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On the Folkman–Lawrence Topological Representation Theorem for
Oriented Matr oids of Rank 3

JÜRGEN BOKOWSKI, SUSANNE MOCK AND ILEANA STREINU†

We present a new direct proof of the Folkman–Lawrence topological representation theorem for
oriented matroidsof rank 3.

c© 2001 Academic Press

1. INTRODUCTION

Oriented matroids capture combinatorial properties of finite vector configurations and ori-
ented hyperplane arrangements. However, not all oriented matroids have a vector or hyper-
plane model. It is a remarkable result, due to Folkman and Lawrence [9], that each oriented
matroid hasa topological representation as an oriented pseudosphere arrangement, even a
piecewise linear one, cf. Edmonds and Mandel [7]. Other authors [3, 15] have later simpli-
fied or complemented the original proof, but all use fundamentally the same approach: the
face lattice (tope) formalism for oriented matroids and a shelling order to carry through the
construction.

Finding a reasonably direct proof in rank 3, one that would rely on the structural simplicity
of the planar case, has been posed as an open problem in the research monograph [3, Exer-
cise 6.3].In this article we provide such a proof. Unlike the previous ones, ours is based on
hyperline sequences, an equivalent axiomatization for oriented matroids which is particularly
natural in rank 3. We construct a piecewise linear pseudocircle arrangement on theS2 sphere,
compatible with a given rank 3 oriented matroid induced by hyperline sequences.

Hyperline sequences were first used in 1978 by Bokowski [1] (see [2] for an early reference
and [4] for a more comprehensive exposition). Independently, Goodman and Pollack [12]
introduced therank 3 affine version known asclusters of starsor local sequencesand
Streinu [23] characterized them with a simple set of axioms. Hyperline sequences are a
compact representationfor oriented matroids and thus amenable to computer applications
(see [5]). Their axioms allow for simpler proofs, a fact exploited in [21] for applications to
visibility problemsin computational geometry. Because the key facts about this formalism
are scattered through the literature and have never been completely presented, in the format
needed for our proof, as a unified axiomatic system for oriented matroids, we will devote a
substantial part of this paper to them.

Our proof technique is based on a series of simple reductions and an inductive construc-
tion. We start with the most general setting (degeneracies included). The reductions transform
the sequences from degenerate to uniform, from arbitrarily oriented and arbitrary labeled to
a convenient normal form. The normalized sequences are then used to produce a piecewise
linear affine pseudoline arrangement. To obtain the oriented, degenerate spherical arrange-
ment, the reduction steps are now performed in reverse order: the pseudolines are oriented,
relabeled, projected radially onto the sphere and then the arrangement is perturbed to put back
the original degeneracies.

We use the oriented matroid axioms explicitly in performing the inductive construction, but
in a rather unexpected way: they are essentially needed only for the proof of the base case
(n ≤ 5), on which the inductive step then relies.

†Research partiallysupported by NSF grant CCR-9731804.
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We remark that there exist other constructions for pseudoline arrangements, such as those
producing wiringdiagrams from allowable sequences [12], sweeping [8] or starting from a
matroid andquestioning its orientability [6]. They are all based on the same idea: first finding
a totalordering of the vertices of the arrangement (co-circuits). This is essentially a simplified
version of a shelling order in rank 3. To the best of our knowledge, no other direct inductive
proofs, where pseudolines are added one at a time, have been proposed.

This paper is organized as follows. Sections2 and3 are devoted to the hyperline sequence
formalism. Section4 containsthe main result.

