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ABSTRACT
A well studied geometric problem, with applications rang-
ing from molecular structure determination to sensor net-
works, asks for the reconstruction of a set P of n unknown
points from a finite set of pairwise distances (up to Eu-
clidean isometries). We are concerned here with a related
problem: which sets of distances are minimal with the prop-
erty that they allow for the reconstruction of P , up to a
finite set of possibilities? In the planar case, the answer is
known generically via the landmark Maxwell-Laman The-
orem from Rigidity Theory, and it leads to a combinatorial
answer: the underlying structure of such a generic minimal
collection of distances is a minimally rigid (or Laman)
graph, for which very efficient combinatorial decision algo-
rithms exist. For non-generic cases the situation appears to
be dramatically different, with the best known algorithms re-
lying on exponential-time Gröbner base methods, and some
specific instances known to be NP-hard. Understanding
what makes a point set generic emerges as an intriguing
geometric question with practical algorithmic consequences.

Several definitions (some but not all equivalent) of gener-
icity appear in the rigidity literature, and they have either
a measure theoretic, topologic or algebraic-geometric flavor.
Some generic point sets appear to be highly degenerate, and
still turn out to be generic. All existing proofs of Laman’s
Theorem make use at some point of one or another of these
geometric genericity assumptions.

The main result of this paper is the first purely combina-
torial proof of Laman’s theorem, together with some inter-
esting consequences. Genericity is characterized in terms of
a certain determinant being not identically-zero as a formal
polynomial. We relate its monomial expansion to certain
colorings and orientations of the graph and show that these
terms cannot all cancel exactly when the underlying graph
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is Laman. As a surprising consequence, genericity emerges
as a purely combinatorial concept.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical Algorithms and Problems]: Geometrical problems and
computations; G.2.2 [Graph Theory]: Trees

General Terms: Theory

Keywords: Computational Geometry; Rigidity; Sparse
Graphs

1. INTRODUCTION
Every computational geometer has encountered assump-

tions of generic, general position or non-degenerate for some
algorithm’s input data. We know that without these as-
sumptions, one often has to plunge into complicated case
analysis, and that in some cases, a comprehensive way of
handling non-generic situations may not exist. Some prob-
lems become computationally hard without the genericity
assumption. To make sure subtle cases don’t pop up to ruin
correctness claims, different authors may use different no-
tions of what generic means, with some of these concepts
appearing to be computationally intractable.

In this paper, we focus on what a generic point set is for a
well-studied problem: two-dimensional point reconstruction
from distances, or planar rigidity.

Our main theoretical result is a new proof of the funda-
mental theorem of planar rigidity which completely demys-
tifies the genericity assumption by turning it into a purely
combinatorial concept. Along the way, we generalize this
fundamental theorem to handle other types of rigidity, and
exhibit some very degenerate, yet still generic situations that
would be very hard to sort out without the tools we develop
in this paper. In particular, we establish the correctness
of a (very simple and elegant) combinatorial algorithm for
a natural generic rigidity-theoretic problem (slider pinning)
that we have recently proposed [20], in a very degenerate
situation (axis-parallel sliders).

The Point Reconstruction Problem: Given a set of
m ≤

`
n
2

´
pairwise distances among a set p = (p1, . . . ,pn) of

n unknown points in Euclidean space Rd, find a possible re-
alization p. This problem arises naturally in many settings,
including molecular structure determination [5] and sensor
networks [30]. Implicit in the statement is the following re-
laxation: which sets of distances allow reconstruction of p
up to a finite set of possibilities, modulo Euclidean isome-
tries? This is the bar-and-joint rigidity problem, formally
defined next.

365



The Rigidity Problem: An abstract bar-and-joint
framework is a pair (G, `), where G = (V, E) is a graph
with n = |V | vertices and m = |E| edges, and ` ∈ Rm is
a vector of non-negative numbers specifying edge lengths.
A realization G(p) (in some dimension d) of the abstract
framework 1 is a mapping of the vertices of G onto a point
set p ∈ (Rd)n achieving the given edge lengths: ||pi−pj || =
`ij , ∀ij ∈ E. Intuitively, a bar-joint framework models a
structure made of fixed-length bars connected by universal
joints, allowing (in principle) full rotation of the bars around
them. A bar-joint framework is rigid if it has only a discrete
set of realizations, up to isometries (complete definitions are
given in Section 2.1 below). It is minimally rigid if it is rigid,
but ceases to be so if some bar is removed.

The purely geometric question of deciding rigidity of a
framework seems to be intractable, even for small, fixed di-
mension d. The best known algorithms rely on exponen-
tial time Gröbner basis techniques, and specific cases are
known to be NP-complete [29]. However, for generic frame-
works in the plane, the landmark Maxwell-Laman theorem
states that rigidity has a combinatorial characterization, for
which several efficient algorithms are known (more about
this later).

