
Smith ScholarWorks Smith ScholarWorks 

Computer Science: Faculty Publications Computer Science 

10-12-2018 

BloomingLeaf: A Formal Tool for Requirements Evolution Over BloomingLeaf: A Formal Tool for Requirements Evolution Over 

Time Time 

Alicia M. Grubb 
University of Toronto, amgrubb@smith.edu 

Marsha Chechik 
University of Toronto 

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Grubb, Alicia M. and Chechik, Marsha, "BloomingLeaf: A Formal Tool for Requirements Evolution Over 
Time" (2018). Computer Science: Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/csc_facpubs/214 

This Conference Proceeding has been accepted for inclusion in Computer Science: Faculty Publications by an 
authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/214?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


BloomingLeaf: A Formal Tool for
Requirements Evolution over Time

Alicia M. Grubb, Marsha Chechik
Department of Computer Science

University of Toronto, Toronto, Canada
{amgrubb, chechik}@cs.toronto.edu

Abstract—Our previous work presented the Evolving Inten-
tions framework, which specified how evolving qualitative goal
models can be modeled and analyzed. Recent improvements to
the framework allow for precise semantics of goal relationships
with propagation of both evidence for and evidence against
a goal’s satisfaction (as in Tropos), and enables evaluation of
evolution with absolute time (in addition to relative time). The
reasoning is expressed as a constraint satisfaction problem. In
this paper, we present BloomingLeaf, a new web-based tool
that implements the new semantics. We showcase how the
implementation and architecture of BloomingLeaf can be used
to answer time-based questions.

I. INTRODUCTION

Goal-Oriented Requirements Engineering (GORE) aims to
help stakeholders make trade-off decisions when planning a
project [1]. We extended GORE by allowing stakeholders
to answer questions about their projects when the goals of
the project change over time [2], [3]. We investigated using
evidence pairs (i.e., separating evidence for and evidence
against the satisfaction of a goal) and both symmetric and
asymmetric links as a way to evaluate goal models [4]. By
using evidence pairs, we formally defined how goals change
over time in our framework, called Evolving Intentions [5]. In
this paper, we introduce BloomingLeaf, a web-based tool for
formal automated analysis of goal graphs. Using the motivat-
ing example that follows, we describe Evolving Intentions and
BloomingLeaf in Sec. II. Sec. III discusses the architecture and
Sec. IV describes ongoing and future work.

Motivating Example. Consider the task of adding bike lanes
to an urban street, as shown in the goal graph fragment
in Fig. 1. The stakeholder is considering the trade-off between
building the bike lanes as a Temporary Construction or a
Permanent Construction, and the impact of this decision on
three goals of interest: Have Bike Lanes, Cyclist Safety, and
Access to Parking. The stakeholder wants to ask the question:
Which construction plan will satisfy Have Bike Lanes at 36
months? We can specify how each goal in the graph might
change over time, and create simulations of how the evolving
goals impact the model as a whole.

II. BLOOMINGLEAF OVERVIEW

Using the running example, we describe how to model and
analyze goal graphs that evolve over time with BloomingLeaf.

Goal Modeling. Goal models (or goal graphs) consist of
goals and links forming directed acyclic graphs. Goals can be

Fig. 1: Model of Motivating Example in BloomingLeaf.

decomposed into child goals requiring all (and) or one (or)
child goal for satisfaction, but can also contribute to each other
using contribution links (e.g., +, -, ++, --). For example,
in Fig. 1 Have Bike Lanes is and-decomposed into Build Bike
Lanes and Have Design.

Each goal can be evaluated using an evidence pair (s, d),
where s ∈ {F,P,⊥} is the level of evidence for and d ∈
{F,P,⊥} is the level of evidence against the fulfillment of
g. Thus, goals can have one of five values: (F,⊥) = FS,
(P,⊥) = PS, (⊥,P) = PD, (⊥,F) = FD, and (⊥,⊥), as well
as four conflicting values: (F,F), (F,P), (P,F), and (P,P).
In Fig. 1, Bike Lane Usage is given the value Denied (FD)
because the bike lanes are not currently in use. There is a
++S contribution link between Have Bike Lanes and Cyclist
Safety. The ++S link only propagates when Have Bike Lanes
has F or P for its s value of the evidence pair. See [4] and [6]
for propagation details.

Evolving Intentions. With these values, we define how the
evaluation of a goal (as specified through evidence pairs) can
change over time. The evidence pairs form a partial order
from most satisfied to most denied. Over any time interval,
a goal can have a valuation that is changing stochastically,
increasing, decreasing or remaining constant. We combine
these to form step-wise functions. For example, we could
specify Have Design as Constant over two periods where it is
Denied (FD) for the first period of time and then Satisfied (FS)
for the second. We identify this pattern as Denied-Satisfied
(DS), and Have Design is given a DS label in Fig. 1. See [3]
for a full list of functions.

1



Fig. 2: Architecture of BloomingLeaf.

Simulation. Suppose we want to find a path where Have Bike
Lanes is Satisfied (FS) at 36 months, to explore the question
posed in Sec. I. To do this, we assign Have Bike Lanes a
Stochastic-Constant (RC) evolving function, which specifies
that after a time point t the evaluation of Have Bike Lanes will
be Satisfied (FS) and remain Constant. Next, we define our
analysis to be over months and assign t = 36 (not shown). By
running Simulate Single Path, we generate a path where Have
Bike Lanes is satisfied at 36 months (see demo video online1).
By changing the evolving functions of goals and generating
additional simulations, we can explore the best plan to satisfy
Have Bike Lanes.

