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Hamiltonicity and Colorings of Arrangement Graphs

Stefan Felsner � Ferran Hurtado y Marc Noy y Ileana Streinu z

Abstract

We study connectivity� Hamilton path and Hamil�
ton cycle decomposition� ��edge and ��vertex col�
oring for geometric graphs arising from pseudoline
�a�ne or projective� and pseudocircle �spherical�
arrangements	 While arrangements as geometric
objects are well studied in discrete and computa�
tional geometry� their graph theoretical properties
seem to have received little attention so far	 In this
paper we show that they provide well structured ex�
amples of families of planar and projective�planar
graphs with very interesting properties	 Most
prominently� spherical arrangements admit decom�
positions into two Hamilton cycles and ��edge color�
ings� but other classes have interesting properties as
well
 ��connectivity� ��vertex coloring or Hamilton
paths and cycles	 We show a number of negative
results as well
 there are projective arrangements
which cannot be ��vertex colored	 A number of con�
jectures and open questions accompany our results	

Keywords
 line and pseudoline arrangement�
circle and pseudocircle arrangement� Hamilton
path� Hamilton cycle� Hamilton decomposition� col�
oring� connectivity� planar graph� projective�planar
graph	

� Introduction

We study connectivity� vertex and edge coloring
and Hamiltonicity properties for classes of geomet�
ric graphs arising from �nite collections of pseudo�
lines �resp	 pseudo�circles� in the Euclidean and
Projective planes or on the sphere S	 Our ob�
jects of study� known as arrangement graphs in the
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computational or discrete geometry literature� are
��regular and planar �or projective�planar�	 They
arise in connection with many combinatorial or al�
gorithmic questions involving �nite sets of planar
lines or �via polar�duality� points �see ���	

We proceed to a systematic study of these
properties and report a number of positive and
negative results� as well as a few still open questions
which resisted our methods	 Our most striking
result� described in Section �� is the existence
of two Hamilton path and cycle decompositions
for spherical arrangements� obtained via a short
and easy to describe construction based on wiring
diagrams	

Finding Hamilton paths and cycles in graphs
is an NP�hard problem� even for planar graphs�
and even for arrangement graphs of Jordan curves
�see ����	 It is known that ��connected planar
graphs always have a Hamilton cycle �Tutte ����
see also ��� and ����	 The same property holds
for ��connected projective�planar graphs �Thomas
and Yu ����	 It is therefore interesting to see if
the Hamilton cycles could be explicitly constructed
for particular classes of graphs	 We have such a
simple construction for spherical arrangements and
odd projective arrangements	

Two Hamilton path ��HP� and cycle ��HC� de�
compositions for ��regular graphs have been studied
in the graph theory community	 It is known that
under certain conditions the number of such decom�
positions is even� but as far as we know� there are
no explicit families of graphs where a strictly pos�
itive number of such decompositions can be guar�
anteed	 Our pseudo�circle and separating�circle ar�
rangement graphs provide such examples	

Coloring vertices of planar graphs with few ��
or �� colors is known either via the Four Color
Theorem� or for particular classes of planar graphs
�such as ��colorability of outerplanar graphs�	 ��
edge colorability of ��regular planar graphs arising
from arrangements of planar curves is known only
for special cases	 There are some graph theoretical
conjectures �see Jaeger and Shank���� about ��edge

�
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colorings of certain circle arrangements
 a simple
proof of them would imply a simple proof for the
Four Color Theorem �see also Jensen and Toft ����
page ���	 Although our ��edge coloring result for
spherical arrangement graphs does not seem to lead
in the direction of Jaeger and Shank�s conjecture�
some ideas might prove relevant	

The paper is organized as follows	 In section
� we present the de�nitions� preliminaries and ba�
sic results on connectivity� coloring and Hamiltonic�
ity pertaining to our three geometric models
 pro�
jective� Euclidean and spherical	 In section � we
present the wiring diagram technique for construct�
ing Hamilton path and cycle decompositions for
spherical arrangements and partial results in the
projective setting	 Open problems and conjectures
follow the natural �ow of the paper	

