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ABSTRACT ARTICLE HISTORY
Antibiotic-resistant tuberculosis (TB) strains pose a major challenge to TB eradi- Received November 27, 2018
cation. Existing US epidemiological models have not fully incorporated the impact Accepted December 18, 2019

of antibiotic-resistance. To develop a more realistic model of US TB dynamics, we
formulated a compartmental model integrating single- and multi-drug resistance.
We fit twenty-seven parameters to twenty-two years of historical data using a ge-
netic algorithm to minimize a non-differentiable error function. Since counts for
several compartments are not available, many parameter combinations achieve very
low error. We demonstrate that a crowd of near-best fits can provide compelling
new evidence about the ranges of key parameters. While available data is sparse
and insufficient to produce point estimates, our crowd of near-best fits computes
remarkably consistent predictions about TB prevalence. We believe that our crowd-
based approach is applicable to a common problem in mathematical biological re-
search, namely situations where data are sparse and reliable point estimates cannot
be directly obtained.
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1 Introduction

The emergence of drug-resistant bacterial strains associated with a number of consequential human diseases poses a major threat
to public health efforts over the next several decades. The World Health Organization (WHO) estimates that one third of the
population may harbor TB (WHO, 2014). One major challenge to the global elimination of TB involves the increasing preva-
lence of drug-resistant strains. Even in countries where the near-elimination of TB once seemed possible, the presence of these
new disease variants may be driving the rapid growth of infected and latently infected populations. Critically, the ability of
researchers to reason in a data-driven way about how drug-resistance will impact future disease dynamics is undermined by a
relative shortage of data. New strains have short histories, and incidence and prevalence estimates provided by public health
agencies may only be tracking a subset of the relevant drug-resistant strains. Further, reliable estimates for important epidemio-
logical parameters often do not exist in the literature, because of the rapid emergence of the new disease variants, local variability,
and the inherent difficulty and expense of measuring these values directly.

In this paper, we develop a methodological approach meant to address these challenges, and use it to explore the potential
impacts of drug-resistant strains on the future prevalence of tuberculosis in the United States. We expand on the prominent and
widely-cited compartment model of Hill et al. (2012). We add new compartments to describe annual active infections by two
drug-resistant strains of TB tracked since 1993 by the Centers for Disease Control and Prevention (CDC), and one strain that
has not been tracked. These three new drug-resistant strains each also require a compartment to describe latent infections (that
are also not CDC-tracked). In most cases, where Hill’s model would have a single parameter (e.g. the proportion of immigrants
that are latently infected with TB), our model now has four parameters (e.g. the proportion of immigrants that are latently
infected with drug-susceptible TB, as well as the proportion latently infected with each of our three additional drug-resistant
strains).

Our parameterization attempt of this complex model indicates that the relative sparsity of the available CDC data results
in several challenging obstacles. A deterministic parameter-fitting algorithm returns parameter combinations that are highly
dependent on an arbitrary choice of initial conditions. Because many widely different parameter combinations appear to lead
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to comparably low error function values, the conventional wisdom that the lowest-error parameter combination gives the best
evidence about the true values of the parameters is problematic. On the other hand, a randomized sequential parameter-fitting
method produces bimodal distributions for more than half of the parameters in our model. These behaviors expose the central
hazard of our effort to incorporate drug-resistant strains: because we must rely on relatively sparse data to fit a large number of
parameters, our error function exhibits a complex set of local minima. Further, sequential parameter-fitting methods become
trapped at local minima on the boundary of the region of plausible parameter combinations, and fail to detect many better-
quality local minima within the parameter range.

To conduct a more thorough survey of the local minima of our error function (which correspond to plausible parameteri-
zations of our model), we implement a randomized genetic algorithm. Though we still find that runs of the genetic algorithm
converge to a variety of local minima, focusing on a “crowd” of the lowest-error parameter combinations reveals remarkable con-
sistency on several counts. First, predictions of future rates of TB in the United States appear quite stable across our crowd of
low-error parameter combinations. Second, for several hard-to-directly-measure parameters, our crowd of low-error fits displays
a striking degree of consensus about their values. In addition to the predictions we offer about future trajectories of drug-
resistant TB and TB-specific epidemiological parameters, we argue that the crowd-based methodology we introduce here will
provide useful directions for other mathematical modelers grappling with model parameterization in data-sparse settings.

2 Tuberculosis: Background and Prior Literature

Worldwide, in 2016, 4.1% of new TB cases were caused by multi-drug resistant (MDR) strains, defined as strains resistant to
isoniazid and rifampin (WHO, 2016). Sharma et al. (2017) estimate that by 2040 up to 12.4% of cases in India, 32.4% in Russia
and 5.7% in South Africa may be caused by MDR strains. Extensively drug-resistant (XDR) strains of Mycobacterium tubercu-
loszs (Mtb) that do not respond to isoniazid, rifampin, at least one fluoroquinolone and at least one injectable second-line drug
(WHO, 2016) may eventually constitute of 8.9% of cases in India, 9% in Russia and 8.5% in South Africa by 2040 (Sharmaetal.,
2017). In the US, both drug-sensitive and drug-resistant forms of TB are most often associated with individuals born outside of
the US, and account for approximately two thirds of newly reported cases in the United States (Cain et al., 2008).

As is the case with most forms of drug resistance, the emergence of resistant TB strains is primarily the result of selection
resulting from by the inappropriate use of antibiotics. The administering of a single drug or of combination regimens atincorrect
dosages or intervals, the reduced compliance frequently seen with long-term therapeutic regimes, and the extensive distribution
of ineffective or counterfeit antibiotics all select for drug-resistant strains, and provide the substrate for subsequent mutations
that confer resistance to additional drugs. In the presence of antibiotics, resistant strains are at a selective advantage (Borrel and
Gagneux, 2009). The acquisition of resistance due to inappropriate drug treatment is clinically supported by a study which
found that isoniazid-resistant (H-resistant) strains acquired resistance to other drugs during treatment (Kim et al., 2008).

In the context of TB treatment, which previously required antibiotic regimes lasting several months, non-adherence has
severe clinical and epidemiological implications. Non-adherent patients remain infected with Mtb bacteria, and specifically
with resistant strains that survive the initial treatment (Dheda et al., 2014). In response to this challenge, WHO developed the
Directly Observed Therapy Short course category (DOTS), in which patients are supervised by healthcare workers while taking
the prescribed drugs (Srivastava et al., 2011). Critical to global TB control, the WHO director called DOTS the most important
health breakthrough of the past decades (Garner and Volmink, 2003).

Several mathematical models have been developed to describe the dynamics of TB, each characterized by different assump-
tions. Basu et al. (2007) investigate the transmission of TB in the hospitals of South Africa by including three forms of TB:
drug-susceptible (DS), multi-drug resistant (MDR) and extensively drug-resistant (XDR). They conclude that XDR TB will
continue to be a serious public health problem unless important changes in public policy are implemented. They also acknowl-
edge that certain strategies that prevent TB transmission in hospitals can alter this prediction. Cohen and Murray (2004) develop
a model incorporating the effects of biological fitness. For this purpose, three types of Mtb bacteria are included in the model:
DS, fit MDR, and unfit MDR. In this context, fitness is defined as the relative ability of bacterial strains to survive and infect
new hosts. Given that antibiotic resistance incurs a fitness cost to the bacteria, the study aims to investigate the extent to which
even less fit MDR TB strains can pose an epidemiological danger. They demonstrate that even lower fitness MDR TB strains
can outperform drug-susceptible Mtb bacteria even in low antibiotic environments and thus pose an epidemiological risk. Sub-
sequent models include DS, MDR and XDR TB strains and explore the effects of quarantining individuals with XDR TB,
concluding that this practice may serve to reduce TB transmission (Bhunu, 2011). The model of Hill et al. (2012) divides the US
population into US-born (USB) and foreign-born (FB) individuals, involves preferential mixing, and assumes that exogenous
infections occur mainly within subpopulations. That model is deployed to investigate whether TB elimination, defined as the
occurrence of at most one TB case per 100 million people (WHO, 2014) can be achieved in the US by 2100. The results of the
analysis suggest that TB elimination is possible in the US-born population by 2100, but not in the foreign-born population. In
fact, even if the transmission of TB is completely interrupted, the goal of eliminating TB in the foreign-born populations cannot
be achieved in the proposed time frame (Hill et al., 2012).
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Figure 1: Schematic of the model. Susceptible individuals are infected and become either latently (1) or actively (2) infected.
Latently infected individuals progress to active disease and become infectious (3). Infectious individuals receive treatment. If the
treatment is successful, they become susceptible again (4). If treatment is unsuccessful, and resistance is not acquired, infectious
individuals return to the corresponding latently infected compartment (5). If resistance is acquired, individuals who had active
drug-susceptible (DS) TB enter the latently infected H-resistant or R-resistant compartment (6). Individuals who fail treatment
for active H-resistant or R-resistant TB move into the MDR (latently infected) (7). For simplicity, cases resulting in death are
not shown in this schematic (Justynski, 2016). The arrows represent the possible pathways linking the movement of individuals
from one compartment to another.