Theorem 1.1 (Maxwell-Laman [25, 16]). A generic
bar-joint framework G(p) is minimally rigid in R2 if and
only if G has 2n − 3 edges, and every non-empty subgraph
induced by n′ vertices spans at most 2n′ − 3 edges.

A graph satisfying the counting condition of this theorem
is called a minimally rigid graph or, abstractly (without any
reference to rigidity), a Laman graph.

As an important consequence for Computational Geome-
try (one which is in fact paradigmatic), the Maxwell-Laman
theorem allows generic rigidity questions to be formulated in
terms of combinatorial objects (Laman graphs). But what
does it mean for a framework to be generic?

An analogy. To make our point, we use an analogy with
the best studied problem in Computational Geometry: con-
structing the convex hull of a planar point set. All known
convex hull algorithms work in the purely combinatorial set-
ting of an order type, relying on a simple primitive for decid-
ing if an ordered triplet of points makes a left or right turn.
To avoid cluttering the algorithm with case analyses, one
assumes that the points are in general position: no three are
collinear. We know that most of the point sets are in general
position. We know that if a point set is not in general posi-
tion, then a small perturbation of it must be so; if a point
set is in general position, then so is a small perturbation of
it. We have never seen a paper describing a convex hull al-
gorithm that would assume much stronger general position
assumptions such as, for instance, asking that the points
be algebraically independent: such assumptions would make
the algorithms useless in practice. We also know that such
assumptions are not necessary for this problem.

Generic Rigidity. In contrast, various definitions of gener-
icity that appear in the Rigidity Theory literature are not
as clearly amenable to combinatorial descriptions, and some
are not as geometrically apparent as general position is:

1We abbreviate bar-and-joint to bar-joint and often refer to
(G, `) or G(p) simply as frameworks.

whether a set of points is generic depends on the frame-
work’s underlying graph, and geometrically degenerate sit-
uations such as collinearities or coincident points may be
generic enough for rigidity applications. Some authors [22,
p. 92] define a generic framework as being one where the
points p are algebraically independent. This definition cer-
tainly guarantees the correctness of all the known generic
rigidity theorems, but, as we said, it is totally unsatisfac-
tory from a practical point of view: it would certainly raise
questions about the validity of any fixed-precision arithmetic
implementation. Other frequent definitions used in rigid-
ity theory require that generic properties hold for most of
the point sets (measure-theoretical) [37, p. 1331] or focus
on properties which, if they hold for a point set p (called
generic for the property), then they hold for any point in
some open neighborhood (topological) [10].

What the correct concept of genericity should be, seems
to depend on the problem, and seems to often have a non-
computational character, thus affecting clearness and sim-
plicity in proofs and algorithms as well.

Main Contribution and Novelty: a preview of Com-
binatorial Genericity. The main contribution of this pa-
per is to clarify, and turn into an entirely combinatorial ob-
ject, the genericity concept for planar rigidity. Along the
way, we give a new proof of Laman’s Theorem in the more
general setting of pinning rigidity. A disclaimer, though: we
do not propose an efficient algorithm for deciding rigidity
in non-generic situations; this seems to be a much harder
problem.

Here is a preview of our approach. We start with the
precise mathematical formulation of the minimum rigidity
problem, in terms of the rank of the so-called rigidity matrix.
We treat the point coordinates as unknowns, and formulate
the rank in terms of a certain polynomial (arising from a
formal determinant) not being identically zero. We remark
that we use in fact the appropriate concept from algebraic
geometry, where a property is called generic if it holds on the
complement of an algebraic variety (zero-set of an algebraic
system). In this case, the generic point sets would be those
for which this determinant would not vanish. This is of
course possible if and only if it is not identically zero, which
implies that the set of non-generic points has measure zero.

The main idea is to associate a set of combinatorial ob-
jects to the formal determinant. Monomials in the Laplace
expansion of the determinant give rise to colorings and ori-
entations of the underlying graph of the framework. The
colors arise from the two types of coordinates of the un-
known points (x or y) and the orientations from the choice
of xi or xj in the expansion of a product of terms of the
form (xi − xj). Monomials may appear multiple times and
thus may cancel. To prove that a certain determinant is not
identically zero exactly when the graph is Laman, it suffices
to find a monomial which is not canceled; for instance, one
which occurs only once. We reduce this problem to finding
colorings and orientations of the underlying Laman graph,
which satisfy specific, unambiguous degree sequences, which
capture monomial power vectors.

Related work. Our techniques should be understood in
the context of a wide range of previous work. Here are the
most relevant references.

Proofs of Laman’s theorem and other genericity condi-
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tions. The observation that the (2n−3)-counts are necessary
for minimal rigidity appears in Maxwell’s landmark papers
of 1864 [25]. Their sufficiency was proven over 100 years later
by Laman [16], who employs what are now called Henneberg
constructions [14] on minimally rigid graphs. Whiteley [36]
simplified this argument with a very elegant, generic, yet
geometrically degenerate, choice of vertex positions. Lovász
and Yemini [22] give a different proof, assuming that the
coordinates of p do not satisfy any polynomial relation with
integer coordinates (i.e., they are algebraically independent
over Q). Whiteley’s proof in [35] implicitly makes use of
the same condition. Tay [33] gave a proof based on Crapo’s
[4] so-called 3T2 decompositons of Laman graphs. His ap-
proach is to start with a framework with many zero-length
edges and then perturb the endpoints to produce the final
realization, a generic point set in non-general position.