The following polar dual pairs of ordered geometric sets can be represented by a matrix:
vector configurations and arrangements of oriented central planes, arrangements of oriented
great circles and configurations of points on the 2-sphere, arrangements of oriented lines and
configurations of signed points. In Section2 we extract combinatorial properties of these geo-
metrical objectsas the oriented matroid induced by a set of hyperline sequences. In Section3
we generalize this concept in two ways. The first one is topological: we define oriented ma-
troids asa topological invariant of oriented great pseudocircle arrangements. The second is
combinatorial: we define oriented matroids induced by abstract hyperline sequences satisfy-
ing a single axiom, the well-definedness of an alternating and anti-symmetric abstract sign of
determinant function. The two concepts will turn out to be cryptomorphic. In proving this in
Section4 we provide the desired rank 3 version of the Folkman–Lawrence topological repre-
sentation theoremfor oriented matroids. We add a proof in Section5 that oriented matroids
induced byhyperline sequences are in one-to-one correspondence with oriented matroids de-
fined by chirotopes.

Throughout this paper we will work only with rank 3 oriented matroids.

2. HYPERLINE SEQUENCES FROML INEAR CONFIGURATIONS AND ARRANGEMENTS

In this section we define hyperline sequences as combinatorial abstractions arising from
diverse finite collections of geometric objects, such as vector configurations and arrangements
of oriented central planes, arrangements of oriented great circles and configurations of points
on the 2-sphere, arrangements of oriented lines and configurations of signed points.

2.1. Configurations and arrangements.We consider a non-degeneratevector configuration
in R3, i.e., a finite ordered setVn = {v1, . . . , vn} ⊂ R3, n ≥ 3, vi 6= 0, i = 1, . . . ,n, such
that the one-dimensional subspaces generated byvi , i = 1, . . . ,n, are pairwise different and
such that the correspondingn × 3 matrix M with vi as itsi th row vector has rank 3. The
vector configuration will be viewed as a representative of the equivalence class of matrices
cln(M) := {M ′ |M ′ = D M, D = diag(λ1, λ2, . . . , λn), λi > 0, i = 1, . . . ,n}.

We introduce additional configurations and arrangements representing geometrically the
class of matrices cln(M). It is useful to think simultaneously of all of them and to pick the
most convenient model for a particular application.

A vector configuration Vn induces an arrangement of oriented central planes
Hn = {h1, . . . , hn}, via the concept of polar duality. The unoriented plane ofhi is given
as the zero space{x = (x1, x2, x3) ∈ R3

| hi (x) = 0} of a linear homogeneous func-
tion hi (x) = vi1x1 + vi2x2 + vi3x3, vi = (vi1, vi2, vi3) 6= 0. The positive and negative
sides of an oriented central plane are the two induced half-spacesh+i : {x | hi (x) > 0} and
h−i : {x | hi (x) < 0}.

An arrangementof oriented central planesHn induces anarrangement of oriented great
circles Cn = {c1, . . . , cn} on the 2-sphere and vice versa. An oriented central plane cuts the
unit sphereS2 in R3 along a great circle which we consider to be parameterized and oriented
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FIGURE 1. An equivalence class of matrices and geometric representatives.

such that, when looking from the outside, the positive half-space lies to its left when the
parameter increases.

A vector v 6= 0, v ∈ R3 induces a directed linelv : {αv|α ∈ R} through the origin,
which intersects the sphere in two antipodal pointssv (in the direction ofv) andsv (in the
oppositedirection). A vector configurationVn induces aconfiguration of points on the sphere,
Sn = {s1, s2, . . . , sn}, wheresi = svi , i = 1, . . . ,n. Each pointp on the sphere has an
associated antipodal pointp.

Wecarry over the previous polar dual pairs to the affine planeT , viewed as a plane tangent
to the 2-sphere. We assume thatvi , i ∈ {1, . . . ,n} is neither parallel nor orthogonal to the
planeT .

The great circle parallel toT defines two open hemispheres. One of them, called theupper
hemisphere, contains the tangent point ofT . An oriented great circleci induces an oriented
half-circle in this upper hemisphere which projects to an oriented straight linel T (ci ) in the
planeT via radial projection, and vice versa, any oriented straight line inT defines an ori-
ented great circle onS2. An arrangement of oriented great circles induces anarrangement of
oriented lines LTn = {l1, . . . , ln}, wherel i := l T (ci ), in the affine plane.