We aim to develop and parameterize a mathematical model of TB transmission in the United States that explicitly incorpo-
rates the consequences of single- and multi-drug resistance, as well as the effect of the foreign-born population on overall TB
prevalence.

3 Model

Our compartmental model builds on the model of Hill et al. (2012). We adhere closely to this widely-cited compartmental
model of TB transmission dynamics, but we modify the model to include simple and realistic dynamics for the acquisition
of drug-resistance. Our model divides the US population into the following categories: 1) susceptible, 2) latently infected, 3)
actively infected and 4) TB deaths. Each infected category includes four sub-categories of strains with varying drug-resistance:
Mtb strains that are 1) drug-susceptible (DS), 2) isoniazid (H)-resistant, 3) rifampin (R)-resistant and 4) multi-drug resistant
(MDR). We exclude extensively drug-resistant (XDR) strains from our analysis due to their low frequency (CDC, 2007) and
the added complexity they would impose to the model. The arrows in Figure 1 represent the possible pathways whereby an
individual can move from one compartment to another.

In this model, susceptible individuals contacting actively infected individuals may themselves become infected. Infected
individuals who develop symptoms within two years of infection move into the actively infected compartment; otherwise they
migrate to the latent compartment. A proportion of latently infected individuals progress to active disease, and only actively
infected individuals receive treatment. Depending on the efficacy of treatment, treated individuals will either be cured, returning
them to the susceptible compartment, or else become asymptomatic (and thus no longer infectious), but will nonetheless remain
latently infected. Individuals rejoining the latent category following treatment will either return to their original compartment
(displaying the same resistance profile as their previous active infection) or they will acquire new drug resistance. Thus, actively
infected patients who are unsuccessfully treated and survive will either become latently infected with drug-sensitive TB or will
acquire resistance to H or R and move to the respective latent compartment. Similarly, patients with H-resistant (or R-resistant)
TB can return to the latently H-resistant TB infected (or R-resistant) compartment, or migrate into the latentdly MDR TB
infected category. Finally, unsuccessful treatment may result in the death of the patient.

The model also explicitly incorporates the impact of migration of foreign-born infected individuals, currently considered the
main source of latent tuberculosis infection (LTBI) in the United States. While in principle—and to some extent, in practice—
actively infected (symptomatic) people are not allowed entry into the US, some proportion of foreign-born individuals entering
the US bear latent TB and can contribute to the latently-infected compartments according to their latent infection type. Finally,
for simplicity, the schematic in Figure 1 does not depict natural births and deaths, although both are taken into consideration
in the model.

This compartmental model is described by a coupled system of differential equations, where each equation represents the
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change in the number of the individuals that belong to a specific compartment. The equations are presented below:
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where

S: the susceptible population,
E;: the number of individuals latently infected with DS TB,

1;: the number of individuals actively infected with DS TB,
E>: the number of individuals latently infected with H-resistant TB,
I>: the number of individuals actively infected with H-resistant TB,
Es: the number of individuals latently infected with R-resistant TB,
I3: the number of individuals actively infected with R-resistant TB,
Ej,: the number of individuals latently infected with MDR TB,

I4: the number of individuals actively infected with MDR TB,

D: number of deaths caused by TB,

N: total US population.

4 Parameter Fitting

Incorporating multiple drug-resistant TB strains to expand Hill’s formulation for TB dynamics in the US results in a complex
model. In addition to requiring a larger number of compartments and introducing many strain-specific transition rates between
compartments, our model incorporates new dynamics describing how unsuccessful treatment contributes to the acquisition of
antibiotic resistance.

The challenge of fitting this complex model is made all the more daunting by the relatively sparse available data concerning
the prevalence of latent infections and by the dearth of direct experimental evidence about rates of resistance to commonly used
antibiotics. As a result, deriving point estimates for all of the parameters values in our model seems an unlikely undertaking from
the outset. Indeed, in the following subsections, we describe several difficulties we encountered in attempting to apply standard
estimation techniques. In response, we revised our focus to concentrate on producing a collection (or “crowd”) of informative
parameter combinations.

4.1 Defining an Error Function

Our compartmental model involves a total of 30 parameters, only 3 of which have been previously determined with high preci-
sion. For the remaining twenty-seven parameters in our compartmental model, reliable point estimates are not available in the



Table 1: Parameter descriptions with documented ranges from existing literature.
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Parameter Description Range
a Proportion of initial LTBI cases that are H-resistant (0,0.2)
a3 Proportion of initial LTBI cases that are R-resistant (0,0.2)
a4 Proportion of initial LTBI cases that are MDR (0,0.2)

a Immigration rate 0.00425
b Proportion of initial active cases that are DS (0.5,1)

¥ Proportion H-resistance acquisition cases (0,1)

) Proportion of immigrants that have LTBI (0,0.3)
A Effective Contact Rate (0,30)

u TB mortality rate (0,0.5)
“o Mortality rate unrelated to TB 0.013

p Proportion of exogenous infections that are acute (0,0.3)
¢ Rate of end of treatment (DS) (0.6,0.9)
) Rate of end of treatment (H-resistant) (0.5,0.9)
@3 Rate of end of treatment (R-resistant) (0.36,0.5)
P4 Rate of end of treatment (MDR) (0.3,0.5)
q Proportion of active cases that have the potential to be infectious (0,1)

) Proportion of immigrant H-resistant LTBI cases (0,0.2)
73 Proportion of immigrant R-resistant LTBI cases (0,0.2)
74 Proportion of immigrant MDR LTBI cases (0,0.2)
P US birth rate 0.0179

f Proportion of treatment time when individuals are infectious (DS) (0,0.1)
123 Proportion of treatment time when individuals are infectious (H-resistant) (0,0.1)
I Proportion of treatment time when individuals are infectious (R-resistant) (0,0.1)
t4 Proportion of treatment time when individuals are infectious (MDR) (0,0.1)
v Progression rate from latent to active infection (0,0.01)
N Proportion of failed treatments for DS TB that result in H- or R-resistance (0,1)
P2 Proportion of failed treatments for H- or R-resistant TB that resultin MDR (0, 1)

21 Proportion of treatment courses for DS TB that are successful (0.6,0.9)
22 Proportion of treatment courses for H-resistant TB that are successful (0.5,0.9)
23 Proportion of treatment courses for R-resistant TB that are successful (0.5,0.9)
24 Proportion of treatment courses for MDR TB that are successful (0.1,0.8)

*Since g and A always appear together in our model, we treat their product, 44, as a single parameter with range (0, 30).

19
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Table 2: CDC data.

Year DIZVIDR Dgctive DIZ-IR DZD Year Dl(dDR D./ictive DIZ-IR Dy
2014 91 9,421 680 NA* | 2003 119 14,835 903 711
2013 96 9,565 653 555 | 2002 158 15,055 912 784
2012 86 9,941 683 510 | 2001 151 15,945 897 764

2011 127 10,510 753  S36 | 2000 146 16,308 981 776

2010 105 11,161 699 569 | 1999 157 17,499 999 930
2009 114 11,523 762 529 | 1998 155 18,286 1,120 1,112
2008 107 12,895 835 590 | 1997 201 19,751 1,195 1,166
2007 124 13,282 798  S54 | 1996 250 21,210 1,284 1,202

2006 124 13,728 845 644 | 1995 327 22,726 1,350 1,336
2005 125 14,063 842 648 | 1994 431 24,206 1,543 1,478
2004 128 14,499 872 662 | 1993 484 25,102 1,534 1,631

*For 2014 there was no data for deaths due to TB.

existing literature (see Table 1). Our task was therefore to estimate parameter values that produce reliable fits to TB incidence
data obtained by the CDC for the years 1993-2014. The available annual data to which the model is fitted includes: 1) All active
TB cases, 2) TB cases that are H-resistant, 3) TB cases that are MDR and 4) TB-related deaths.

We quantify the quality of a parameter fit to our model by minimizing the sum of the squared normalized errors. We define
an error function using the following notation. Let

fgmve (a2, a3,...,23,24) = the model-predicted number of active cases of TB in the US for the year 7,
féR (2,23, ..,23,24) = the model-predicted number of H-resistant cases of TB in the US for the year 7,
fBZDR (a2,a3,...,23,24) = the model-predicted number of MDR cases of TB in the US for the year 7,

fDi (2,23, ..,23,24) = the model-predicted number of deaths due to TB in the US for the year 7,
and Démve, DIZ;IR’ D1<4DR’ D{) denote the respective data provided by the CDC (Table 2). The values of f ? are obtained as a
function of our parameter values. Our compartmental model is implemented in R: for each set of parameter values, the model
outputs the number of active, H-resistant and MDR TB cases, as well as deaths due to TB.