Another concept of genericity that appears in the rigidity
literature [10] is that there is an open neighborhood N of p
so that q ∈ N implies that G(q) is a realization of G(p).
This paper’s definition of genericity implies this condition.

Pinning frameworks. The problem of pinning bar-joint
frameworks in the plane (completely immobilizing, removing
all motions, including trivial rigid ones) appeared in Lovász
[24, 23] and, more recently, Fekete [7]. In their model, a
framework is immobilized by fixing both coordinates of a
vertex or neither of them. This model for pinning is dif-
ferent from the one we use in our paper [20] and here, in
which coordinates are fixed separately. Though the prob-
lems are related, they induce different underlying combina-
torial structures, and algorithmic solutions.

Combinatorial related work. Laman graphs, and their gen-
eralizations to sparse graphs have been very well-studied
combinatorially. Our papers [32, 13, 17] provide an intro-
duction to the combinatorial study of sparsity, and the refer-
ences given there serve as a guide to the large combinatorial
literature that we build upon [36, 28, 35, 26, 34, 12]. A
specialization of Crapo’s [4] 3T2 decomposition of Laman
graphs appears as induced-cut 2-forest later in this paper.

Algorithmic rigidity. Although the Laman counts seem to
require exponential time to check, all the questions about
them, and thus about the generic rigidity of a graph are al-
gorithmically tractable. For the Decision question, which
asks whether the input is a Laman graph, the best known al-
gorithm, which runs in time O(n

√
n log n) is due to Gabow

and Westermann [8]. The other major algorithmic ques-
tions of interest involve extracting a maximum-size Laman
subgraph for the input, or finding the inclusion-wise maxi-
mal rigid subgraphs of the input. All the known algorithms
for these questions require O(n2) time, even for inputs with
O(n) edges. See [17] for a more complete discussion of algo-
rithmic rigidity problems and references. The most practi-
cal family of algorithms for (various problems about) Laman
graphs are based on the elegant pebble games of Hendrick-
son and Jacobs [15], which we have generalized and adapted
to other rigidity and combinatorial problems in [17, 32, 19].
We make use of these generalizations here and in [20].

From algebra to combinatorics. Combinatorial objects ap-
pear naturally in connection with other algebraic-geometric
problems. Examples include perfect matchings, arising from
the Pfaffian [21, p. 318], and the combinatorics of New-
ton polytopes [9]. Here, we will interpret determinants of
pinned-rigidity matrices via graph colorings and orienta-
tions.

Overview of the paper. This extended abstract presents
the main result, and is largely self-contained in its presen-
tation of rigidity, infinitesimal rigidity, and combinatorial
rigidity (but see also [31] for further technical details). We
give the necessary background in rigidity and the related
theory of sparse graphs in Section 2. Section 3 develops
the combinatorial results on unambiguous degree sequences
associated with certain colorings of Laman graphs, and con-
nects them to the more general concept of (combinatorial)
pinned rigidity. Finally, in Section 4, we develop the (ge-
ometric) rigidity theory for pinned Laman graphs and give
the new proof of the Maxwell-Laman theorem, by relating
the unambiguous degree sequences to the monomial expan-
sion of a not-identically-zero determinant.

2. PRELIMINARIES
We refer the reader to [11, 37] for an introduction to rigid-

ity theory. For a self-contained presentation, we briefly in-
troduce now the most relevant results.

2.1 Rigidity background
Planar bar-and-joint rigidity relies on three fundamental

concepts, built upon one another: continuous, infinitesi-
mal and combinatorial rigidity. We will follow the same
paradigm in Section 4, for our new model of pinned rigidity.

Notation. We will identify
`
R2
´n

with R2n and consider a

point set p ∈
`
R2
´n

as either a vector of n points, with pi =

(ai, bi), or as a flattened vector (a1, b1, . . . , an, bn) ∈ R2n.

Frameworks and continuous rigidity. We are interested
in analyzing the rigidity properties of a particular framework
G(p). Its configuration space C(G(p)) (shortly C) is the
set of all other r ealizations of the edge lengths of G(p):
C = {q ∈ R2n : G(q) realizes G(p)}.

Applying a Euclidean isometry to p results in a new real-
ization of G(p). To factor out these equivalent realizations,
we take the quotient of C by the group Γ of Euclidean isome-
tries. We say that a framework G(p) is rigid if p is isolated
in the quotient topology of C/Γ.

