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ABSTRACT

How many pair-wise distances must be prescribed between
an unknown set of points, and how should they be dis-
tributed, to determine only a discrete set of possible so-
lutions? These questions, and related generalizations, are
central in a variety of applications. Combinatorial rigid-
ity shows that in two-dimensions one can get the answer,
generically, via an efficiently testable sparse graph property.

We present a video and a web site illustrating algorith-
mic results for a variety of rigidity-related problems, as well
as abstract generalizations. Our accompanying interactive
software is based on a comprehensive implementation of the
pebble game paradigm.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical Algorithms and Problems]: Geometrical problems and
computations; G.2.2 [Graph Theory]: Graph Algorithms

General Terms: Algorithms; Theory

Keywords: Computational Geometry; Rigidity; Sparse
Graphs; Pebble Games

1. RIGIDITY MODELS

We start with a brief overview of the models of rigidity
relevant for the presented work. For each model, we describe
the geometric constraints that define it and the rigidity
property we want to determine.

Planar bar-and-joint rigidity. A bar-and-joint frame-
work consists of fixed-length bars connected by universal
joints allowing full rotation of the incident bars. If the only
motions maintaining the lengths of all the bars are trivial
rigid motions (translations and rotations), the framework
is rigid (see Figure 1(a)); otherwise, it is flexible (see Fig-
ure 1(b) for an example in two-dimensions).

Planar slider pinning. A bar-and-joint framework in the
plane may be additionally constrained by sliders, which
force joints to move on fixed lines; we call such structures
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Figure 1: Bar-and-joint structures in two-
dimensions: (a) minimally rigid and (b) flexible.

Figure 2: Minimally pinned bar-slider framework.

bar-slider frameworks. The allowed motions preserve the
lengths of all the bars and move vertices constrained by slid-
ers along the specified lines. In this model, we are concerned
with pinning rigidity: a bar-slider framework is pinned
if it is completely immobilized, i.e., rigidly attached to the
plane. See Figure 2.

Figure 3: Minimally rigid body-bar-hinge structure.

Body-bar and body-hinge rigidity. A body-bar frame-
work consists of rigid bodies connected by fixed length
bars; the bars are rigidly attached to the bodies with uni-
versal joints. In addition to bars, hinges may also constrain
the structure (see Figure 3 for a 3D body-bar-hinge struc-
ture). They constrain the incident bodies to a relative rota-
tion about the hinge axis. A body-bar-hinge framework is



rigid if the only motions of the framework are trivial ones,
as in the bar-and-joint case; otherwise, the framework is
flexible.

Parallel redrawings. Given a graph embedded in the
plane, a parallel redrawing maintains the direction vec-
tor of each edge. If every parallel redrawing of the graph is
similar to the original, the graph is said to be direction
rigid; otherwise, it is flexible.

2. RIGIDITY ANALYSIS PROBLEMS

For each model of rigidity, we are interested in the follow-
ing problems; with respect to terminology, framework, rigid
and flexible are to be taken in the context of a given model.

Decision: Is a framework rigid?

Extraction: Find a maximum-cardinality set of indepen-
dent constraints in a framework. For a rigid input, this
is a minimally rigid substructure (one which becomes
flexible after removing any constraint).

Components: Detect the maximal rigid substructures (the
rigid components) of a flexible framework.

Optimization: Extract a set of independent constraints
optimizing a given linear weight function.

Extension: Given a flexible framework, describe a set of
constraints whose addition would rigidify it. (For ex-
ample, find a set of sliders that would pin a bar-and-
joint framework.)

Generic rigidity theorems. The generic rigidity of these
models is captured by combinatorial properties. Laman’s
theorem [2] characterizes minimally rigid 2D bar-and-joint
frameworks, and Tay’s theorem [8] characterizes minimally
rigid body-bar frameworks in arbitrary dimension d ([9] and
[10] observe that hinges may be represented by 5 bars, ex-
tending the characterization to body-bar-hinge). For results
relating to parallel redrawings, see [10]. In [5], we present
results for bar-slider pinning rigidity.

3. PEBBLE GAMES AND SPARSITY

The combinatorial rigidity characterizations are based on
hereditary counts on the number of edges in subgraphs.
These counts have been generalized to sparse graphs and
hypergraphs [3, 7, 6, 10]. A (hyper)graph G is (k,¥)-
sparse if any set of n’ vertices spans at most kn’ — ¢ edges
in G for non-negative integer parameters k£ and ¢ which al-
low for non-trivial graphs (e.g., for graphs, they must satisfy
£ € [0,2k)). This definition generalizes to other situations,
including graded sparsity [6], in which the edges of G are
partitioned into classes, each of which satisfies its own spar-
sity counts.

Our pebble games, which extend the elegant algorithm of
Jacobs and Hendrickson for 2D bar-and-joint rigidity [1], are
a family of graph construction rules indexed by non-negative
integers k and £. The (k,£)-pebble games “recognize” ex-
actly the (k,f)-sparse graphs [3], and variations on them
address all the algorithmic questions listed above. In partic-
ular, (2,3)-pebble games solve planar rigidity and parallel
redrawing questions, k = ¢ = (’1;1) handle body-bar-hinge
structures in dimension d, and a combination of (2, 3)- and
(2,0)-pebble games solve pinning rigidity in the plane.
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The basic (k, {)-pebble game is played by a single player
on a directed graph. It is described in terms of an initial
configuration (an empty graph on n vertices, with k pebbles
on each) and two allowed moves:

Add edge move: If vertices ¢ and j have at least ¢ + 1
pebbles altogether on them, add the directed edge ij
and pick up a pebble from one of the endpoints.

Pebble slide move: If ij is an edge and there is a pebble
on j, reverse the edge ij and move the pebble from j
to 1.

We have developed several types (including component,
colored and graded variations) of pebble games [3, 7, 4,
6] for all sparse graphs and hypergraphs.

File Graphs View
{ Play pebble game  Create graph |

Reset game

Figure 4: A snapshot of the component pebble game
for 2D bar-and-joint rigidity.

Demo site. Applets, demos and an accompanying video
can be found at http://linkage.cs.umass.edu/pg.
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