Next we define an error function, E(a,,23,. .. ,23,24). By minimizing E (a2, a3,. .. ,23,24) we hope to parameterize our
model in order to understand parameter values, and to predict future trajectories of TB infections by H-resistant, R-resistant,
and MDR strains. When fitting simple models with strong assumptions about the distribution of observation errors, least
squares minimization guarantees specific statistical properties. No such guarantees are possible when least-squares minimiza-
tion is applied to complex model forms, including our compartment model. Despite the lack of theoretical guarantees for our
setting, least squares is a standard and extensively applied measure of fit quality. Since the CDC data used to fit our model
appear relatively smooth, outliers that distort the fit (due to the heavy penalty that the least squares form imposes on large devi-
ations) seem unlikely. We therefore see no reason to suspect that minimizing the sum of absolute errors would be a more robust
approach, and proceed to define a least-squares error function. Let

7
Active

E(429“33~--5z33z4) :Z Dl'
HR

2014 i i 2 i i 2
[(fActiVe(az’ X35...,23, Z4) - DActive ) + (fHR(“Z) X35...523, Z4) - DHR)
i=1993

‘ (062,063,... ,23,24) - Dll 2 i(ﬂz,a3,...,23,24) - Di 2
+ (fMDR MDR) +(fD D) . (12)

12 12
DMDR DD

We include normalization by annual CDC-observed populations in Equation (12) to avoid fits that predict large compart-
ments precisely (namely, 7, A"c[ive) at the expense of accuracy in compartments whose populations are orders of magnitude smaller
(e.g-fyrpr)- For example, the empirical CDC observations for 1993 document 25,102 total active TB cases, with only 484 active
MDR-resistant cases (Table 2). Notice that a least-squares error function without normalization would consider the following
two pairs of model predictions to be of equal quality:

* 25,102 active TB cases with 284 MDR cases, or

* 25,302 active cases with 484 MDR cases.
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Notice that the first pair of predictions is grievously far from the the observed prevalence of MDR (under-estimating the em-
pirical CDC observation by 41%). In contrast, the second pair of predictions is within 1% of the CDC’s empirical observations
for both populations. By dividing the discrepancy between the model prediction and the CDC value by the CDC value, we
render compartments of different magnitudes comparable, so that a low aggregated error value is not obtained at the expense of
extreme inaccuracy within smaller-sized compartments.

4.2 Minimizing Error: Challenges and Initial Attempts

The values OffAitive (a2, 23,...,23, Z4)’féR(“2’ 03y...,23, z4)’f1\f1DR(“2’ A3y .. 23,24), andei (a2,23,...,23,24) aredetermined
as numerical outputs of our compartmental model. Asaresult, E(22,23,...,...,23,24) is not differentiable. In general, param-
eter fitting can be complicated when the error function does not have an analytical form because any error-minimizing method
applied must be derivative-free.Optimization methods for derivative-free settings are often referred to as direct-search methods
or zeroth-order methods. While direct search methods are often heuristics (that is, many offer no global guarantees of optimality)
in recent years the mathematical optimization community has recognized both that such methods can be effective in practice,
and that they sometimes provide the only option for difficult optimization problems, particularly those involving the outputs of
complex simulations (Kolda et al., 2003). Since our error function depends on model predictions that are produced in a highly-
complex manner (based on Equations (1) through (11)), it seems quite difficult to assess whether certain levels of smoothness (or
Lipshitz continuity) hold in neighborhoods of the minima. As such, we can not rely on the guarantees of more sophisticated
modern derivative-free methods (Koziel et al., 2016).

Instead we will regard our error function as a black-box function: given a set of parameters, a black-box function returns
only the numerical value of the function. Optimization methods for black-box functions typically rely on substantial numbers
of function evaluations. Naive grid searches, are an example of a conceptually simple derivative-free black-box optimization
method. In order to conduct a grid search, the plausible range for each unknown parameter is divided into uniform intervals.
Each parameter now has some number of possible discrete levels: the resulting parameter combinations can be explicitly enu-
merated and the function value is then checked at every such parameter combination. Grid-search is effective when the number
of parameters is small, but quickly becomes computationally unfeasible as the number of parameters grows. For example, even if
we considered only 3 discrete values for each of our model’s 27 unknown parameters, the number of error-function evaluations
required to conduct a grid search would be a completely impractical 3%,

Given that an enumeration-based grid-search technique was unfeasible for our high-dimensional parameter space even at
coarse resolution, we first attempted to minimize Equation (12) with an algorithm that iteratively optimizes each of the 27
parameters. We divided the range of each parameter into 100 discrete possibilities. From a random 27-parameter combination
(an initial condition), our iterative method proceeds through a permutation of the parameters. When a particular parameter is
considered for updating, the current values of the other 26 parameters are fixed and this fixed 26-parameter combination is paired
with each of the 100 values for the currently-considered parameter. The error function is evaluated at each of these hundred
27-parameter combinations: the best 27-parameter combination is adopted as the new best-so-far parameter combination. The
algorithm proceeds to consider updating the next parameter from the permutation: fixing the remaining 26, and optimizing
the 27th, etc. This method iterates repeatedly through a permutation of the 27 parameters until the 27-parameter combination
stops changing. Over a run of the algorithm to convergence, this method traces a path of decreasing error-function values along
a small subset of 100%” grid points in the plausible parameter space.

Unfortunately, we observed that the parameter combinations found at convergence by this iterative fitting method were
heavily dependent on the order in which parameter-updates were attempted as well as on the initial conditions. This indicated
the presence of many local minima for our error function, thus complicating the search for a global minimizer. We found that
repeatedly re-randomizing the order of attempts to update the individual parameters did not alleviate these issues. While the
existence of many local minima was a hazard we anticipated given the relative sparsity of the CDC data, we were further hindered
by this troubling artifact of the sequential approach to error minimization.

Conducting many runs of the iterative method led to strong bimodal distributions for approximately half of the 27 unknown
model parameters. For example, Figure 2a depicts the values of z3 at convergence for 100 runs of the iterative error minimization
approach. Recall that z3 denotes the proportion of treatment courses for R-resistant TB that are successful. We considered this
bimodal behavior troubling for two reasons. First, it is unclear what insight about 23 can be gained from such a distribution. For
example, reporting a typical measure of central tendency (mean, median) for the 100 values of the parameter 23 from Figure 2a
seems highly misleading. Indeed, closer inspection showed that comparably low-error parameter combinations appeared in both
groups (the group near 0.5, and the group near 0.9). Second, the most frequent optimized values of the bimodal parameters
corresponded to the absolute top and absolute bottom of the those parameters’ known ranges—values that were hard-coded into
the algorithm (from Table 3). In particular, it did not appear likely that all local minima of the error function just coincidentally
happened to lie at the boundaries of the parameter space: removing the boundaries of the known parameter ranges caused the
support of this strong bimodal behavior to shift outward to the new boundaries (Figure 2b). The sequential nature of our
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Figure 2: a) 100 runs of the iterative algorithm yield bimodal values. b) Allowing parameters to take on all possible values still
produces bimodal values.

minimization method appeared to be heavily biased towards convergence to local minima at the boundaries of the parameter
region. The “shift outwards” of the support of the bimodal distribution further suggested that the local minima discovered at
region boundaries were not true local minima of the error-function but instead indicated a direction in which the error function
was decreasing, but the search was truncated by the externally imposed parameter boundaries derived from the existing literature
(Table 3). In response to this behavior, we shifted our focus towards an algorithmic framework that would fit all parameters
simultaneously.

Before turning towards evolutionary/genetic methods, we briefly considered another standard class of methods for black-box
optimization, referred to as pattern search method. Starting from an initial parameter combination, pattern search evaluates the
black-box function at points identified by a “stencil” that is centered at the initial combination (Koziel et al., 2016). This stencil
is typically a star with “exploratory” points extending in several directions. When these directions correspond to unit vectors of
each dimension this is the classical "compass search” (Kolda et al., 2003) describes the long history and modern theoretical results
related to this famous method). More generally, stencils may be based on collections of randomly-chosen vectors. If a point of
the stencil gives a parameter combination with lower error than the current center of the stencil, then that point (aka, that
parameter combination) becomes the new center of the stencil. Otherwise, the size of the stencil is reduced to check function
values closer to the current center of the stencil. While pattern-search is a popular general method, because the ranges of our 27
unknown parameters vary substantially, it was unclear how to define the relative length of the "legs” of a stencil for pattern search
in a natural way. For example, a stencil in which all legs have the same length would effectively be taking much larger steps away
from the stencil center in some dimensions than in others. A major problem exposed by our iterative method was that allowing
asingle parameter to take a long step to the edge of its known range resulted in many other parameters immediately “snapping”
to their hard-coded boundaries. Since we had already observed close dependence on initial conditions and the existence of many
local minima with our iterative fitting method, we were wary of adopting a pattern-search approach where the outcome might
depend critically on our definition of the stencil.

4.3 Minimizing Error: Turning to Genetic Algorithms

Genetic algorithms are known for being effective in cases of high-dimensional search spaces, non-linear objective functions, and
complex collections of local minima. Randomized mutation steps can help genetic methods to “overcome premature stagnation”
atpoorer quality local minima (Koziel et al., 2016). Based on the early challenges we observed with our iterative fitting approach,
genetic (or “evolutionary") minimization techniques appeared as a potentially fruitful approach given our setting.