Infinitesimal rigidity. Rigidity of G(p) is a difficult prop-
erty to establish. Instead, one uses the linearization of the
problem. Taking the differential at p gives rise to the rigid-
ity matrix: an m× 2n matrix with its rows indexed by the
edges of G and two columns for each vertex, one for each
coordinate. We order the columns so that they form two
blocks: the first n correspond to x-coordinates and the sec-
ond n correspond to y-coordinates. The row for edge ij has
ai − aj in the column for vertex i’s x-coordinate and aj − ai

in the column for vertex j’s x-coordinate; the y-coordinates
similarly contain bi− bj and bj − bi; and all the other entries
are zero. Figure 1 (a) shows the pattern.

A framework is infinitesimally rigid if its rigidity ma-
trix M(G(p)) has corank 3. It is well known [2] that if G(p)
is infinitesimally rigid, then it is rigid.

Generic combinatorial rigidity. A framework G(p) is
generic if the rank of the rigidity matrix M(G(p)) is max-
imum over all choices of p. Combinatorial rigidity is con-
cerned with finding good characterizations of the graphs of
generically rigid frameworks. In dimension d ≥ 3, no combi-
natorial characterizations are known, but dimension two is
fully understood due to Maxwell-Laman’s Theorem.
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ij

vi vj

X Y
vi vj

0 0  ai - aj    0    aj - ai     0 ⋅⋅⋅ 0 ⋅⋅⋅ 0     bi - bj    0    bj - bi    0 ⋅⋅⋅ 0

(a)

ij

vi vj

X Y
vi vj

0 0  ai - aj    0    aj - ai     0 ⋅⋅⋅ 0 ⋅⋅⋅ 0     bi - bj    0    bj - bi    0 ⋅⋅⋅ 0

i1 0 0     1                         0 ⋅⋅⋅ 0 ⋅⋅⋅ 0        0           0 ⋅⋅⋅ 0 ⋅⋅⋅ 0

i2 0 0     0                          0 ⋅⋅⋅ 0 ⋅⋅⋅ 0       1           0 ⋅⋅⋅ 0 ⋅⋅⋅ 0

(b)

Figure 1: The pattern of the rigidity matrix: (a) the matrix M(G); (b) the pinned rigidity matrix M?(G); the
two rows i1 and i2 correspond to fixing both coordinates of the vertex i.

2.2 Combinatorial rigidity and sparse graphs
We summarize now the relevant combinatorial properties

of Laman graphs.

Sparse graphs. Let G = (V, E) be a graph with n = |V |
vertices and m = |E| edges; in this paper we will not en-
counter multiple edges, but we do allow self-loops (shortly
loops). A graph G is (k, `)-sparse if every non-empty sub-
graph induced by n′ vertices spans m′ ≤ kn − `. If, addi-
tionally, G has kn− ` edges, then G is (k, `)-tight.

In particular, the Laman graphs of the Maxwell-Laman
theorem are (2, 3)-tight. We observe that the sparsity pa-
rameters for Laman graphs imply that they are simple (no
parallel edges), and that they do not contain self-loops. We
will also employ a characterization of Laman graphs in terms
of a special decomposition into forests. A 2-coloring of
the edges of a graph is an induced-cut 2-forest if each
color forms a forest and any induced subgraph contains a
monochromatic cut; graphs admitting such a coloring are
exactly Laman graphs 2.

Proposition 2.1 (Induced-cut 2-forests [32]). Let G
be a graph with n vertices and 2n − 3 edges. Then G is a
Laman graph if and only if it can be colored by an induced-
cut 2-forest.

Proposition 2.1 is related to another characterization of Laman
graphs used in this paper.

Proposition 2.2 (Adding one edge [22, 28]). Let G
be a graph with n vertices and 2n − 3 edges. Then G is a
Laman graph if and only if adding any edge to it results in a
graph that decomposes into two edge-disjoint spanning trees.

Haas [12] has generalized his result to all sparse graphs with
k < ` < 2k. A further generalization, needed for mod-
eling the slider-pinning problem described in Section 3, is
in terms of map-graphs. A map-graph is an undirected
graph which admits an orientation with out-degree exactly

2We remind the reader that this concept is a specialization
of the 3T2 characterization of Laman graphs given by Crapo
[4], and it appeared under that name in our paper [32]. We
have changed our terminology to highlight the additional
condition that the three trees in a Laman graph must form
two forests, which Crapo does not require.

one. Equivalently [27] a map-graph has exactly one cycle
per connected component, counting loops as cycles.3 Map-
graphs are known to coincide with (1, 0)-tight graphs, and
graphs which decompose into k edge-disjoint map-graphs
(k-map-graphs) coincide with (k, 0)-tight graphs. In a previ-
ous paper we proved the following characterization of sparse
graphs in terms of map-graphs.

Proposition 2.3 (Adding edges and loops [13]).
Let G be a graph with n vertices and kn− ` edges. Then G
is (k, `)-tight if and only if adding any ` edges (including
loops) to it results in a k-map-graph.

Here the added edges come from K?
n, the complete graph

on n vertices with k loops on every vertex and 2k copies of
each edge. In particular, adding any three loops (not all on
one vertex) to a Laman graph results in a 2-map. Our paper
[32] gives a more algorithmic treatment of this topic.