The same transition from the sphereS2 to the planeT leads from a point configuration on
the sphere to a signed point configuration in the affine plane. We definespT (si ) to be a pair
of a signed index and a pointpi ∈ T obtained via radial projection fromsi , as follows. A
point si on the upper hemisphere maps to the pairspT (si ) = (i, pi ), i ∈ {1, . . . ,n}, and a
point si on the lower hemisphere maps to a pair(i , pi ) and pi := pi ∈ T . We obtain from
Sn = {s1, . . . , sn} a signed point configuration PTn = {sp1, . . . , spn}, with spi := spT (si ),
and vice versa.

We useEn = {1, . . . ,n}, endowed with the natural order, to denote the index set of geo-
metric objects such as vectors, planes, great circles and points on the sphere, lines and points
in the Euclidian plane, or of a finite ordered set of abstract elements. The associatedsigned
index setEn = {1, . . . ,n,1, . . . ,n} makes it possible to denote orientations or signs of these
elements.Thes 7→ s operator is required to be an involution:s= s, ∀s ∈ En.

All orderedsetsVn, Hn,Cn, Sn, LT
n , PT

n above can be viewed as geometric representations
of the same equivalence class of matrices cln(M), see Figure1. We can reorient the elements.
The reorientationclasses are the equivalence classes with respect to reorienting subsets such
as vector configurations or central plane arrangements, great circle arrangements or pairs of
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FIGURE 2. A hyperline sequence overE5.

antipodal points on the 2-sphere, line arrangements or point sets in the plane. These reorienta-
tion classesare obtained when the numbersλi 6= 0 can be negative as well. Thereorientation
of a vectorvi is the vectorvi = −vi and thereorientation of an oriented central planeis
the change of the sign of its normal vector. Thereorientation of an oriented great circleor
of anoriented linemeans replacing it by the same object with the reversed orientation. The
reorientation of a signed point(i, pi ), i ∈ En, is the signed point(i , pi ), pi = pi . Thereori-
entation of an index iis its replacement byi . Therelabelling of an ordered setis given by a
permutation of its elements.

2.2. Hyperline sequences of configurations and arrangements.We now extract combina-
torial information from all the geometric sets defined above. We will workonly with signed
subsetsq ⊂ En which do not simultaneously contain both an elementi andits negationi .
If q ⊂ En, we defineq = {s|s ∈ q}. The unsigned support supp(q) ⊂ En of q ⊂ En is
obtained byignoring all the signs inq. A signed partitionof En is a signed setI = I + ∪ I −

with I +, I − ∈ En, I + ∪ I − = En.

DEFINITION 2.1. A hyperline sequence hsi over En, i ∈ En, with half-period lengthki is a
pair hsi = (i, πi ), whereπi is a double infinite sequenceπi = (qi

j ) j∈Z with qi
j ⊂ En \ {i, i },

qi
j = qi

j+ki
, ∀ j ∈ Z, supp

(⋃
j∈Z qi

j

)
= En \ supp({i }), where the unsigned supports of

qi
1, . . . ,q

i
ki

are mutually disjoint. We considerhsi = (i, πi ) andhsi = (i , πi ) to beequivalent
whenπi is obtained fromπi by reversing the order.

The name hyperline for a subspace of codimension 2 is justified by the concept in higher
dimensions. In the particular case when all theqi

j ’s are one-element subsets, the sequence is
said to be ingeneral position,simple or uniform, and we replace the setsqi

j with their ele-
ments. In this case, any half-period ofπi is a signed permutation ofEn \ supp({i }). In general
we have an additional ordered partition into pairwise disjoint subsets of the signed elements.
An infinite sequenceπi in a hyperline sequencehsi = (i, πi ) can be represented by any
half-period, i.e., by anyki consecutive signed setsqi

t+1, . . . ,q
i
t+ki

, qi
t+ j ⊂ En \ {i, i }, t ∈ Z.