To fit the model to the CDC data for the years 1993-2014 (Table 2) we implemented a genetic algorithm in R. In our genetic
algorithm, an individual is defined as a vector of the 27 unknown parameter values for our compartment model (these values
give the profile of the particular individual). For each generation, our genetic algorithm measures the fitness (that is, the error
function E(22,23,...,...,%3,24) evaluated at an individual’s vector of 27 parameter values) for each member of a population
of 900 individuals. The most fit individuals (parameter combinations that achieve the lowest error) from each generation are
selected to act as the progenitors of the next generation.!

Our population size of 900 was carefully chosen. Early tests suggested that smaller generation sizes (100, 400) were quite
susceptible to drift. In this scenario, individuals in smaller populations may survive (or were lost to) the evolutionary process due
to chance alone, resulting in limited exploration of the space of profiles and very limited evolution over consecutive generations.

Details of breeding and mutation are discussed in Section 4.4.
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Figure 3: Runs of the genetic algorithm consistently discover low-error parameter combinations. a) The error of the fittest
individual in each generation for five runs of the genetic algorithm. b) Same plot after initial period of fast evolutionary im-
provement. Truncated axes allow visual differentiation between values of error at convergence. Very similar final error levels
could indicate that different runs of the genetic algorithm are effectively converging to a common optimal parameter combina-
tion. Closer investigation shows that this is not the case.

Repeated initial tests of the algorithm showed that a generation size of 900 counteracted the effects of drift and uncovered
solutions of comparable quality to those found using substantially larger generation sizes.

4.4 A single run of the genetic algorithm

To initialize a run of the genetic algorithm, we randomly generate 900 individuals for the first generation. For each individual,
a value for each of 27 parameters is chosen uniformly at random within a plausible range for the respective parameter (based
on ranges in the existing literature, see Table 1). The quality (or fizness) of each parameter combination is quantified by the
sum-of-squares error function described in Equation (12). We call individual A fizzer than individual B if the error function in
Equation (12) yields a smaller value for A than B.

After the fitness of each individual from generation 7 is quantified using Equation (12), the thirty fittest individuals are
selected to produce the next generation. The next generation of 900 individuals is produced by breeding all possible ordered
pairs of the thirty fittest individuals from the previous generation (with replication allowed within a breeding pair). Suppose
that for generation 7, each parent is a vector X, where 7 € [1,30], of the form

(X X X X X Xi X X X X X X X X X X X X X X Xi X;
)(f—(az, S B P 8y B G G 0 0y 2 ,22,23,24)

Each member of the progeny is produced by 27 fair coin flips: each coin flip selects one of the two parental values for each
parameter. For example, parents X; and X5 may produce a random progeny like (05)2(2, a4, ar s LN 2SI zi{l) Since we include
self-breeding of X; with X7, the 30 fittest individuals from generation 7 are always are present in generation 7 + 1. Since we breed
all ordered pairs of the thirty fittest individuals in generation 7, a pair of parents X; and)(}- will contribute two random progeny
to the 7 + Ist generation.

In addition to the recombination described above, our model also incorporates mutation in the creation of generation 7 +
1. To avoid being trapped by local minima of the error function (Equation (12)), 100 individuals in each new generation are
subjected to a mutation rate of 0.3. In essence, each of the 27 parameter values for an individual undergoing mutation have a
0.7 probability of remaining unchanged and a 0.3 probability that the existing value for that parameter will be replaced by a new
value selected at random from within the parameter’s range. As indicated, the 30 fittest individuals from the previous generation
are present, unmutated, in the next generation.

This routine is repeated for each run of the genetic algorithm, and the resulting (lowest-error) individuals identified. Dur-
ing the first few generations, the fittest parameter combination quickly improves from one generation to the next. Eventually,
evolutionary progress slows. Figure 3 depicts five typical runs of the genetic algorithm. Note that the lowest-error parameter
combination discovered in the first generation (y-intercept of the left panel) is a random variable. Early runs of the genetic algo-
rithm suggested that convergence to a single fittest individual (a single combination of parameter values that appears as the fittest
individual in several subsequent generations) almost always occurred within 17 generations. We call this final fittest individual
the convergence individual for a run of the genetic algorithm.
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4.5 Typical Behavior of the Genetic Algorithm

Figure 3 suggests that repeated runs of the genetic algorithm may converge to a number of different low-error parameter combi-
nations (that is, different algorithm runs may result in different convergence individuals). It is not clear from such a small set of
algorithm runs whether these different “optimized” parameter combinations simply represent minor variations of each other (all
effectively yielding the same parameterization of the model) or instead specify strongly different parameterizations of the model
that could critically impact predictions about future TB prevalence. In this section we investigate such behavior more closely.

To better understand the behavior of the model and the resulting optimized parameter values, the genetic algorithm was
run 1,000 times to convergence. Each run produced a final fittest individual (a vector of the 27 unknown parameter values that
produces low error for Equation (12)). Panel a) of Figure 4 is a histogram of the final error values at convergence for each of the
1,000 algorithm runs. For context about the magnitude of these final error values, we note that a vector of predictions that falls
within 8% of every one of the 87 CDC-observed values in Table 2 would yield an error value of 1.6 X 10°. While some runs of
the genetic algorithm converge to relatively high-error parameter combinations (at the right-hand side of Figure 4a)), the large
majority of our genetic algorithm runs converge to a parameter combination with error below 1.6 x 10°.

The worst fits at convergence in Figure 4a) have error values that are an order of magnitude larger than the best parameter
combinations discovered among our 1,000 genetic algorithm runs. Naturally, we regard the parameter combinations yielding
high-error values as less reliable than those resulting in the lowest error (at the left-hand side of the histogram). At the same time,
we note that a number of different convergence individuals (that is, many runs of the genetic algorithm) achieve comparably low
error at convergence.

In our experiments, the single best fit discovered among all 1,000 genetic algorithm runs has error value within a factor of two
of the next 10 best algorithm runs, yet the parameter combinations differ substantially. Parameter values that minimize the error
function are generally considered to provide the best proxy for true parameter values. Nevertheless, this conventional wisdom is
sorely tested when many very different combinations of parameter values minimize the error function to a near-identical degree:
it is not clear that any single near-optimal fit should be considered the most authoritative about the true parameter values.

We want to limit our attention to parameter combinations that give the highest quality fits to the empirical data. Across all
1,000 genetic algorithm runs, the error at convergence varied widely between 145,466 and 11,541,614 with a mean of 1,475,410
and a standard deviation of 1,112,003. By focusing on the 100 best runs of the genetic algorithm, we can substantially decrease
the mean and variance of the error at convergence. For example, the 100th-best fit has an error of 620,069. We define a crowd of
near-best fits in which this 100th-best fit is the worst member. The error value of this worst member matches the error of a set of
predictions that is within ~ 6.4% for of every one of the 87 CDC-observed values in Table 2. The 100th-best fit has error within
a factor of 4 of the best fit found among 1,000 algorithm runs, and has error lower than % of the worst error at convergence
among the 1,000 genetic algorithm runs. Limiting to a crowd of the 100 best fits discovered at convergence by genetic algorithm
runs, the mean error of our crowd of fits drops to 519,661 (corresponding to predicting every one of the 87 CDC-observed values
within 6%), with a standard deviation of 89,532. We judge that our crowd of near-best fits is composed of 100 high-quality fits
to the empirical CDC observations.

4.6 The portion of the parameter space compatible with low error

The 100 genetic algorithm runs resulting in the smallest final error at convergence were used to produce histograms of each of
the 27 unknown parameter values. These 100 best fits give a set of 100 vectors in the 27-dimensional parameter space which all
produce low error. We argue that this crowd of near-best fits yields insight about the parameter space for our TB model.

Using our crowd of 100 low-error fits, we created histograms of the resulting optimized values for each parameter. For some
parameters, (including @, ¥, @1, $2, P4, 72, 73, 745 11, 12, L4, Y1, Y25 21 82, 23, and 24) our fitted model does not appear to lead
to new insight about the range of the parameter. For example, Figure 4b shows that the 100 best fits yield values of ¢; that are
dispersed across the previously-known range for ¢; (Table 1).

In contrast, consider the two lower panels of Figure 4. Panel c) displays the concentrated histogram of v values that occurred
among our crowd of 100 low-error fits. Similarly, panel d) displays a similar highly concentrated histogram of 24 values from
our crowd. In both panels, the horizontal axis displays the range of plausible values for that parameter based on the existing TB
literature. In both cases, it appears that a large fraction of the ostensibly plausible parameter range is carefully avoided by our
crowd of low-error fits.

We summarize the results of 27 histograms analogous to Figure 4, panels b—d in Table 3. Parameters a3, 24, b, [, ¢, p, t3, and
vy, display remarkably narrow distribution in the values recommended by the 100 best fits with only a small number of outliers.
The “Obtained Range” listed in Table 3 is a range that contains values of the respective parameter for at least 95 of our 100
low-error fits. Parameters for which our crowd of 100 fits suggests refining the known parameter range by more than 50% are
highlighted. Several other parameter ranges are also narrowed by our crowd of 100 low-error fits, albeit less dramatically so (e.g.