3. COMBINATORIAL PINNED RIGIDITY
This section describes the combinatorial essence of our

results. As previewed in the Introduction, we aim at study-
ing the maximum rank of a generic rigidity matrix derived
from a Laman graph. A slight generalization will come up
handy: pinned Laman graphs. The monomial expansion of
the formal rigidity matrix of a pinned Laman graph will be
expressed as a sum of terms that are in one-to-one corre-
spondence with the labeled, colored in-degree sequences of
induced-cut 2-forest colorings compatible with the colored
loops, defined in this section.

Pinned Laman graphs and mechanisms. Let G be
a graph with n vertices, 2n − c edges and c loops with
specified colors (blue or red). We say that G is an axis-
parallel slider-pinned Laman mechanism (shortly, a
pinned Laman mechanism) if the edges of G can be colored
as an induced-cut 2-forest so that each monochromatic tree
contains exactly one loop of its color; such a coloring is said
to be valid for G. We observe that this implies that G is a
2-map-graph and that G without the loops is (2, 3)-sparse.
Figure 2 shows an example. We call a pinned Laman mech-
anism with 2n − 3 edges an axis-parallel slider-pinned

3Map-graphs are also known in the matroid literature as
pseudotrees, pseudoforests, functional graphs, and bases of
the bicycle matroid.
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Laman graph (shortly, a pinned Laman graph). Adding
any three loops, not all of the same color, to a Laman graph
results in a pinned Laman graph. As above, the added loops
come from K?

n, with the additional restriction that each ver-
tex has exactly one red loop and one blue one.

(a)

(b)

Figure 2: Pinned Laman graphs: (a) with pre-
colored loops; (b) the same pinned graph with a
compatible induced-cut 2-forest.

Lemma 3.1 (Pinned Laman graphs). Let G be a
graph with 2n − 3 edges. Then G is a Laman graph if and
only if adding any three colored loops to G, not all of the
same color, results in a pinned Laman mechanism.

Proof. If G can be extended by three loops to a pinned
Laman graph, then Proposition 2.1 implies immediately that
G is a Laman graph. For the other direction, we suppose
that G is a Laman graph. Any coloring of G into two forests
is an induced-cut 2-forest, since no subgraph has enough
edges to induce two edge-disjoint spanning trees. Now sup-
pose that there are two red loops on necessarily distinct ver-
tices i and j. Add the edge ij, which may be a copy of an
existing edge, to G. By Proposition 2.2 the resulting graph
decomposes into two edge-disjoint spanning trees. We may
assume that the added edge ij is red. Removing it and keep-
ing the coloring of all the other edges gives the induced-cut
2-forest we need: what is left is a blue spanning tree (and
thus incident with the third, blue loop) and two disjoint red
trees each containing exactly one red loop.

Slider pinning. The terminology of pinned Laman mech-
anisms comes from our previous work on immobilizing bar-
joint frameworks by adding sliders, which force a vertex
to move on a given line [20]. For the specific case of axis-
parallel sliders, this amounts to adding an equation to pin
down one of the coordinates of the vertex. We introduced

pinned Laman mechanisms in [20] as a combinatorial model
for these axis-parallel bar-slider structures and studied (a
generalization of) their combinatorics in [19]. It is impor-
tant to note that Lemma 3.1 does not hold for arbitrary
pinned Laman mechanisms; the allowed locations and colors
for completing a (2, 3)-sparse graph to a pinned mechanism
depend in a strong way on where the edges are. However,
the pinned mechanisms do form the bases of a matroid for
which we have developed the combinatorial and algorithmic
theory [20, 19]. Corollary 4.3 below provides a Laman-type
theorem for bar-slider frameworks. Figure 3 illustrates the
relationship between pinned Laman mechanisms and bar-
slider frameworks.

(a)

(b)

Figure 3: Pinned Laman mechanisms and slider
pinnning: (a) the combinatorial object; (b) the as-
sociated axis-parallel bar-slider framework.

Colored in-degree sequences of pinned Laman mech-
anisms. Let G be a pinned Laman mechanism with n ver-
tices and fix an induced-cut 2-forest coloring of the edges
of G that certifies to this (i.e., it is compatible with the col-
ors of the loops). We call such colorings of the edges valid.
For example, the coloring of the edges in Figure 2(b) is a
valid induced-cut 2-forest coloring for the pinned Laman
mechanism in Figure 2(a). Note that not every induced-
cut 2-forest coloring of the edges will be valid for a specific
pinned Laman mechanism, as is the case in Fig. 4(b).