� Arrangement Graphs� Preliminaries

The general objects of our study are arrangement
graphs arising from �nite sets of curves obeying
speci�c intersection rules and which live in the Eu�
clidean or projective plane or on the ��dimensional
sphere	 In this section we introduce three classes of
arrangements and their corresponding arrangement
graphs	 We illustrate the de�nitions by examples
and provide proofs of some elementary structural
properties concerning connectivity and coloring	

��� Projective lines Arrangements of straight
lines are among the most basic objects one may
study in the real projective plane P	 Accord�
ingly they have been and still are studied under
a vast variety of aspects	 See the overviews by
Gr�unbaum ��� and Erd�os and Purdy �� for further
pointers to the �eld	 Many combinatorial proper�
ties of arrangements of lines do not depend on the
fact that the lines are straight� but rather on the
nature of their incidence properties	 This leads to
the natural generalization� �rst done by Levi ����
to arrangements of pseudolines	 See �� for a com�
prehensive survey	

An arrangement of pseudolines in the projective
plane P is a family fp�� � � � � png of simple closed
curves �called pseudolines� such that every two
curves have exactly one point in common� where
they cross	 If no point belongs to more than two of
the �pseudo�lines the arrangement is called simple�
otherwise it is non�simple	

Pseudoline arrangements provide generic mod�
els for the �purely combinatorial� oriented matroids

of rank � �see ���	 In this paper we will work only
with this model	

A few simplifying assumptions
 we will work
only with simple arrangements	 We also simplify
the terminology by dropping the pseudo pre�x from
pseudoline
 all the results of this paper hold in this
more general context� and straightness of lines is no
issue	

With an arrangement we associate the cell com�
plex of vertices� edges and ��dimensional regions
into which the lines of the arrangement decompose
the underlying space P	 Arrangements are isomor�
phic provided their cell complexes are isomorphic	
A projective arrangement graph is the graph of ver�
tices and edges of an arrangement of pseudolines	
See Figure � for an example	

Figure �
 A projective arrangement of pseudolines
and its graph

Let G be the graph of a simple projective
arrangement of n � � lines	 The following list
collects some basic facts about G


� G is ��regular	

� G has
�
n

�

�
vertices and n�n� �� edges	

� G is planar only for n � � but always
projective�planar	

A less trivial result is given in the next proposition	

Proposition ���� The graph of a simple projective
arrangement of n � � lines is ��connected�

Proof� Let G be such a graph and u� v any two
vertices of G	 To show ��connectedness we will
exhibit four internally disjoint paths connecting u
and v in G	 In the arrangement A de�ning G let
p�� p� be the lines through u and let q�� q� be the
lines through v	 If B � fp�� p�� q�� q�g contains only
three lines augment B by an arbitrary fourth line	
Now consider the graph H of the arrangement of
the four lines in B	 Note
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� The vertices of H are also vertices of G and u
and v are vertices of H 	

� To an edge e of H connecting vertices w and w�

there is a path connecting w and w� in G such
that all edges of this path are supported by the
line supporting e	 Call this the canonical path
of e	

� The canonical paths corresponding to the edges
of H are pairwise internally disjoint� i	e	� they
can only meet at endpoints	

From these observations it follows that four
disjoint paths between u and v in H can be lifted
to disjoint paths in G by replacing edges by their
canonical paths	 Fortunately there is only one
projective arrangement of four lines and hence
only one projective arrangement graph H with six
vertices	 This graph is the skeleton graph of the
octahedron	 By the high regularity of this graph
there are only two cases to consider� see Figure �	

Figure �
 Four path between two vertices of H 

adjacent vertices� non�adjacent vertices	

Particularly nice pictures of arrangements of
pseudolines and of their graphs are given by the
wiring diagrams introduced in Goodman �� �see
also ��� � and Figure ��	 In this representation
the n curves are restricted to n wires with di�erent
y�coordinates� except for some local switches where
adjacent lines cross	 These switches are the ver�
tices of the graph	 The half�edges extending to the
left and right of the picture have to be identi�ed in
reverse order� as the numbers indicate in Figure �	
Sometimes a further simpli�cation is made in draw�
ings of wiring diagrams and the switches are only
indicated by vertical segments� as in Figure �	

The cyclic arrangement of n lines is the arrange�
ment where line i has the crossings with the other
lines in the order �� �� � � � � i � �� i � �� � � � � n	 The
vee�shape wiring diagram of the cyclic arrangement