¢3, the product ¢4, and 21).
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Figure 4: A crowd of near-best fits refines recommendations about the range of key parameters. a: Histogram of final error
at convergence for 1,000 runs of the genetic algorithm. b: Example parameter (¢;) where the crowd of 100 best fits does not
recommend refining parameter range documented in existing literature (Table 1). ¢, d: Examples of parameters (v, a4) where
crowd of 100 best fits recommends substantially refining parameter range documented in existing literature. For b)-d), the
horizontal axis displays the existing parameter range in the literature (Table 1).

Table 3: Obtained parameter ranges.

Parameter Known Range Obtained Range Parameter Known Range Obtained Range
ay (0,0.2) (0.0006, 0.1663) ) (0,0.2) (0.0017, 0.196)
a3 (0,0.2) (0.00001, 0.0823) 73 (0,0.2) (0.0013, 0.1836)
N (0,0.2) (0.0002, 0.0319) 74 (0,0.2) (0.0043, 0.1939)

b (0.5,1) (0.5002, 0.6147) fn (0,0.1) (0.000061, 0.0997)
y (0,1) (0.0859, 0.9944) t (0,0.1) (0.0012, 0.0996)
) (0,0.3) (0.000095, 0.0201) t3 (0,0.1) (0.034, 0.0989)
u (0,0.5) (0.0018, 0.0605) 4 (0,0.1) (0.0028, 0.0982)
p (0,0.3) (0.1833,0.2992) N (0, 1) (0.0034, 0.992)
¢ (0.6,0.9) (0.6004, 0.89638) 2 (0,1) (0.0149, 0.995)
o)) (0.5,0.9) (0.5013, 0.819) 21 (0.6,0.9) (0.7007, 0.8982)
@3 (0.3,0.5) (0.3002, 0.418) 2 (0.5,0.9) (0.501, 0.8996)
P4 (0.3,0.5) (0.30022, 0.4952) z3 (0.5,0.9) (0.5609, 0.8944)
7 (0,30) (8.0986, 29.613) % (0.1,0.8) (0.1636, 0.7978)
vr (0,0.01) (0.000049, 0.0011)
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We are keenly aware of the relative sparse data set we are using to optimize whatis, after all, a relatively parameter-rich model.
We are limited—as is often the case with infectious disease data—Dby the granularity of existing real world data. Nonetheless, we
are gratified by the realization that even the sparse available data still allows us to narrow the range of the highlighted parameters
from Table 3 well below previous estimates.

Five of the parameters for which the parameter range was considerably constrained (apart from x and &) are directly linked to
latent TB. For example, v, the progression rate from LTBI to active TB, is very difficult to observe clinically or to estimate from
epidemiological surveillance data: the exact times at which individuals become infected with LTBI or progress to TB disease
are almost never known, and estimates for the average progression rate from LTBI to active TB can vary dramatically from
one population to another. Because the identification and treatment of latent cases is a necessary step towards TB elimination
(Campbell etal., 2014), modeling approaches that refine our estimates of parameters governing the progression and transmission
of LTBI are potentially very useful, especially when coupled with more intensive screening and treatment.

In order to visualize the impact of our crowd-based approach on the universe of possible parameter values we propose the
notion of a parameter-space hypercube: a hyperdimensional volume whose edges represent possible values of each of the 27
unknown parameters in our model. We can, a priors, estimate the volume of this potential hypercube by multiplying the range
lengths proposed in the existing literature for each of our 27 parameters. Thus, for instance, one edge of the cube represents the
parameter b, whose range in the existing literature is [0.5, 1]. The length of this edge would be 1 — 0.5 = 0.5. The volume of the
parameter-space cube corresponding to Table 1 (that collects ranges from the existing literature) is the product:

71 = (0.2 —0)(0.2 = 0)(0.2 = 0)(1 - 0.5)(1 = 0)(0.3 = 0)(0.9 — 0.6)(0.9 — 0.3)(0.5 — 0.3)
(30 — 0)(0.2 — 0)(0.2 = 0)(0.2 — 0)(0.1 — 0)(0.1 — 0)(0.1 — 0)(0.1 — 0)(0.01 — 0)
(1-0)(1-10)(0.9—0.6)(0.9 = 0.5)(0.9 — 0.5)(0.8 — 0.1) = 2.091898 x 10~

The utility of our approach in refining—or, more precisely, reducing—the hypercube of potential parameter values can thus
be estimated by calculating the volume of the parameter hypercube compatible with low-error fits to CDC data. As before, each
edge in this new hypercube represents a parameter, but this time, the length of the edge is the length of the parameter range
obtained by our optimization process (Table 3). While some edges of this parameter-space cube are no shorter than the range
from the existing literature, others (such as v ) are considerably reduced. The volume of the new parameter-space cube suggested
by our analysis is /> = 1.968407 x 10721, The ratio of the two hypercube volumes is thus the direct measure of the cumulative
reduction in the parameter-space volume achieved by our genetic algorithm and crowd-of-fits approach.

V2 _196x 10:21 N L. 13)
Vi 2.09x107% 107
While the available CDC data may be too sparse to inform convincing point estimates of unknown parameters, our ap-
proach, when applied to the available CDC data presented in Table 2, nonetheless achieves a substantial reduction in the “plau-
sible” parameter space. Our newly defined hypercube occupies ~ 0.00001% of the volume of the parameter space based on the
values currently available in the existing literature.

5 A crowd of consistent TB projections through 2050

Table 3 reveals that in our crowd of 100 low-error fits, some unknown parameters have highly concentrated distributions, while
other parameters remain relatively dispersed over the parameter range drawn from the existing literature. Yet, despite substantial
uncertainty about the values of many parameters, we find that predictions of future TB prevalence (and of multi-drug resistant
TB prevalence in particular) are strikingly and reassuringly consistent across the crowd of 100 low-error fits discovered by our
genetic algorithm.

The black circles in Figure 5 depict the trajectories of the actual CDC data tracking total active TB cases, H-resistant TB
cases, MDR resistant TB cases and annual TB deaths from 1993 to 2014 (see Table 2). The 100 green trajectories shown in
Figure 4 are the predicted annual trajectories corresponding to each model parameterization from our crowd of 100 near-best
fits. Despite substantial variation in the values of many model parameters, predictions from our crowd of 100 fits are remarkably
consistent for the period 2015-2050. Our crowd of low-error fits tightly matches the historical data for total active TB cases
and MDR cases, and subsequently exhibits very low variance in the prediction period (2015-2050).

For contrast, consider the left-hand panels of Figure 5 for H-resistant cases and Annual TB deaths. Some fits from our crowd
appear very faithful to the historical data while other fits dramatically over- or underestimate these populations. We note that,
since all fits in our crowd achieve quite low error according to Equation (12), it may be that some fits that have very high error for
Annual TB Deaths are simultaneously very accurate for matching historical rates of H-resistant cases, and vice versa. There may
be some trade-oft between achieving low error for these two populations simultaneously—perhaps good fits for H-resistance
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Figure 5: Plots of model fit including future predictions for the number of all active TB cases (2), H-resistant (4), and MDR
cases (¢), along with the annual number of TB deaths (). The black circles indicate the CDC data and the green lines represent
the trajectories predicted by parameter values derived from each of the 100 best fits.

Table 4: Summarizing a Crowd of 100 TB Projections.
Year MDR Mean (Std.Dev.)  Total Active Mean (S.D.)  H-resistant Mean (S.D.)  Deaths Mean (S.D.)

2020 94.2(23.7) 9468.2 (204.5) 559.5 (211.1) 402.8 (177.4)
2030 91.0 (21.7) 8168.7(219.2) 502.9 (184.7) 341.3(150.2)
2040 88.9(21.7) 7202.2 (198.3) 454.7 (160.6) 299.8 (131.6)
2050 87.4(24.0) 6413.3 (198.5) 412.9(139.5) 267.5(117.1)

demand certain parameter values that are somehow in conflict with achieving the best fits for Annual TB Deaths—but these
subtleties are obscured by having a single aggregated error function.? Still, the variance of predictions across our crowd of 100
near-best fits appears to decrease by 2050 even for these relatively less-well-fit populations.

We provide summary statistics for our crowd of 100 near-best fits in Table 4. For the total number of annual active TB cases
(the upper-left panel of Figure S and column 2 of Table 4), our crowd provides a consensus. While total TB cases will continue
to drop until 2050 the apparent “leveling out” observed between 2000 and 2013 in the CDC data will continue. As a result, a
substantial number of active cases (>6,000) are predicted in 2050. Our analysis discovers no low-error fit to the historical data
in which annual active TB cases maintain a linear rate of decrease.