Given a pinned Laman mechanism and a valid coloring of
its edges, fix an orientation of the edges of G; we use the
convention that an oriented loop points both into and out
of the vertex it is on. This leads to a labeled colored
in-degree sequence (r,b), with r = (r1, · · · , rn), b =
(b1, · · · , bn) and ri, respectively bi, being the number of red
and blue edges pointing into vertex i. In the next section,
these will be given an algebraic interpretation as monomials
in the expansion of a determinant. The oriented induced-cut
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(a)

(b)

Figure 4: Two oriented induced-cut 2-forest color-
ings of pinned K3,3 with the same colored in-degree
sequence: (a) valid and unambiguous; (b) same in-
degree sequence, but invalid, because red is not a
spanning map-graph.

2-forest is said to realize its in-degree sequence; note that
a given degree sequence may have more than one realizer.
Fig. 4 shows some examples.

Our main combinatorial result is the following theorem
for colored in-degree sequences of Laman mechanisms.

Theorem 3.2 (Unambiguous degree sequences).
Let G be a pinned Laman mechanism. Then there exists a
compatible induced-cut 2-forest and an orientation of the
edges of G so that the resulting colored in-degree sequence
allows for an unambiguous reconstruction of the original ori-
entation and induced-cut 2-forest coloring of G.

The difficult part of the proof (which is deferred to the
full paper) is characterizing the space of valid induced-cut
2-forest colorings of a pinned Laman mechanism. The unam-
biguity of a particular degree sequence depends in a strong
way on the assumption that is has only one valid realizer;
invalid realizers of the same sequence may exist, and are
typically easy to find in small examples. In Figure 4(a),
the oriented induced-cut 2-forest realizes an unambiguous
colored in-degree sequence. Although the coloring and ori-
entation in Figure 4(b) is an induced-cut 2-forest, it is not
valid, and thus does not contradict the unambiguity of the
degree sequence from Figure 4(a).

While unambiguous colored in-degree sequences exist for
every pinned Laman mechanism, not every valid induced-
cut 2-forest coloring of a pinned Laman mechanism has an
orientation which gives rise to one. Figure 5 shows an exam-
ple of such a coloring; for it, we have verified by exhaustive
enumeration that every orientation of the valid induced-cut

Figure 5: A valid edge coloring of a pinned Laman
mechanism for which no orientation yields an unam-
biguous in-degree sequence.

2-forest coloring of the mechanism in Figure 5 yields a degree
sequence that can be obtained from a different realizer.

We now have the tools we will need for our combinatorial
proof of Laman’s theorem, which relies on an algebraic inter-
pretation of colored in-degree sequences arising from valid
induced-cut 2-forest coloring of pinned Laman mechanisms.

4. MAIN RESULT: LAMAN’S THEOREM
VIA PINNED RIGIDITY

We are ready for our main result: a purely combinatorial
approach to generic bar-joint rigidity in the plane. More pre-
cisely, we develop, formally, a rigidity theory for structures
made from bars, joints and axis-parallel slider-pins (which
also serves as the formal setting, not developed anywhere so
far, for the more general slider pinning model underlying our
algorithms from [20]). The structure of this section echoes
our presentation of (unpinned) bar-joint rigidity in Section
2.1, in its development of the three concepts of continuous,
infinitesimal and combinatorial rigidity.

Pinned rigidity. Let G(p) be a framework in the plane.
We pin down an edge ij by fixing the coordinates of its
endpoints. Let G?

ij be the pinned Laman graph obtained
from G by adding three loops (not all of the same color)
on i, j. Define the ij-pinned configuration space of a
pinned framework G?

ij(p) as

σij (C) =

{q ∈ R2n : qi = pi, qj = pj , and G(q) realizes G(p)}

Note that one of the four equations added to pin i and j is
made redundant by the equation fixing the distance between
i and j. In what follows, we assume that it is omitted.

A pinned framework is pinned rigid when p is an iso-
lated point of σe (C) and flexible otherwise. We remark that
pinned rigidity, unlike rigidity, is defined in terms of an alge-
braic condition. However, it has an apparent dependency on
the choice of edge to pin. We can remove this in the simple
case where only the endpoints of an edge are pinned. The
next Lemma justifies studying Laman rigidity properties via
pinned frameworks and dropping the subscript ij for pinned
frameworks.

Lemma 4.1 (Pinned rigidity and rigidity). A frame-
work G(p) is rigid if and only G?

ij(p) is pinned rigid for any
choice of edge ij to pin.
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(a)

(b)

Figure 6: Two embeddings of the same axis-parallel
bar-slider framework: (a) generic; (b) non-generic.
In (b) one triangle is reflected along the diagonal
edge, resulting in coincident vertices and overlap-
ping edges.

Proof. (sketch) The proof strategy is to show that the
quotient space C/Γ (of the configuration space by the group
of isometries) is homeomorphic to σij (C).

Extension to slider-pinning. Pointing to some more sub-
tle aspects, not fully addressed in this extended abstract, we
note that we can describe the pinned configuration space for
any graph with edges and colored loops that are not neces-
sarily on the endpoints of an edge in a similar manner. This
corresponds to the continuous theory for slider-pinning. But
then, generic point sets for these more general slider-pinned
frameworks are only a subset of those for unpinned frame-
works. For example, both of the embeddings in Figure 6 are
generic for the underlying bar-joint framework, but Figure 6
(b) is not pinned (it can rotate around the bottom left ver-
tices, which are coincident). This situation does not arise
when we pin the endpoints of an edge.