EXAMPLE 2.1. (1,π1)= (1,(. . . , {3},{2, 4},{5},{3},{2,4},{5}, . . .)) is a hyperline
sequence overE5, E5 = {1, . . . ,5}, with half-period lengthk1 = 3, see Figure2.

Weobtain thenormalized representation hsr = (r, πr ) of a hyperline sequencehsi = (i, πi )

by first choosing(r, πr ) := (i, πi ) if i ∈ En or (r, πr ) := (i , reverse(πi )) if i ∈ En, and
afterwards choosing the half-period ofπr starting with the setqr

j ⊂ En containing thesmallest
positive element.
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EXAMPLE 2.2. The normalized representation of the hyperline sequence in the previous
exampleis (1, ({2,4},{3},{5})). From now on, we will use the more convenient notation
(1 : {2,4},{3},{5}).

To asigned point configuration PTn = {(i, pi ) | i ∈ I } (obtained from a vector configuration
as described above) we associate a setH S(PT

n ) = {hs1, . . . , hsn} of n hyperline sequences
hsi = (i, πi ) over En. The sequenceπi , denoted by a half-periodqi

1,q
i
2, . . . ,q

i
ki

, with qi
j ⊂

En \ {i, i }, corresponds to the signed point(i, pi ) ∈ PT
n . It is obtained by rotating an oriented

line in counterclockwise (ccw), or in clockwise (cw), order aroundpi if i ∈ En, or if i ∈ En,
respectively, and looking at the successive positions where it coincides with lines defined by
pairs of points(pi , p j ) with p j 6= pi . WhenPT

n is not in general position, several points may
become simultaneously collinear with the rotating line, and they are recorded as a setqi

k. If the
point p j of the signed point( j, p j ) is encountered by the rotating line in positive direction
from pi , it will be recorded as the indexj , otherwise as the negated indexj . The whole
sequenceis recorded in the order induced by the rotating line, and an arbitrary half-period is
chosen to represent it.

DEFINITION 2.2. The rank 3oriented matroid induced by hyperline sequences associ-
ated to a signed point configuration PT

n = {(i, pi )|i ∈ I }, where I is a signed partition
of En, is H S(PT

n ) = {hsi = (i, πi ) | i ∈ I } as described above. We identifyH S(PT
n )

with {(i , πi ) | i ∈ I }.

Note that if the orientation of the planeT is reversed, all the sequences are reversed. The
identification in the previous definition makes the notion of hyperline sequences independent
of the chosen orientation of the planeT .

REMARK . When we start with a set of vectorsVn and two admissible tangent planesT
and T ′, by radial projection we obtain two sets of signed planar pointsPT

n and PT ′
n . The

reader can verify that our definition ensures that the resulting hyperline sequencesH S(PT
n )

andH S(PT ′
n ) will coincide. This allows for a definition of hyperline sequences associated to

any of the previously considered geometric ordered sets: vectors, oriented central planes, etc.

Consider an arrangementC = {c1, . . . , cn} of n oriented great circles on the sphereS2. To
each circleci associate a hyperline sequence by recording the points of intersection (ordered
according to the orientation of the circleci ) with the remaining oriented circles. An indexj
is recorded as positive (resp. negative) when the circlec j crossesci from left to right (resp.,
right to left).

An arrangement of oriented linesLT
n = {l1, . . . , ln} induces a set ofn hyperline sequences

H S(LT
n ): for each linel i , record the points of intersection with the other lines (ordered ac-

cording to the orientation of the line). Each elementj is signed: positive if linel j crossesl i
from left to right, negative otherwise.