We also find incredible consistency in our crowd of predictions about annual MDR cases (lower left panel of Figure 5 and
column 1 of Table 4). Our crowd agrees that decreases in the number of these hard-to-treat TB infections have effectively stag-
nated. At the same time, our crowd of near-best fits discovers almost no “plausible” parameterization of our model for which the
number of MDR cases in the US grows by 2050 (and no parameterization for which this population grows substantially). Our
crowd of near-best fits suggests that, provided that the current rates of immigrants entering the US with latent cases of various
drug resistant TB strains is stable, the US is not in danger of a new epidemic of MDR tuberculosis.

6 Reflecting on Potential TB Interventions

A well-parameterized epidemiological model can help researchers gain insight about the effectiveness of potential policy inter-
ventions in reducing future disease burden. In this section, we explore TB projections from our crowd of near-best fits under

2In the conclusion, we mention a possible direction of future work that would explore beyond an aggregated error function.
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Figure 6: Plots of CDC data including future predictions for the number of all active TB cases («), H-resistant (¥), and MDR
cases (c), along with the annual number of TB deaths (4) when / (the proportion of immigrants with LTBI) decreases by 50%.
The black circles indicate the CDC data and the green lines represent the trajectories predicted by parameter values derived from
each of the 100 best fits.

Table 5: Projections based on a 50% decrease in / (the proportion of immigrants with LTBI).
Year MDR Mean (Std.Dev.)  Total Active Mean (S.D.)  H-resistant Mean (S.D.)  Deaths Mean (S.D.)

2020 93.1(23.7) 9424.9 (231.3) 556.5 (211.0) 401.1(176.6)
2030 87.4(20.9) 8098.5 (261.9) 497.0 (185.0) 338.1(148.9)
2040 82.5(18.5) 7105.5 (233.9) 446.1(161.1) 295.5 (129.9)
2050 78.9(17.2) 6289.3 (194.1) 401.3 (139.9) 262.1(115.1)

two stylized interventions.

First, we consider an intervention at the boundary of our model. An important driver of TB dynamics in the US is the
influx of foreign-born individuals harboring TB infections. Investing in heightened screening and treatment of foreign-born
individuals for LTBI could decrease the number of such cases. Suppose that this policy is implemented immediately and reduces
the number of LTBI cases introduced through immigration by a factor of 2. In this scenario, for each fit in our crowd, the
parameter / is reduced to half of its previous value (while the 26 other parameters are unchanged). We use this adjusted crowd
of fits to produce projections of TB dynamics until 2050.

Figure 6 and Table 5 describe a crowd of predictions about the impact of this intensified immigrant screening and treatment
intervention. As intuition would suggest, this intervention does decrease the value of each CDC-tracked compartment. Re-
markably though, these decreases are very slight. Our crowd of fits consistently suggests a reduction in annual active TB cases
and annual TB deaths of just a few percent. Economists suggest that widespread screening of immigrants for latent TB would
carry high financial costs (Campbell et al., 2014; Cain et al., 2008; Verma et al., 2013); our crowd of fits provides little support
for the cost-effectiveness of such measures.

Next we consider a different stylized intervention focused within the US. In this scenario, research investments in improving
TB treatment regimens lead to reduced treatment times. In our model, decreasing treatment times is equivalent to increasing the
transition rates ¢, ¢, 3, and ¢, that describe the rate at which individuals exit the infectious compartments (Z;). Intuitively,
fewer infectious individuals would be expected to produce fewer new exogenous infections. Figure 7 and Table 6 describe the
predicted impacts of a 30% increase in ¢ parameters. While our crowd of fits don’t suggest that such a change would allow TB
elimination, we observe an almost immediate descent to a dramatically lower level of disease burden (Table 4). Specifically, by
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Figure 7: Plots of CDC data including future predictions for the number of all active TB cases («), H-resistant () and MDR
cases (¢), along with the annual number of TB deaths (d) when ¢1, ¢, ¢3, and ¢4 each increase by 30% (corresponding to reduced
treatment times). The black circles indicate the CDC data and the green lines represent the trajectories predicted by parameter
values derived from each of the 100 best fits.

Table 6: Projections based on a 30% increase in ¢.

Year MDR Mean (Std.Dev.)  Total Active Mean (S.D.)  H-resistant Mean (S.D.)  Deaths Mean (S.D.)
2020 696 (19.9) 6660.7 (839.1) 384.47 (165.5) 280.8 (127.8)
2030 63.13(26.6) 5539.4 (960.6) 333.5 (149.3) 225.6(105.9)
2040 60.2 (17.6) 4860.6 (847.1) 298.2 (129.9) 197.3 (92.8)
2050 57.9 (17.7) 4299.4(729.3) 267.5 (112.7) 1749 (82.0)

2020, the mean number of active cases falls to 6660, in contrast to 9468 if no such intervention was implemented. Our crowd
of fits predicts that, decreasing treatment times by 30%—assuming this is medically feasible—would be a very effective policy.
Short of major improvements in treatment, based on the structure of our model, a similar impact would be predicted for an
intervention that simply reduces the exposure of infectious individuals to the general public by a similar fraction.

In the section below, we suggest how extensions of our approach (considering a crowd of low-error model parameterizations)
could also be used to explore scenarios in which non-US latent TB demographics shift dramatically (e.g. if non-US rates of MDR
prevalence were to grow substantially such that rates of latent MDR infection were much higher among the foreign-born US
population than historic or current levels).

7 Sensitivity Analysis for the Error Function

Our crowd of 100 near-best fits exhibits wide dispersion for many parameters (see Table 3). One possible interpretation of
this evidence is that our model predictions offgmve(az,%,. .. ,Z3,Z4),féR(a2,zx3,. .. ,z3,z4),f1\fiDR(p:2,a3,. ..»23,24), and
Jo(@2, a3, .., 23,24) (and consequently, our error function) are simply insensitive to some parameter values (at least within
some neighborhood near low-error fits). A natural consequence of such insensitivity would be that the value of such parameters
upon convergence of the genetic algorithm would effectively be selected uniformly at random from the known parameter range.
Panel b) of Figure 4 certainly appears consistent with such an interpretation. To further investigate this behavior, we measured
how modest scaling of the value of each parameter altered the quality of the model fit to the historical CDC data.
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Table 7: Sensitivity analysis for the error function.

Scaled Mean Error Inflation From Scaling Standard Deviation

Param. 0.7 0.9 1.1 1.3 0.7 0.9 1.1 1.3
ay 1.0264 1.00158 1.0054 1.03763 0.05871 0.01423 0.01412 0.05458
as 0.97857 0.9918 1.00914 1.03042 0.038108 0.01156 0.01122 0.03472
N 1.0017 0.99716 1.0062 1.02887 0.03908 0.01487 0.01795 0.06536
b 6.15117 0.9916 1.9494 12.269 17.2059 0.62931 0.32181 11.9876
Y 1.00139 1.00046 0.99953 0.99861 0.001978 0.00065 0.00065 0.0019
) 0.981 0.993 1.0067 1.0211 0.01721 0.0059 0.00615 0.0191
u 2.6202 1.07746 1.0756 1.99092 7.5455 0.2697 0.21785 3.53087
P 1935.66 175.755 4808.58 92879050.1 || 8438.26 891.495 31064.15  765673385.4
) 137673328.2  4555.5004 110.23 931.5473 1096939828  30217.73  669.87 5519.19
¢ 583.3503 1.12337 1.0664 1.2329 4484.821 0.60783 0.1303 0.4584
?3 24544.6 26.5628 6.005 60.959 1115507.519  90.015 7.503756  105.0462
P4 1.3262 1.00122 1.0166 1.059 0.90724 0.0289 0.01402 0.04597
q). 1959.78 177.538 4814.15 85600819.4 || 8489.23 897.525 31073.27  704087630.8
7 0.9998 0.9999 1.00005 1.00017 0.0011 0.00038 0.0003 0.0011
73 0.9994 0.99981 1.0001 1.00057 0.002089 0.00067 0.00068 0.0019
74 1.00092 1.0002 0.9997 0.9993 0.00736 0.0022 0.00215 0.0059
f 1036.06 112.2003 3757.158  74799822.6 || 6086.234 689.79 25632.74  615263069.9
t 1.20956 1.04977 1.11854 247.27 0.50144 0.1364 0.5322 1616.31
13 47.5895 4.69193 22.05403  22996.3602 115.132 8.5292 114.92 167217.71
ty 1.0297 1.00627 1.0038 1.1166 0.0402 0.0107 0.0168 0.36048
vr 183.4333 5.46422 5.8159 188.6359 53.0857 1.36976 1.66199 59.2885
N 0.99927 0.9997 1.00024 1.00073 0.00173 0.00058 0.0005 0.00177
2 1.00388 1.00122 0.99884 0.99676 0.0044 0.00143 0.00138 0.00402
21 1.04657 1.01472 0.98604 0.96038 0.02137 0.00674 0.00639 0.01821
2 1.00318 1.00103 0.9989 0.99704 0.0021 0.00071 0.0007 0.00208
23 1.02641 1.00772 0.99334 0.98324 0.01503 0.00474 0.00465 0.0142
24 1.00051 1.0001 0.99982 0.999493 0.00048 0.00016 0.00015 0.00046

In a simpler setting, sensitivity analysis would be performed around a single specific optimized parameter combination.
Instead, we have a crowd of 100 near-best fits: we perform sensitivity analysis around 100 different points in the 27-dimensional
parameter space. Since we are uncertain whether some of these points give a more meaningful parameterization of our model
than others, we summarize by reporting the mean and variance of the sensitivity across our crowd of near-best fits. We hope to
gain insight about about the shape of the error function across a collection of 100 neighborhoods (one neighborhood centered
at each parameter combination in our crowd of near-best fits).