1

2
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4
5

1

2
3
4
5

Figure �
 Wiring diagram of an arrangement of �
pseudolines	

is the diagram where the crossings form a triangle
of bricks �see Figure ��	
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Figure �
 Wiring diagram of the cyclic arrangement
of � lines	

We close this introductory section on projective
arrangement graphs with some remarks on color�
ings	

By Vizing�s theorem the edge chromatic num�
ber of a projective arrangement graph is either �
or �	 If it is � every color class has to consist of
n�n � ���� edges	 This is only possible if n � �� �
�mod ��	

Conjecture ���� The necessary condition n �
�� � �mod �� is su�cient for the four edge col�
orability of projective arrangement graphs�

With respect to the chromatic number we ob�
serve the following


� ��G� � � for every projective arrangement
graph G	 This is because G always contains
a triangle �see e	g	 ���	

� The graph of the cyclic arrangement of � lines
has � � �	 We also have found an arrangement
of � lines with � � �	

� The graph of the cyclic arrangement has � � �
for every n � �	 To see this for n � � �mod ��
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color all vertices �switches� in each column of
the vee�shape wiring diagram with the same
color� start with � and repeat using ����� in
cyclic order	

For n � � �mod �� do as in the previ�
ous case but recolor the right leg of the
vee�shape as �� ��� ��� � � � ��� �	 If
n � � �mod �� color columns in order
��� ��� � � ���� ����� ��� � � ���� ��	 Finally�
if n � � �mod �� color columns in order
��� � � ���� ���� ��� � � ���� ������� and recolor
the right leg of the vee as �� ��� � � ���� ��	 �In
the last two cases the digit in boldface corre�
sponds to the apex of the vee	�

An upper bound of � for the chromatic number
of every arrangement graph is straightforward be�
cause of the degree
 just use Brooks� theorem �see
���	 Results about Euclidean arrangement graphs
will allow us to �nd a ��coloring very e�ciently	

Theorem ���� The chromatic number of projective
arrangement graphs is at most �� A ��coloring
can be e�ciently found by a simple linear �in the
number of vertices� time algorithm�

��� Euclidean lines Given an arrangement
fp�� p�� � � � � png of n�� lines in the projective plane
we may specify a line p� as the �line at in�nity�	
This induces the Euclidean arrangement of the n
lines fp�� � � � � png in E � P n p�	

The graph of an Euclidean arrangement is the
graph of the bounded edges of the arrangement	 A
nice thing about Euclidean arrangement graphs is
that they come with a natural planar embedding	
The parameters of the graph G of a simple Eu�
clidean arrangement of n � � lines are as follows


� G has minimum degree � and maximum degree
�	

� G has
�
n

�

�
vertices	

� G has n�n� �� edges	

� G is ��connected	

As in the case of projective arrangement graphs
the wiring diagram is a useful form of representing
Euclidean arrangement graphs	 To illustrate the
power of this tool we give two examples concerning
colorings	

Proposition ���� The edge�chromatic number of
an Euclidean arrangement graph is ��

Proof� Consider a wiring diagramW of the arrange�
ment de�ning G	 Note that an edge e of G is as�
signed to a single wire� let w�e� be the number of
this wire counted from top to bottom	 Color the
edges on each odd numbered wire alternating with
colors � and � and the edges on even numbered wires
alternating with colors � and �	 The coloring thus
obtained is obviously a legal edge coloring of G	

Proposition ���� The chromatic number of an
Euclidean arrangement graph G is ��

Proof� Consider a wiring diagramW of the arrange�
ment de�ning G and let the left�to�right orientation
ofW induce an orientation on the edges of G	 Note
the following facts about this oriented graph

��
G 


�
��
G is acyclic	

� The indegree and the outdegree of vertices of
��
G are at most �	

A ��coloring ofG is obtained by coloring the vertices
in the order given by a topological sorting of

��
G 	

When it comes to color v at most two neighbours
�the in�neighbours� of v have been colored	 Hence�
one of the three available colors can legally be
assigned to v	

The two coloring results are exempli�ed in
Figure �	 The vertex coloring was obtained by
coloring from left to right and assigning colors in
order of preference �����	