EXAMPLE 2.3. For the arrangement of oriented great circles in Figure3, we have the fol-
lowing induced set of normalized representations of hyperline sequencesH S(C5). We obtain
the same set of normalized representationsH S(M) of hyperline sequences forM ,

H S(C5) = H S(M) =


1 : {2}, {3}, {5}, {4}
2 : {1}, {3,4}, {5}
3 : {1}, {5}, {2,4}
4 : {1}, {2,3}, {5}
5 : {1}, {4}, {2}, {3}

 M =


1 1 1
0 −4 1
0 1 0
0 0 1
1 0 0

 .
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FIGURE 3. ArrangementC5 of oriented great circles on the 2-sphere.

3. HYPERLINE SEQUENCES ANDPSEUDOLINE ARRANGEMENTS

We start by describing a useful representation of great circle and affine line arrangements,
which smooths the transition from lines to pseudolines.

Standard representation for great circle and line arrangements. Choose an oriented great
circleci of the oriented great circle arrangement on the sphereS2. Orient the plane spanned by
ci so that its positive side lies to the left when walking around the circle in the given direction
and looking from the outside. LetA be the oriented plane andA+ and A− its two induced
open half-spaces. Do an orthogonal projection from the closed hemisphereS2

∩(A+∪A) onto
A. The resulting planar picture (an oriented circle with oriented arcs inside) will be called the
standard representationof the oriented great circle arrangementCn with equatorci . From the
standard representation we can always recover the whole oriented great circle arrangement on
the sphere: do the orthogonal projection in reverse onto the closure of the hemisphereS2

∩A+,
to obtain oriented half-circles, then by taking antipodal points, complete them to great circles.

According to Section2 the standard representation of the oriented great circle arrangement
Cn = {c1, . . . , cn} with equatorci can also be viewed as a representation for an oriented
line arrangementLT

n−1 = {l1, . . . , ln} \ {l i } with n− 1 elements. If we forget all orientations
and extendT to its projective plane, the standard representation also corresponds to an ar-
rangement ofn projective lines, thei th element being theline at infinityof T . The standard
representation with antipodal points on the circleci identified defines a cell decomposition
of the projective plane induced by then lines. Note that in the projective setting any pair of
lines cross exactly once. We will use the standard representation in two ways: as the projective
model, for the cell decomposition properties and incidence properties of its lines, and as the
sphere model (as the double covering of the projective plane), for oriented objects.

A pseudolinein the projective plane is the image of a projective line under a homeomorphic
transformation of the projective plane. Apseudoline arrangementA in the projective plane is
a finite ordered set of pseudolines, each pair of which crosses exactly once. We exclude the
case when all pseudolines have one point in common. This concept goes back to Levi [20].
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FIGURE 4. Homeomorphic image of the front half-sphere of Figure2.

Let GT be the group of homeomorphic transformations of the projective plane ofT . For an
arrangementA we have the equivalence class of arrangements cl(A):= {A′|A′ = tA, t ∈
GT
}. We always consider pseudoline arrangementsA as representatives of their equivalence

class cl(A).
We now come back to the sphereS2 as a double covering of the projective plane. As we use

the transition from the standard representation back to the sphere as before, the pseudolines
become centrally symmetric simple closed curves on the sphere which we callpseudocircles.
Any pair of pseudocircles crosses in a pair of antipodal points on the sphere (i.e., exactly once
in the projective sense). But now we can introduce orientations for all elements to obtain an
arrangement of oriented pseudocircles. By abuse of terminology, we will refer to our object
as anarrangement of oriented pseudolineswhen we want to emphasize the incidence proper-
ties inherited from the projective setting and the orientations from the spherical setting. The
standard representation has the advantage of showing both of these properties.

DEFINITION 3.1. Theoriented matroid associated to an arrangement of n oriented pseu-
dolinesis its equivalence class with respect to homeomorphic transformations of the projective
plane.

The oriented pseudoline arrangement is calledsimple,uniformor in general position, if no
more than two pseudolines cross at a point.