For each of our 100 near-best fits, we performed a sensitivity analysis on the error function by scaling each parameter value
obtained by 0.7, 0.9, 1.1, and 1.3 respectively, while keeping all other parameter values fixed. Each altered parameter combination
was evaluated according to the error function (Equation (12)). This new error measurement was normalized by the error of the
initial fit. Finally, for each parameter, we computed the mean and standard deviation of the normalized error over our crowd of
100 near-best fits. These values are reported in Table 7.

A number of factors must be considered in interpreting the values in Table 7. First, suppose that a near-best fit yields a
parameter value near the boundary of the known literature range for that parameter (Table 3). In such cases, the scaling used
to produce the values in Table 7 could result in a parameter value outside the range considered plausible in the existing TB
literature. In turn, using biologically unrealistic values in our model could be a driver of some large error values after scaling.
For example, #, the proportion of treatment time when individuals infected with drug-susceptible TB are infectious, occupies
almost the entire range considered plausible in the existing literature across our 100 low-error fits (Table 3). Scaling each of the
100 optimized # values by 1.3 gives a large average increase in the error function (though the large standard deviation given for
scaling #; by 1.3 in Table 7 implies that the sizable mean may be driven by a smaller group of very large sensitivity measurements
among the 100 low-error fits). We also underscore that some means of normalized error in Table 7 are less than 1. We interpret
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this as an artifact of the genetic algorithm: while a value survives the evolutionary process by producing a low error, another
nearby slightly better value may have been lost to the randomness of the evolutionary process, or perhaps never tested due to the
granularity of our randomization procedure.

We describe an error function as being sensitive to a parameter if some mean normalized error that results from scaling that
parameter by a value in {0.7, 0.9,1.1,1.3} is more than 4 (that is the error function increases by a factor of 4 averaged across our
100 low-error fits). This threshold is intended to capture situations where a modest scaling of a parameter causes a substantial
increase in the error across our crowd of 100 low-error fits (though the specific threshold choice of 4 is somewhat arbitrary). By
this standard, the model appears to be particularly sensitive to the following parameters: b, p, ¢1, ¢2, ¢3, g1, 11, t2, t3, vr. The
biological meaning of these parameters may explain their effect on the model & represents the proportion of the initial cases that
are drug-susceptible. Given that drug resistance plays an important role in TB dynamics, small deviations in values of 4, can
have a strong impact on the model. The parameter p is the proportion of exogenous infections that are acute (i.e. active) and
g/ is the progression rate from latent to active infections. Considering that active infections are contagious, a small change in
their number can significantly impact transmission, accounting for the sensitivity of our results to values of the p parameter. g4
represents the transmission of TB, 1, 2, and #3 is the proportion of time when DS infected, H-resistant, or R-resistant infected
individuals respectively can transmit the infection. Here again, the importance of these parameters in the sensitivity analysis
comes as no surprise. Finally, parameters ¢1, ¢2, ¢3 are the rates at which infectious individuals (DS, H-resistant, and R-resistant
respectively) terminate treatment. Given that inappropriate treatment, including the untimely termination of treatment, can
lead to the acquisition of resistance, it is reasonable that changes in those parameters significantly impact the number of resistant
cases.

For the parameters that are identified as sensitive based on Table 7, the standard deviation of the normalized error is fre-
quently high, suggesting that the results are highly variable across our crowd of 100 near-best fits. Among the top 100 low-error
fits some parameter sensitivity analyses led to sharp increases in the error, while others did not. This is to be expected, since it is
unlikely that the error function behaves identically in the neighborhoods of 100 different local minima (or local near-minima).
We note that the values reported in Table 7 depend strongly on the 100 low-error fits considered. Sensitivity analyses based on a
smaller number or different crowd of fittest convergence individuals (final solutions delivered by genetic algorithm runs) could
provide a different list of sensitive parameters.

We also note that in several cases where the quality of the model fit is highly sensitive to a parameter, the impact of scaling
that parameter is strongly asymmetric. For example, #, may be scaled down or scaled slightly upward and still maintain low error
across our entire crowd of 100 low-error fits. In contrast, when £, is scaled up by 1.3 at least some near-best fits in our crowd of
100 show a large inflation of the error function.

Before performing sensitivity analysis on our crowd of 100 near-best fits, it seemed natural to suspect that the error function
would be highly sensitive to those parameters whose values appeared to be highly concentrated by the criteria of achieving a
low-error fit in Table 3. Qualitatively, since achieving low error seems to require key parameters to occupy very specific and
narrow ranges, it seems intuitive that the error function must be highly sensitive to such parameters. Conversely, it would seem
intuitive that for any parameter for which the crowd of near-best fits seems ambivalent about its value (e.g. panel b) of Figure 4)
the sensitivity of the error function to changes in that parameter value would also prove low.

Remarkably, Table 7 shows that the relationship between concentrated ranges and error-function sensitivity can be much
more complex. A variety of different relationships are observed. Table 7 shows that the quality of model fit is highly sensitive to
some parameters highlighted as having newly-narrowed ranges in Table 3 (&, g1, and especially p). Proportional scaling of these
key paralmeters3 can dramatically increase the average error of the fit across our crowd of 100 near-best fits. Especially for p, the
error function must be exceedingly “steep” on average in neighborhoods around near-best fits. In contrast, other parameters
whose ranges are dramatically narrowed among our crowd of 100 near-best fits display quite low sensitivity under proportional
scaling (@3, 24, /, and u). That s, even though achieving a low-error fit forces these parameters to occupy a narrow range, within
a small neighborhood around each of our 100 near-best fits, the error function is flat in all four directions.

At the same time, we find that the error function is actually highly sensitive to the values of several parameters whose resulting
ranges in our model remained very dispersed (@1, #2, #3, g, #1, £2, and #3). While our crowd of 100 low-error fits made use of
a wide variety of values for each of these parameters, Table 7 shows that the error function is on average quite “steep” in these
directions near low-error fits. We conjecture that the combination of wide distribution of values with high sensitivity arises when
achieving low error requires that certain subsets of these seven parameters be correlated in highly specific ways. Figure 8 provides
a schematic in two synthetic dimensions to visualize how this could arise. For example, achieving a low-error fit to the CDC
data may not force # to occupy a particularly narrow range, but perhaps it does force the vector (¢4, #1, £2, £3) to occupy a very
specific constrained volume within a 4-dimensional squashed parameter-value cube (again, see Figure 8 for a low-dimensional
schematic of how this might arise). These four parameters control the rate of all new infections that arise through exposure
(to any TB strain): while the CDC data may be too sparse to recommend narrow ranges for each individual parameter, the
low-error fits in our crowd are discovering certain plausible tradeoffs among the values of these related parameters that result in

3This is a statement about proportional scaling of a single parameter 7z the neighborhood of a very low-error fit discovered by a run of the genetic algorithm.
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Figure 8: Constrained Low-Error Volumes in the Parameter Space Can Simultaneously Exhibit Wide Dispersion and High
Sensitivity. Consider two synthetic parameters #; and 4,. Suppose that the green region of this 2-dimensional parameter space
results in very low error, and that error is dramatically higher outside the green region. A crowd of low-error fits is depicted as
black points. Parameters 21 and 4, both exhibit wide ranges across the crowd of fits, but many fits in the crowd are near the
boundary of the low-error region such that scaling one parameter (while the other remains fixed) enters the high-error region.

predictions which closely replicate the populations observed in the historical CDC data. Under such an interpretation, the high
sensitivity to proportionally scaling #1 (Table 7) would indicate that moving away from a balanced combination of (¢4, 71, £2, £3)
in the # direction—with no coordinated adjustment of (¢4, #,, #3) —causes a steep increase in error in some neighborhoods of
our crowd of low-error fits. While the distribution of # obtained from our crowd of near-best fits is widely dispersed across the
known range from the existing literature, our error function is far from ambivalent about the value of this parameter.

This “balanced combination” interpretation of our seven wide-range but high-sensitivity parameters suggests that new direct
measurements of small subsets of these parameters could potentially force other parameters from the combination into more
specific and narrow ranges (based on our low-error fit criteria). For example, in the synthetic schematic provided in Figure 8,
if a new direct measurement revealed that z; € [0.10, 0.15] then achieving low error would require 2; to come from a much
narrower range than the crowd of fits initially suggested. That is, our crowd of near-best fits may not champion narrow ranges
for these seven particular parameters individually, but our crowd does still encode a kind of structure that describes combinations
of smaller subsets of parameters that are compatible with real rates of historical TB prevalence. The structure of these parameter
combinations is hard to visualize because our crowd of near-best fits does not appear to have a “thin” projection into one or two
of these seven dimensions (note that our “Obtained Ranges" in Table 3 are effectively projections of our crowd of near-best fits
into one dimension). The absence of easily interpret-able low-dimensional projections for some subsets of crucially correlated
parameters is likely a natural consequence of the complex system we model: several compartment populations are controlled
by contributions from many other compartments (so that “balances” between related parameters/rates entering and leaving a
compartment are frequently more than 2-way).

