented Requirements
Engineering: A Systematic Literature Map,” in Proc. of RE’16, 2016,
pp. 106–115.

[3] A. M. Grubb and M. Chechik, “Looking into the Crystal Ball: Require-
ments Evolution over Time,” in Proc. of RE’16, 2016, pp. 86–95.

[4] ——, “BloomingLeaf: A Formal Tool for Requirements Evolution over
Time,” in Proc. of RE’18: Posters & Tool Demos, 2018, pp. 490–491.

[5] B. C. Hu, A. M. Grubb, and M. Chechik, “Exploring Next States and
Alternative Paths in Goal Model Analysis,” Review of Undergraduate
Computer Science, University of Toronto, 2019, forthcoming.

[6] B. Schwartz, The Paradox of Choice: Why More Is Less. Harper Collins,
2003.

[7] S. Iyengar, The Art of Choosing. Little, Brown Book Group, 2010.
[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Formal

Reasoning Techniques for Goal Models,” J. on Data Semantics, vol. 1,
pp. 1–20, 2003.

[9] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and Minimum-
Cost Satisfiability for Goal Models,” in Proc. of CaiSE’04, 2004, pp.
20–35.

[10] X. Franch, “A Method for the Definition of Metrics over i* Models,” in
Proc. of CAiSE’09, 2009, pp. 201–215.

[11] A. M. Grubb, “Modeling and Analyzing the Evolution of Requirement
over Time using Goal Models,” Ph.D. dissertation, University of Toronto,
2019.

[12] E. M. Clarke, W. Klieber, M. Novacek, and P. Zuliani, “Model Checking
and the State Explosion Problem,” in LASER 2011: Tools for Practical
Software Verification. LNCS 7682, B. Meyer and M. Nordio, Eds.
Springer Berlin Heidelberg, 2012, pp. 1–30.

[13] X. Franch, L. López, C. Cares, and D. Colomer, “The i* Framework
for Goal-Oriented Modeling,” in Domain-Specific Conceptual Model-
ing: Concepts, Methods and Tools, D. Karagiannis, H. C. Mayr, and
J. Mylopoulos, Eds. Springer International Publishing, 2016, pp. 485–
506.

[14] R. Salay, M. Chechik, J. Horkoff, and A. Di Sandro, “Managing Require-
ments Uncertainty with Partial Models,” J. Requirements Engineering,
vol. 18, no. 2, pp. 107–128, Jun 2013.

[15] Aprajita, S. Luthra, and G. Mussbacher, “Specifying Evolving Require-
ments Models with TimedURN,” in Proc. of MiSE@ICSE’17, May 2017,
pp. 26–32.

[16] G. Mathew, T. Menzies, N. Ernst, and J. Klein, ““SHORT”er Reasoning
About Larger Requirements Models,” in Proc. of RE’17, 2017, pp. 154–
163.

[17] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Model-
ing and Reasoning on Requirements Evolution with Constrained Goal
Models,” in Proc. of SEFM’17, 2017, pp. 70–86.

[18] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Repre-
senting and Reasoning about Preferences in Requirements Engineering,”
Requirement Engineering, vol. 16, no. 3, pp. 227–249, Aug 2011.

[19] I. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne: Towards
a New Generation of Requirements Modeling Languages with Goals,
Preferences, and Inconsistency Handling,” in Proc. of RE’10, 2010, pp.
115–124.

[20] B. Zarrin and H. Baumeister, “An Integrated Framework to Specify
Domain-Specific Modeling Languages,” Proc. of 6th International Con-
ference on Model-Driven Engineering and Software Development, pp.
83–94, 2018.

[21] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm, “Supporting
Executable Mappings in Model Management,” Proc. of SIGMOD’05,
pp. 167–168, 2005.


	Support for User Generated Evolutions of Goal Models
	Recommended Citation

	tmp.1646151397.pdf.VBsb4