EXAMPLE 3.1. The class of uniform oriented pseudoline arrangements with five elements
contains exactly one element, up to reorientation and up to relabeling. Start with line 1 as
the line at infinity. The next three pseudolines form an interior triangle. The insertion of the
last pseudoline at pseudoline 1 is unique up to symmetry. The remaining possibilities all lead
to the same equivalence class, that of the arrangement of five lines extending the sides of a
regular 5-gon.

EXAMPLE 3.2. In Figure4 we have depicted a standard representation of a non-uniform
example,a homeomorphic image of the front half-sphere of Figure3.

The ruleto create a set of hyperline sequencesH S(Ln) from an arrangement of oriented
lines Ln = {l1, . . . , ln} can be carried over in the same way to any arrangementPLn =

{pl1, . . . , pln} of oriented pseudolines. Since there are oriented pseudoline arrangements
for which there is no oriented line arrangement within the class of homeomorphic trans-
formations forn ≥ 9, we obtain in the pseudoline case a strictly more general concept,
|{H S(Ln)|∀Ln}| < |{H S(PLn)|∀PLn}| for n ≥ 9.
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We extend the concept of oriented matroids induced by hyperline sequences in another way.
Hyperline sequencesof configurations and arrangements of the last section store the signs of
determinants of 3× 3 submatrices of the matrixM of a corresponding vector configuration
Vn = {v1, . . . , vn} ⊂ R3, n ≥ 3, vi 6= 0, i = 1, . . . ,n. This is an invariant for all matrices
M ′ ∈ cln(M). Let i, j, k be three distinct signed indices inEn. Let [i, j, k] bethe determinant
of the submatrix ofM with row vectorsvi , v j , vk. If j andk appear within the same setqi

k
of πi , we have sign[i, j, k] = 0. If j andk occur in this order in some half-period ofπi ,
we have sign[i, j, k] = +1, and sign[i, j, k] = −1 otherwise. The sign of the determinant
χ(i jk ) := sign[i, j, k] is independent of the chosen half-periods and compatible by alter-
nationχ(i jk ) = χ( jki ) = χ(ki j ) = −χ(ik j ) = −χ(k j i ) = −χ( j ik ) and anti-symmetry
χ(i jk ) = −χ(i jk).

Given an abstract set of hyperline sequences, let us choose its corresponding normalized
form and defineχ : E

3
n→ {−1,0,+1}, (partially) by:χ(i jk ) := 0, if j andk appear within

the same setqs of πi , for i in En, j, k in En, j 6= k, χ(i jk) := +1, if j andk occur in this
order inπi , andχ(i jk ) := −1, if j andk occur in the reversed order inπi .

Extending this partial definition ofχ by alternation and anti-symmetry, the value ofχ(i jk )
for 0 < i < j < k is obtained either directly, by the above rule applied to each of the three
hyperline sequences, or via alternation and anti-symmetry. When these three values forχ(i jk )
are compatible in all cases, we say thatthe set of hyperline sequences admit an abstract sign
of determinant function.

DEFINITION 3.2. A rank3 orientedmatroid with n elements given by hyperline sequences
is a set of hyperline sequences{(i, πi ) | i ∈ I } over En which admit an abstract sign of deter-
minantfunction. The oriented matroid is uniform when all hyperline sequences are uniform.

THEOREM 3.3. The hyperline sequences H S(PLn) of an oriented pseudoline arrange-
ment PLn admit an abstract sign of determinant function.

PROOF. When we restrict the oriented pseudoline arrangement to three elements, the
corresponding orientedpseudoline arrangement can be represented by three oriented lines.
Hyperline sequences of oriented lines admit an abstract sign of determinant function.2

4. THE TOPOLOGICAL REPRESENTATIONTHEOREM

The following theorem shows that rank 3 oriented matroids given by hyperline sequences
constitute a topological invariant with respect to the group of homeomorphic transformations
of the projective plane. For each rank 3 oriented matroid given by hyperline sequencesH S
we can find an oriented pseudoline arrangementPLn which induces it,H S= H S(PLn).