We next develop the infinitesimal theory, which is the
same in both cases.

Pinned infinitesimal rigidity. Let G?(p) be a pinned
framework. The pinned rigidity matrix M?(G(p)) is an
(m+3)×2n matrix that has one row for each edge ij ∈ E and
three additional rows corresponding to the pinned vertices i
and j. (We add only three additional rows, since we can just
drop one of the equations pinning the coordinates of i and
j.) The rows corresponding to edges have the same form as
those of the rigidity matrix. The row corresponding to pin-
ning the x-coordinate of vertex i has a 1 in the x-coordinate
column associated with vertex i and zeros elsewere. Rows
for pinning the y-coordinates of vertices i and j are defined

similarly. Figure 1 (b) shows the pattern of the pinned rigid-
ity matrix. Like the rigidity matrix, M?(G(p)) arises from
the differential of σ (C) at p.

A pinned framework is infinitesimally rigid if the rank
of M?(G(p)) is 2n and flexible otherwise. With the observa-
tion above we have the following lemma relating rigidity and
pinned rigidity (we skip the proof in the extended abstract,
but see [31]).

Lemma 4.2 (Infinitesimal rigidity and rigidity).
Let G?(p) be a pinned Laman graph. If G?(p) is infinites-
imally pinned rigid, then it is pinned rigid. Moreover, the
underlying unpinned framework G(p) is rigid.

Generic combinatorial pinned rigidity. As in the un-
pinned case, a pinned framework G?(p) is generic when the
rank of M?(G(p)) is maximum over all choices of p ∈ R2n.

Equivalently, we can consider the generic pinned rigid-
ity matrix M?(G). This has the same form as M?(G(p)),
but has indeterminate entries of the form ai−aj and bi− bj

instead of concrete numbers. The rank of the generic matrix
M?(G) is then given by the size of a maximum minor which
is not zero as a formal polynomial.

We observe that the generic matrix M?(G) depends only
on the graph G and the choice of edge to pin. Thus we will
use the pinned Laman mechanisms of the previous section as
the combinatorial model of pinned frameworks. Recall that
a pinned Laman graph has two red loops and one blue one.
We interpret the color of the loops as indicating which coor-
dinate of that vertex to pin, putting the loops in correspon-
dence with the rows of the pinned rigidity matrix associated
with pinning.

Comparison to other genericity concepts. At this point,
for emphasis, we remind the reader of the stronger concept
of genericity that appears in the rigidity literature (to con-
trast it with ours): the requirement that the coordinates of
the vertices be algebraically independent over Q. Frame-
works on a variety of degenerate point sets, including those
having small integer coordinates, would never be generic in
this model, making the theory unsuitable for algorithmic
purposes.

Proof of Laman’s theorem. We now have all the ingre-
dients for a combinatorial proof of Laman’s theorem. Here
we concentrate on the difficult (“Laman”) direction: we will
prove that every Laman graph can be realized as a generic,
minimally rigid framework. In what follows, we will use the
notation A[I, J ] for the submatrix of an m × n matrix A
induced by the set of rows I ⊂ [m] and columns J ⊂ [n].

Proof. Let G be a Laman graph. By Lemma 3.1, G can
be extended to a pinned Laman graph G? by adding three
loops to the endpoints of any edge. We now consider the
generic pinned rigidity matrix M? of G?. This is a 2n× 2n
matrix. We will show that its determinant is non-zero as a
formal polynomial, implying that a generic framework with
the underlying graph G is minimally rigid by Lemma 4.2.

Let X = [n], Y = [2n] − [n], and since M? is square,
identify its rows [m] with [2n]. Using the generalized Laplace
expansion (see [1, p. 76]) for the determinant around X we
obtain det (M?) as plus or minusX

B⊂[2n],|B|=n

± det (M?[B, X]) det (M?[R, Y ])
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0BBBBBBBBBBBBBBBBB@

a1 − a2 a2 − a1 0 0 0 0 b1 − b2 b2 − b1 0 0 0 0
a1 − a4 0 0 a4 − a1 0 0 b1 − b4 0 0 b4 − b1 0 0
a1 − a6 0 0 0 0 a6 − a1 b1 − b6 0 0 0 0 b6 − b1

0 a2 − a3 a3 − a2 0 0 0 0 b2 − b3 b3 − b2 0 0 0
0 a2 − a5 0 0 a5 − a2 0 0 b2 − b5 0 0 b5 − b2 0
0 0 a3 − a4 a4 − a3 0 0 0 0 b3 − b4 b4 − b3 0 0
0 0 a3 − a5 0 a5 − a3 0 0 0 b3 − b5 0 b5 − b3 0
0 0 0 a4 − a6 0 a6 − a4 0 0 0 b4 − b6 0 b6 − b4

0 0 0 0 a5 − a6 a6 − a5 0 0 0 0 b5 − b6 b6 − b5

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

1CCCCCCCCCCCCCCCCCA
Figure 7: The pinned rigidity matrix of the pinned Laman graph in Figure 8(a).

where the sum is taken over sets of blue edges B and red
edges R = [2n]−B.