Figure �
 An Euclidean arrangement graph with
��vertex coloring and ��edge coloring

Proof �Theorem ����� Let fp�� p�� � � � � png be a
projective arrangement and G its graph	 Declare
p� the line at in�nity and consider the Euclidean
arrangement fp�� � � � � png with graph G�	 Note that
G� is an induced subgraph of G	 The vertices
of G which are not in G� form an n�cycle C �
�v�� v�� � � � � vn� �the edges of G supported by p��
and every vertex of C has exactly two neighbours
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in G�	 Fix a coloring of G� with colors f�� �� �g �see
Proposition �	�� and for every vertex vi � C choose
a color ci � f�� �� �g which has not been used for a
neighbour of vi in G�	

If n is even we complete a ��coloring of G by
coloring the vertices of C of even index i with color
ci and those of odd index with a new color �	

If n is odd and it is possible to choose the ci
such that there is an i with ci �� ci��� w	l	o	g	 i � ��
then we complete the ��coloring of G by coloring
v� with c� and the other vertices of odd index with
color � and those of even index i with ci	

In the remaining case the two neighbours of all
vertices of C in G� use the same two colors� say �
and �� so that ci � � for all i	 In this situation we
choose a vertex x in G� which has two neighbours on
C �this is possible since there exist triangles with a
side on p�� see ����	 W	l	o	g	 we may assume that
these are the vertices v� and v�	 Recolor x with
color � and change c� to the old color of x	 This
brings us back to the previous case and completes
the proof	

��� Circles on the sphere Arrangements of
pseudocircles on the sphere S consist of a family
fc�� � � � � cng of simple closed curves �called circles�
such that

� every two circles have exactly two points in
common at which they cross

� for three di�erent indices i� j� k � f�� � � � � ng
circle ck separates the two intersections of ci
and cj 	

The motivating examples for arrangements of cir�
cles are arrangements of great circles on the sphere	
In this case S is a sphere centered at the origin and
the circles are the interections of planes containing
the origin with S	 In Figure � such an arrangement
of four circles on the sphere is shown �thanks to
Cinderella ��� for this picture�	

If we identify points on the frontside of the
sphere with their antipodal counterparts on the
backside we obtain a projective arrangement of n
lines	 If we remove the horizon�circle we obtain two
isomorphic Euclidean arrangements	

Let G be the graph of a simple circle arrange�
ment of n � � circles	 We summarize some elemen�
tary facts about G


� G is ��regular	

� G has n�n� �� vertices and �n�n� �� edges	

Figure �
 An arrangement of four circles on the
sphere

� G is planar	

In Figure � we show planar embeddings of the
unique simple circle arrangement graphs of tree�
four and �ve circles	 In each case one of the circles
is bold�dashed� the other circles can be obtained by
rotations	

Figure �
 Circle arrangement graphs of tree� four
and �ve circles	

The connectivity of circle arrangement graphs is as
high as the degree allows


Proposition ���� The graph of a simple circle
arrangement of n � � circles is ��connected�

Proof� Given the graph G of a simple circle
arrangement and two vertices u� v of G we exhibit
four internally disjoint paths connecting u and v	
Let B � fc�� c�� c�� c�g be the circles de�ning the
two vertices	 We distingusish three cases depending
on the size of B	 If jBj � �� i	e	� if the two vertices
are antipodal the four paths are given by the four
arcs connecting u and v along the two cycles	 If
jBj � � the three cycles induce the �rst graph of
Figure � and the two vertices are adjacent in this
graph	 Since the graph is isomorphic to the graph of
Figure � we can refer to that �gure which shows the
four paths	 In the last case jBj � � the two vertices
are the nonadjacent vertices of a qudrilateral face
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of the induced graph of the four circles �this is the
second graph of Figure ��	 Its symmetry allows us
to assume that the quadrilateral is the central one
of the drawing� in which case the four paths can be
choosen as shown in Figure �	