It will be clear from our construction that the oriented pseudoline arrangement represents a
whole equivalence class with respect to homeomorphic images, each element of which leads
back to the given hyperline sequences.

Similarly, it can be seen easily that mapping the oriented pseudoline arrangement via The-
orem3.3 to its hyperline sequences can be carried over to the whole equivalence class with
respect tohomeomorphic images.

The resulting map followed by our construction of the next theorem leads back to a rep-
resentative of the equivalence class we started with. This can be seen via induction on the
number of elements.

When we start in the following construction with a polygon as a representative for the
projective plane, we see that we can carry on with our construction having convex polygons
as cells all the time when some of which are subdivided by straight line segments.
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THEOREM 4.1 (FOLKMAN –LAWRENCE TOPOLOGICAL REPRESENTATIONTHEOREM).
There is a one-to-one correspondence between rank3 oriented matroids given by hyperline
sequences and the equivalence classes of oriented pseudoline arrangements.

PROOF. We start with a rank 3 oriented matroid withn elements given by hyperline se-
quencesH S in normalized form. We are going to construct an arrangement of oriented pseu-
dolines with line 1 being the line at infinity. We first prove the uniform case by induction,
showing that if an arrangement ofn− 1 oriented pseudolines has been constructed, it is pos-
sible to insert thenth oriented pseudoline in a manner compatible with the given hyperline
sequences.

We start the induction forn ≤ 5. Let H S be a uniform rank 3 oriented matroid with five
elements given by hyperline sequences. How many such different oriented matroids can we
find? After relabeling and reorientation (in order to obtain 1: 2,3,4,5 as the first hyperline
sequence), we can assume that the abstract sign of determinant function yields positive values
for the following 3-tuples 123, 124, 125, 134, 135, 145.

All possible extensions admitting an abstract sign of determinant function turn out to be the
following:

1 : 2, 3, 4, 5
2 : 1, 3, 4, 5
3 : 1, 2, 4, 5
4 : 1, 2, 3, 5
5 : 1, 2, 3, 4




1 : 2, 3, 4, 5
2 : 1, 3, 4, 5
3 : 1, 2, 5, 4
4 : 1, 2, 5, 3
5 : 1, 2, 4, 3




1 : 2, 3, 4, 5
2 : 1, 4, 3, 5
3 : 1, 4, 2, 5
4 : 1, 3, 2, 5
5 : 1, 2, 3, 4




1 : 2, 3, 4, 5
2 : 1, 3, 5, 4
3 : 1, 2, 5, 4
4 : 1, 5, 2, 3
5 : 1, 4, 2, 3


relabeling: (1)(2,5,4,3) (1)(2,3,4,5) (1)(2,4)(3,5)

reorientation 2,3,4 3,4,5 4,5
1 : 2, 3, 4, 5
2 : 1, 5, 4, 3
3 : 1, 5, 4, 2
4 : 1, 5, 3, 2
5 : 1, 4, 3, 2




1 : 2, 3, 4, 5
2 : 1, 5, 4, 3
3 : 1, 4, 5, 2
4 : 1, 3, 5, 2
5 : 1, 3, 4, 2




1 : 2, 3, 4, 5
2 : 1, 5, 3, 4
3 : 1, 5, 2, 4
4 : 1, 5, 2, 3
5 : 1, 4, 3, 2




1 : 2, 3, 4, 5
2 : 1, 4, 5, 3
3 : 1, 4, 5, 2
4 : 1, 3, 2, 5
5 : 1, 3, 2, 4

 .
(1)(2,5,4,3) (1)(2,3,4,5) (1)(2,4)(3,5)

2,3,4,5 5 2 2,3
The last seven cases are equal to the first one when applying first the given relabelings and
afterwards the given reorientations. In particular, we have that each of the last four cases
differs from the corresponding upper one just by a suitable reorientation. This implies that
up to reorientations and up to relabelings, we have just one example which matches the
corresponding oriented pseudoline arrangement, compare Example3.1. The theorem is true
for n ≤ 5. 2

REMARK . It is noteworthy that the axiom concerning the abstract sign of determinant func-
tion isused later only in the case when we come back to this assertion.