We now interpret each term in the sum combinatorially.
If the set of edges corresponding to B does not correspond
to a map-graph where the blue loop forms the only cycle,
then det (M?[B, X]) is zero since any cycle of edges leads
to a dependency and any row corresponding to a red loop
induces a row of all zeros. A similar argument applies to
det (M?[R, Y ]). It follows that combinatorially, the non-
zero terms in the expansion correspond to the induced-cut
2-forests of G that are valid with respect to the added loops.
Each of these non-zero terms is of the form

det (M?[B, X]) det (M?[R, Y ]) =

±

 Y
ij∈B

(ai − aj)

! Y
ij∈R

(bi − bj)

!
where the edge ij is identified with its corresponding row in
M?. To complete the proof, we show that they do not cancel
out. The critical observation is that each monomial obtained
by multiplying out this product corresponds to picking an
orientation of a valid induced-cut 2-forest coloring of the
edges and using the blue in-degree as the power of ai and
the red in-degree as the power of bi. Theorem 3.2 implies
that there is a monomial which cannot be canceled symbol-
ically.

Example: To illustrate the correspondence between ori-
ented induced-cut 2-forest colorings and the monomials in
the expansion of the determinant of the pinning matrix, we
consider the pinned Laman mechanism shown in Figure 8(a).
Its pinned rigidity matrix is 12× 12 matrix in Figure 7.

Taking the Laplace expansion as in our proof of Laman’s
theorem, we find the non-zero term

(a1 − a2) (a2 − a3) (a4 − a1) (a5 − a3) (a6 − a1) ·
(b3 − b4) (b5 − b2) (b4 − b6) (b6 − b5)

which corresponds to the valid coloring in Figure 8(b). The
monomial a2

1a
2
3a4b4b

2
5b6 appears exactly once in the expan-

sion of the determinant, and it corresponds to the unam-
biguous orientation of Figure 8(b) shown in Figure 8(c);
similarly the monomial a3

1a
2
3b2b

2
4b5 corresponds to the ori-

entation shown in Figure 8(d).

Remark: The rigidity matrix of a Laman graph is not
square, and thus it may have many non-singular (2n− 3)×

(2n − 3) minors. In light of Lemma 3.1, we can interpret
all the possible ways of slider-pinning a Laman graph as
picking out a particular minor to test. Since there are only
a finite number of these, we have shown that, for a given
Laman graph G almost all point sets p are generic for every
extension of G to a pinned Laman graph. The same argu-
ment applied to a pinned Laman mechanism establishes a
Laman-type theorem for bar-slider frameworks, completing
the proof of correctness of our slider pinning algorithms from
[20].

Corollary 4.3 (Generic bar-slider rigidity). Let
G be a graph with n vertices, 2n − c edges, and c colored
loops. G is realizable as a generic slider-pinned axis-parallel
bar-slider framework if and only if G is a pinned Laman
mechanism.

The case for sliders that are generic lines or even differen-
tiable curves follows from this. Here we skip the details.

5. CONCLUSIONS AND OPEN QUESTIONS
We gave a new, completely combinatorial, proof of Laman’s

landmark characterization of planar generic rigidity. Along
the way, we introduced a new approach to rigidity and gener-
icity which reduces the problem to elementary combina-
torics, completely avoiding complicated geometric arguments.

Although Laman graphs have been well-studied over the
past 30 years, our work here introduces oriented colorings
of their induced-cut 2-forests as interesting objects of study.
In particular, given the close connection between induced-
cut 2-forests and the rigidity matrix, enumerating them (and
understanding their cancelation patterns) would be interest-
ing.

Some prominent remaining open questions include: (1)
finding efficient (combinatorial) algorithms for deciding rigid-
ity (as opposed to infinitesimal rigidity, which can be decided
by Gaussian elimination) in non-generic cases (alternatively,
prove NP-hardness); (2) extracting a spanning Laman sub-
graph from a dense graph in time o(n2 + m) [18]. In con-
strast, the problem of deciding whether a graph is Laman is
known to be o(n2). This last problem has recently received
renewed attention [6, 3], and simplifications for a part of
an older O(n

√
n log n) algorithm of [8] have been proposed,

within the same overall asymptotic complexity.

372



1 2

34

5

6

(a)

1 2

34

5

6

(b)

1 2

34

5

6

(c)

1 2

34

5

6

(d)

Figure 8: The correspondence between orientations
of valid colorings and monomials: (a) a pinned
Laman mechanism; (b) a valid coloring; (c) unam-
biguous orientation for a2

1a
2
3a4b4b

2
5b6; (c) unambigu-

ous orientation for a3
1a

2
3b2b

2
4b5.
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