Figure �
 Four connecting paths for the white
vertices	

Wiring diagrams are again a useful representa�
tion for this class of arrangements	 We now give an
intuitive idea of how the wiring diagram of an ar�
rangement of n great circles can be obtained	 Imag�
ine the sphere to be a globe with the great circles
drawn onto it	 Now observe the shadow of the frame
while the sphere moves on a full rotation around its
axis	 Label the circles such that in the initial po�
sition they occur in the order �� �� � � � � n and start
drawing them on n wires	 When the frame passes a
crossing the two circles involved in it change their
order and in the wiring diagram a switch has to be
drawn	 After a half rotation every two circles have
interchanged their order	 Hence all circles are in
reversed order n� � � � � �� �	 The second half of the
rotation is an upside down copy of the �rst half	
After the full rotation the frame reaches its initial
position	 Figure � shows the wiring diagram of a
circle arrangement with the two halfs emphasized	
To read the graph of a circle arrangement from the
wiring diagram the half�edges extending to the left
and right have to be identi�ed in the same order as
the numbers indicate in Figure �	

1

2

3

4

1

1

2

2 3

3

4

4

Figure �
 Two copies of the wiring diagram of an
Euclidean arrangement glued together� the second
copy taken upside down� give a wiring diagram of a
circle arrangement	

The process described above for the construc�
tion of the wiring diagram is known as sweeping an
arrangement	 With some care in technical details
it can be shown that arrangements of pseudocircles
on the sphere are sweepable and also admit wiring
diagrams which decompose into two halfs� one be�
ing the mirror image of the other �see �� for related
results�	 The diagram shown in Figure � has the
additional property that from left to right the �rst
crossing of every circle ci� i �� �� is the crossing with
circle c�	 Every circle arrangement has a wiring di�
agram with this property� which we call the one�
down property	 To transform an arbitrary diagram
into one with the one�down property� move all the
switches which block the visibility of circle c� from
the left to the right side	

Using a diagram with the one�down property
we will show in Section � that the edge set of a
circle arrangement graph can be decomposed into
two Hamiltonian cycles	 Since each Hamiltonian
cycle has n�n� �� edges� an even number� we may
alternatingly use colors � and � for the edges of one
of the Hamiltonian cycles and colors � and � for the
eges of the other Hamiltonian cycle	 This proves
the following proposition as a corollary	

Proposition ���� Circle arrangement graphs are
four edge colorable�

Concerning vertex colorings� we have a conjec�
ture and an e�cient procedure for ��coloring	 The
existence of such a coloring is implied by Brooks�
theorem� but our procedure is much simpler	

Conjecture ���� Circle arrangement graphs are
��vertex colorable�

We have veri�ed this conjecture for all cyclic ar�
rangements of circles	 These are the arrangements
obtained from Fig	 � by gluing a mirror image of
the corresponding wiring diagram	

Proposition ���� Circle arrangement graphs are
four vertex colorable�

Proof� Let fc�� c�� � � � � cng be a circle arrangement
and G its graph	 Declare c� to be the equator
and consider the Euclidean arrangements on the
two hemispheres of S n c�	 Let G� and G�� be
the graphs of these arrangements	 The vertices
of G which are not in G� or G�� form an �n�cycle
C � �v�� v�� � � � � v�n� �the edges of G supported by
c�� and every vertex of C has exactly one neighbour
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in G� and one in G��	 Fix colorings of G� and G��

with colors f�� �� �g �see Proposition �	�� and for
every vertex vi � C choose a color �i � f�� �� �g
which has not been used for a neighbour of vi in
G� 	G��	

Since n is even we complete a ��coloring of G
by coloring the vertices of even index i on the cycle
C with color �i and those of odd index with a new
color �	

There are several generalizations of circle ar�
rangements	 We mention two of them	

� Separating circle arrangements consist of a
family fc�� � � � � cng of simple closed curves in
the plane or on the sphere �called circles�
such that
 ��� Every two circles cross exactly
twice� and ��� For any two di�erent indices
i� j � f�� � � � � ng circle c� separates the two
intersections of ci and cj 	

� Digon�free circle arrangements consist of a
family fc�� � � � � cng of simple closed curves in
the plane or on the sphere �called circles� such
that
 ��� Every two circles cross exactly twice�
and ��� The arrangement contains no cell with
only two edges and two vertices �digon�	

All the results we have for circle arrangement
graphs still hold for the class of separating circle ar�
rangement graphs	 Digon�free circle arrangements
have been studied by Gr�unbaum ���	 They are
much more general and have less favourable prop�
erties	 E	g	� in Figure �� a digon�free arrange�
ment is shown whose graph is only ��connected	
The completly unrestricted class of ��intersecting
closed curves has the disadvantage that the result�
ing graphs may have double edges	