III. BLOOMINGLEAF ARCHITECTURE

BloomingLeaf is a web-based tool consisting of a front-
end on the client side and a back-end on the server side,
as illustrated in Fig. 2. The front-end is a dynamic webpage
written in HTML and Javascript, which stores the goal model
as a JSON string within the browser’s cookies. The live demo
is hosted on our Apache web-server. We built our interface
on top of JointJS, a Javascript Diagramming Library, and use
SweetAlert, ChartJS, noUiSlider, and KeyboardJS for interact-
ing with and visualizing model elements. When a user makes
an analysis request, the model and analysis configurations are
packaged as a JSON string by the front-end and then passed
to the back-end via the Common Gateway Interface (CGI).
The back-end is a Java application that accepts an analysis
request as a JSON string. The program uses Gson to convert
the JSON string into Java objects (called Input Objects). The
Input Objects are used to create Simulation Objects, which
contain a collection of variables and constraints that form
the constraint satisfaction problem (including forward and
backward propagation rules). This collection is then passed
to the Java Constraint Programming (JaCoP) solver, which
returns a satisfiable set of assignments to the variables, or an
error. If the solution exists then the Simulation Objects are
converted to a set of Output Objects. Gson is then used to
convert the Output Objects back to a JSON string which is
returned to the front-end for rendering. Excluding all external
libraries, the tool is approx. ∼13000 lines of source code.

IV. DISCUSSION AND FUTURE WORK

We developed BloomingLeaf for the purpose of modeling
and analyzing goal models that change over time as described
in [5]. The initial version of BloomingLeaf is complete
and evaluation is ongoing. In this paper, we illustrated how
BloomingLeaf can be used to answer a time-based question.

1http://www.cs.toronto.edu/∼amgrubb/archive/RE18-Demo

BloomingLeaf is the second generation implementation of
our framework and has the same look and feel as our first tool,
GrowingLeaf [7]. GrowingLeaf implemented i* contribution
links and qualitative evaluation labels (i.e., 3, 3•, 7•, 7, �,
and ?), which made it difficult to trace the propagation of labels
in automated analysis. We kept the elements of the i* language
in the stencil of BloomingLeaf for more explicit visualization
and discussions between modelers, although these elements are
not considered in the analysis. We also removed i* dependency
links, but users may choose to use the ++ contribution link to
represent dependencies.

We are not the only ones working on tools for evolv-
ing goal models. An alternative approach, TimedURN, en-
ables stakeholders to consider possible evolutions and trends
through visualizations of quantitative goal models and feature
models [8]. While we are unable to represent quantitative
evaluations in BloomingLeaf, with the addition of absolute
time, BloomingLeaf can now make predictions over qualitative
versions of models represented in TimedURN.

While we hope to get feedback from session participants
on how to improve BloomingLeaf for wider release, we have
some improvements planned. We are currently implementing
an all paths analysis feature. This would give users the ability
to explore all possible next states of a model and create their
own simulation paths. Future work is required to add model
management features as well as additional syntax checking.
For example, we will give users the ability to save and load
analysis configurations and results. We will explore overlaying
symbolic satisfaction values (e.g., 3 and 7) on top of evidence
pairs, as well as adding visualizations for analysis trends,
similar to those in TimedURN [8].

BloomingLeaf is a public GitHub project available at https:
//github.com/amgrubb/BloomingLeaf , with a live-demo avail-
able at http://www.cs.utoronto.ca/∼amgrubb/ leaf-blooming-ui
(Google Chrome is the recommended browser).

Acknowledgments. We would like to thank our development
team: Hanbin Chang, Marcel Serikawa, and Yikhei Chan, as
well as the members of the Modeling group in Toronto for
their contributions to this work.

REFERENCES

[1] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja, M. Salnitri,
J. Mylopoulos, and P. Giorgini, “Goal-Oriented Requirements Engineer-
ing: A Systematic Literature Map,” in Proc. of RE’16, 2016, pp. 106–115.

[2] A. M. Grubb, “Adding Temporal Intention Dynamics to Goal Modeling:
A Position Paper,” in Proc. of MiSE@ICSE’15, 2015.

[3] A. M. Grubb and M. Chechik, “Looking into the Crystal Ball: Require-
ments Evolution over Time,” in Proc. of RE’16, 2016.

[4] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Formal
Reasoning Techniques for Goal Models,” J. on Data Semantics, vol. 1,
pp. 1–20, 2003.

[5] A. M. Grubb, “Evolving Intentions: Support for Modeling and Reasoning
about Requirements that Change over Time,” Ph.D. dissertation, Univer-
sity of Toronto, 2018, forthcoming.

[6] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and Minimum-
Cost Satisfiability for Goal Models,” in Proc. of CaiSE’04, 2004.

[7] A. M. Grubb, G. Song, and M. Chechik, “GrowingLeaf: Supporting
Requirements Evolution over Time,” in Proc. of i* Wrksp’16, 2016.

[8] S. Luthra, Aprajita, and G. Mussbacher, “Visualizing Evolving Require-
ments Models with TimedURN,” in Proc. of MiSE@ICSE’18, 2018.

2


	BloomingLeaf: A Formal Tool for Requirements Evolution Over Time
	Recommended Citation

	tmp.1646151523.pdf.bC5hW