8 Conclusion

In epidemiological modeling, the emergence of new drug-resistant strains aggravates existing challenges related to data sparsity
and the lack of reliable parameter estimates. Even for diseases with substantial global impacts, like tuberculosis, some data sparsity
is unavoidable under current technology and regulatory policies (at present, the CDC has no mechanism in place to directly
measure latently infected populations). In this paper, we extended a widely cited compartment model of TB dynamics in the
US (Hill et al., 2012) to incorporate several drug-resistant strains. Our extended model results in both more compartments and
more inter-compartment transition rates that demand strain-specific parameters.

Our initial attempt to fit our model based on 22 years of CDC data exposed that, in this data-sparse setting, many compet-
ing vectors of our 27 unknown parameters result in low values of our error function. When historical data is relatively sparse,
it is not surprising that an error function can exhibit a complex set of local minima. For our TB study, we found that compet-
ing low-error parameter combinations could sometimes disagree dramatically about the values of important model parameters.
This observation appeared to undermine the conventional wisdom that the lowest-error parameter combination gives the best
indication about the true value of the parameters. This obstacle is not specific to disease modeling: a similar issue could arise in
many data-sparse settings where local minima of similar quality form an elaborate landscape.

To move forward we introduced the notion of a crowd of near-best fits. We obtained a set of 100 low-error parameter com-
binations by repeatedly running a genetic algorithm to convergence. Selecting the best 100 runs out of 1,000 genetic algorithm
runs, every fit in our crowd has an error value that matches or outperforms a set of predictions which has maximum deviation
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of 6.4% across all 87 of the empirical quantities documented by the CDC. Next we explored whether our crowd of fits could
provide insights analogous to the desired products of traditional model-fitting efforts.

Even though we did not acquire precise estimates for each compartment and each parameter, by considering a crowd of
near-best fits we were still able to recommend dramatic restrictions of the possible ranges for seven key model parameters. Our
seven dramatically restricted parameters include several that are difficult to measure through direct experiment. For example,
we recommend newly narrowed ranges for the proportion of latent TB infections that are multi-drug resistant in the US, a4 €
[0.0002, 0.0319], and for the rate of progression from latent to active infection, v;, € [0.000049,0.0011]. The parameter vy
plays an integral part in virtually every TB model, and modelers are heavily reliant on guesswork when estimating progression
rate from latent to active TB in a population (Dowdy et al., 2015). Our goal is not necessarily to locate the very best set of
parameters, but to find a collection of parameterizations of the model that fit the data. Assembling a collection of good fits
can provide insight into epidemiological parameters that are known to be troublesome and hard to measure directly, but are
nonetheless critical to TB dynamics (e.g. vz).

Furthermore, we show that older predictions of declining TB prevalence that ignored drug-resistant strains (Hill et al., 2012)
appear to be robust when these new types of infections are considered in our model. According to Hill et al., even if all TB
transmission ceased instantly, there would still be a few cases even in 2100, mainly supplied by the foreign-born population.
Indeed, our crowd of fits predict that despite the sharp decreases in recent TB cases, low prevalence is maintained in the United
States through at least 2050 (Figure 5). Such predictions are consistent with other models (e.g. Shrestha 2017, Menzies 2018).
This behavior is remarkably consistent across our large crowd of low-error model parameterizations. Our genetic-algorithm
search discovers no low-error fits to the data that are consistent with rising future TB rates, despite the emergence and spread of
recalcitrant MDR strains.

In the broader context of epidemiological modeling, our approach of using a genetic algorithm to generate a crowd of near-
best fits offers an alternative method for parameterizing models to fit data. Modelers who report a particular set of parameters
as the best fit for their data could consider studying their model’s sensitivity to alternative parameterizations using this method
of generating alternative near-best fits for comparison.

In Section 6 we explored predictions about how two stylized public health interventions would impact future TB preva-
lence. This exploration produced two modified versions of Figure 5. Figure 6 describes our crowd’s consistent prediction that
decreasing the number of latent TB cases introduced through immigration (e.g. through intensified border screening) would
have only a mild effect on annual disease burden. On the other hand, in Figure 7 and the corresponding Table 6, our crowd of
fits consistently predict that increasing the rate at which individuals leave the infectious compartment would have a substantial
impact on future prevalence. Such an impact might be achieved as a result of investments in research that reduce treatment
times, or by developing more effective isolation and treatment protocols for infected individuals.

We note that the value that can be extracted from sparse data is both model- and data-specific; we can not guarantee that the
remarkable consistency revealed by our crowd-based analysis for drug-resistant TB will occur for other sparse data sets or alterna-
tive models. Still, we do hope that our crowd-based approach will motivate further exploration of how emergent infection-types
can be explicitly incorporated both for TB and other infectious diseases. Indeed, it is our hope that the range of useful insights
that could be accessed by our crowd-based model-fitting approach is wider than what we have been able to cover here. Towards
that end we suggest several directions for future work.

Directions for Future Work. Asin every computational study, we make a number of implementation choices that can be
turther explored. Our crowd of one hundred low-error fits provides us with an important signal about how to best parameterize
our model. Nonetheless, it is important to note that different implementation choices might have resulted in a different set of
best fits. Choosing a different error function, such as the least absolute deviation method might have yielded different results.
Similarly, our use of a genetic algorithm required making somewhat arbitrary choices about generation size, mutation rate,
recombination rate and breeding method. Here again, different choices might lead to slightly different outcomes. Our results
likely exhibit some dependency on the choice of algorithm and on the specifics of its implementation. To defend against such
artifacts, we are exploring the features of a crowd of best fits derived from the low-error fits generated across multiple optimization
algorithms. Finally, our choice to consider a crowd size of the top one hundred near-best fits from the initial collection of
1000 genetic algorithm runs is somewhat arbitrary. Even though studying the 100 near-best fits ensures that we are examining
fits with a very low error (from panel a) of Figure 4), a more specific numerical criterion could be used to determine membership
in the crowd of best fits. Such a crowd might, for instance, be assembled by selecting only those fits whose error is at most 10%
of the largest observed error at convergence. Alternatively, membership in this exclusive club of fits could be defined to include
all fits discovered with an error no greater than twice the minimum error fit found among the 1000 genetic algorithm runs.
Considering Figure 5, we might even imagine a 2-phase qualification process: to join the crowd of near-best fits, a fit must first
achieve low error (according to a weighted error function), followed by a second triage that retains only those solutions that
exhibit high-quality fits for each category of CDC data. This work has explored the sensitivity of our error function to changes
in the values of the model parameters, but has not conducted a global sensitivity analysis for the 100 parameterized models that
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we obtain (these models all have a common structure, but their parameter sets are drawn from our crowd of near-best fits). As
with our predictions of future TB prevalence, sensitivity analysis could be conducted for each fitted model to explore whether
the crowd of best fits consistently links a key outcome (e.g. annual TB Deaths in 2030) to the value of a single input (e.g. MDR
cases in 2019). Such linkages could inform preventive public health efforts and could point to specific measurements that could
substantially improve our prediction capacities.

The two stylized public health interventions simulated in this paper can also be extended to a broader range of potential pol-
icy suggestions. These might include varying the strain-specific rates of infection in both native and foreign-born populations,
exploring the consequences of the increasing prevalence of single or multi-drug resistant strains of MTb around the globe on the
prevalence and Tb-related mortality in the US, and investigating the effects of promiscuous transfer of resistance determinants
across M TDh strains.

Along similar lines, the role of extensively drug-resistant (XDR) strains on TB dynamics in the US deserves further scrutiny.
XDR has become a major concern in TB control for countries with high TB prevalence. South Africa, for instance, has witnessed
a10-fold increase in XDR cases in the past decade, with 1500 reported XDR TB cases in 2012. This increase was predicted by
Basu et al. (2007) who forecast an even larger increase in XDR cases if no additional interventions are implemented. Current
evidence suggests that the majority of XDR cases arise from individual to individual transmission, rather than as a result of de
novo resistant strains due to inappropriate treatment of MDR TB. This pattern was also seen in a social network analysis that
investigated the connections among patients with XDR TB (Shah et al., 2017). It revealed that social networks create multiple
opportunities for transmission, both in the community and in the clinic. As a result, direct transmission explained at least 59 of
MDR TB cases. The relatively low success rate of treatment for XDR tuberculosis (<40%) and its high mortality rate (50-80%)
(Shah et al., 2017) have increasingly attracted the attention of campaigns seeking to control and eradicate TB. The rising 77 situ
prevalence of these resistant strains, coupled with the inexorable rise in international travel and cross-border movements, remind
us that TB is a global challenge necessitating a concerted and data-driven global response.
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