Figure ��
 A digon�free arrangement with a cutset
of size three	

� Hamilton Paths and Cycles in

Arrangement Graphs

In this section we study Hamiltonicity properties
of spherical and projective arrangements	 The Eu�
clidean case has been settled in �� with a negative
answer �there are non�Hamiltonian Euclidean line
arrangement graphs�	

As shown in the previous section� both the
pseudo�circle and the projective arrangements are
��connected	 A well�known theorem of Tutte ���
on ��connected planar graphs guarantees a Hamil�
ton cycle	 An even stronger result follows from
Thomassen�s ��� strengthening of Tutte�s theorem

every ��connected planar graph is Hamilton con�
nected �there exists a Hamilton path connecting any
two prescribed vertices�	

Theorem ���� Every spherical arrangement
graphs has a Hamilton cycle and is Hamilton
connected�

Thomas and Yu ����s theorem on ��connected
projective � planar graphs implies a similar result
for projective arrangements	

Theorem ���� Every projective arrangement
graph is Hamiltonian�

We now proceed to strengthen these results
with explicit constructions	 For spherical arrange�
ments� we �nd not just one� but two such Hamilton
paths and cycles� which� moreover� yield a decom�
position of the edges of the graph	

��� Pseudo�circle and Separating Circle ar�

rangements

Theorem ���� Every pseudo�circle arrangement
and and separating circle arrangement can be de�
composed into two edge�disjoint Hamilton paths
�plus two extra edges�	 and the decomposition can
be found e�ciently�

Proof� The construction is based on the representa�
tion of these arrangements as wiring diagrams	 As
shown in the previous section� we can assume that
the wiring diagram representation has the one�down
property� as in Fig	�	 The construction of the two
Hamilton paths� red and blue� is described in Fig	��
for � wires� but it can be easily generalized to any
number of wires by repeating the pattern of colors
going up along the switches on line �	 The �gure
needs some explanations� as it looks incomplete
 we
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did not draw all the switches corresponding to the
vertices of the arrangement	 We did this to draw
the attention to the structure of the construction
and avoid cluttering the picture	 A continuously
colored line along a wire of the wiring diagram de�
notes a path in the arrangement graph� whose edges
are colored in that color and which goes along the
edges incident with that wire and touches all ver�
tices connected to them	 Remember that the one�
down property� and the choice of the wiring diagram
drawing� insured that there are no switches left of
the one�down switches	

The pictured illustrates a key element of the
construction
 the one�down property	 the red� resp	
blue Hamilton paths walk along the edges of a
level �wire� �visiting all vertices adjacent to it� then
go down by two levels at the switches �vertices�
corresponding to pseudo�circle � �the one going one�
down�	

The crucial observation is that the red �resp	
blue� path never touches the same vertex twice� and
visits them all� therefore guaranteeing Hamiltonic�
ity	

The correctness of the construction follows from
the following easy to establish properties	

� Each switch� except the one involving pseudo�
circle �� is touched by the red path on an odd�
numbered wire and by a blue path on an even�
numbered wire	

� Each edge �with the two exceptions left uncol�
ored �dashed�� is colored either red �thick� or
blue �thin�	

� All red edges are connected in a path� and so
are the blue edges	

� A path in one color never visits the same vertex
twice� and covers all the switches �vertices�	

Since the spherical and projective graphs are
��regular graphs� removing a Hamilton cycle �guar�
anteed by Theorem �	�� leaves a ��regular graph	 It
is a remarkable feature of the pseudo�circle arrange�
ments that we can in fact partition the edges of the
graph into two Hamilton cycles	

Theorem ���� Every pseudo�circle arrangement
can be decomposed into two edge�disjoint Hamil�
ton cycles	 and the decomposition can be found ef�

ciently�

1
2

3

4

5
6

1
2

3

4

5

6

12

16

Figure ��
 Two Hamilton paths in a pseudo�circle
arrangement	

Proof� The proof is based on the construction
illustrated in Fig	�� for n � �	 It uses not just
the switches of line � but also of line �	 This is to
allow each Hamilton cycle to go up by � levels to
make room for the other Hamilton cycle to switch
levels in between	 One important property to make
the proof work is that on the top wire there are no
switches between the crossings �� and �x �where x
is whatever line happens to cross line � right after
the crossing with ��� and similarly on the bottom
wire� between �y and the second crossing ��	 We
should remark that Figure �� gives only one case of
the gluing pattern between the two Hamilton cyles�
for n � � �mod ��	 There are three more cases
mod �� all of which can be similarly depicted and
which we omit in this abstract	 The correctness of
this constructive pattern follows from the following
properties	

� Each switch is touched by the red path on an
odd�numbered wire and by a blue path on an
even�numbered wire	

� Each edge is colored either red �thick� or blue
�thin�	

� All red edges are connected in a cycle� and so
are the blue edges	

� The path of red �resp	 blue� edges never
visits the same vertex twice� and covers all the
switches	

Since these arguments do not depend on how
the switches are arranged on the wires� our argu�
ment generalizes to a wider class of ��regular pla�
nar graphs	 Each ��regular planar graph can be de�
composed into closed curves crossing properly �not
necessarily simple�	 Some of these graphs can be
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Figure ��
 Two Hamilton cycle decomposition of a
pseudo�circle arrangement	

drawn as wiring diagrams �leveled�
 this is a neces�
sary condition	 To make the previous construction
of �HC decomposition work� they also have to have
two one�down strands of these curves� as in Fig	 ��	

��� Projective arrangements

Theorem ���� Every projective arrangement with
an odd number of pseudo�lines can be decomposed
into two edge�disjoint Hamilton paths �plus two
unused edges�	 and the decomposition can be found
e�ciently�

Proof� The proof is based on a construction for
which one example for n � � is depicted in Fig	��	
The construction uses the switches of line � to
allow each path to go up	 The two dashed edges
are unused� the others partition the graph into
two Hamilton paths	 The correctness follows from
similar properties as described for pseudo�circles	

12
1
2

3

4

5
6

7
8

9 1

2
3
4

5

6

7

8

9

15 1x

Figure ��
 Two Hamilton Path decomposition of an
odd projective arrangement	

The projective case is not completely settled�
as we have not been able to extend this general
type of argument in the case of an even number
of lines	 Neither do we have a counter�example� as
all the examples with small number of projective

pseudo�lines that we worked out turned out to be
decomposable	

Since the projective graphs are also ��regular�
removing a Hamilton cycle leaves a ��regular graph	
We would expect a similar construction as in the
spherical case� but so far the projective case is open

we have neither been able to �nd counterexamples
�for small values of n� as well as for all the cyclic
arrangements� we did �nd �HC decompositions��
neither to prove it is true	

Conjecture ���� All projective arrangements ad�
mit ��Hamilton cycle decompositions�

� Conclusion

��Hamilton path and cycle decompositions show a
high degree of structure in the geometric arrange�
ment graphs	 We have exhibited a general tech�
nique for constructing such decompositions based
on wiring diagrams	 It would be interesting to ex�
tend this study to ��skeletons of arrangements in
higher dimensions� where some of the tools we used
�wiring diagrams� sweeps� are not available	

Several other directions for further research are
open� besides the various conjectures already de�
scribed in the paper	 It would be interesting to
count the number of �HP and �HC decompositions
of spherical arrangements� or to characterize those
graphs for which our technique of �HP and �HC
construction works	 It might be possible to general�
ize these techniques to classes of �k�regular graphs�
including ��skeletons of rank k � � pseudo�sphere
arrangements	 We leave these problems open for
further investigations	

Finally� we�d like to add a few comments on
algorithmic issues	 Arrangement graphs of circles
on the sphere can be recognized e�ciently	 Since
the graphs are ��connected they have unique em�
beddings� from which we de�ne circles by going
straight through each vertex	 The veri�cation of
the incidence properties is straightforward	 It is in�
teresting to note that for projective arrangement
graphs this idea would fail
 there are ��connected
projective planar graphs with many embeddings�
see ���	 Concerning the vertex�coloring of projec�
tive arrangements� an interesting problem is to �nd
a polynomial time algorithm for deciding whether
� is equal to � or �	
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