We apply induction to obtain an arrangementPLn−1 of n − 1 oriented pseudolines with
pseudoline 1 as the line at infinity, whose set of normalized hyperline sequences is obtained
by removing the elementn from each sequence and deleting thenth sequence. Using the
position of elementn in each of the original hyperline sequences, markn− 1 points, labelled
with unordered pairs of indices(i,n), i = 1, . . . ,n − 1 (denoted for simplicity asni) on
the existing pseudolines 1, . . . ,n − 1 (see Figure5). Thenth hyperline sequence defines an
orderingof these pointsn : 1,k1, k2, . . . , kn−2. Here and in what follows we understandthe
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FIGURE 5. Essential step of the induction.

index j modulo(n − 1) andk0 = 1. To prove the inductive step, it suffices to show that the
following three conditions hold.

(1) We can join any two consecutive pointsnkj andnk j+1, j = 0, . . . ,n− 2 with a pseu-
doline segment such that the open segment does not meet any of the already existing
pseudolines.

(2) The resulting curveK obtained fromall these segments together with the already exist-
ing pseudolines form a pseudoline arrangementPLn, i.e.,K is a simple closed curve
which crosses each pseudolinej, j ≤ n− 1 atnj , and nowhere else.

(3) Thenth pseudoline has a unique orientation.

PROOF OF(1). We show that any two consecutive pointsnkj ,nk j+1, j = 0, . . . ,n − 2
belong to the same cell of the arrangementPLn−1, i.e., they are not separated by any of the
existing pseudolinesi, i 6= 1,k j , k j+1.

Consider two consecutive pointsnkj ,nkj+1 for an index j = 0, . . . ,n − 2 and a pseudo-
line i 6= 1,k j , k j+1. Applying the induction hypothesis to the restriction ofH S to the set of
five, resp. four, elements{1,k j , k j+1, i,n} (extensions up to four and five elements are even
unique) implies a unique corresponding oriented pseudoline arrangementPL5, resp.PL4,

up to a homeomorphic transformation of the projective plane. We have four elements, e.g.,
in the special casej = 0, becausek0 = 1. Thei th pseudoline does not separate the points
nkj ,nkj+1. Therefore any two consecutive pointsnkj ,nkj+1, j = 0, . . . ,n − 2 of the ar-
rangementPLn−1 are not separated by any of the existing pseudolinesi, i 6= 1,k j , k j+1.
This implies that we can connect two consecutive pointsnkj ,nkj+1 by a pseudoline segment
without crossing any of the existing pseudolines.

PROOF OF(2). We consider two consecutive pointsnkj ,nk j+1, j = 0, . . . ,n− 2 and we
pick a pointnpj on the open pseudoline segmentnkj ,nkj+1, as constructed above. We show
that all pointsnki , i ∈ { j +2, . . . ,n−2} are separated from pointnpj by the pseudolinek j+1
and in a similar way that all pointsnki , i ∈ {1, . . . , j − 1} are separated from pointnpj by
pseudolinek j . The argument in both cases is the same, so we prove only the first case (see
Figure5). We restrict the hyperline sequences to the set{1,k j , k j+1, i,n} (the cases1 = k0
andkn−1 = 1 are included) in which we find a unique corresponding pseudoline arrangement
which uses the open pseudoline segment fromnkj to nkj+1. The separation property holds,
and it carries over to the arrangement withn−1 elements. This implies that the closed curveK
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above consisting of all pseudoline segments has no self-intersections, and it crosses all other
n− 1 pseudolinesjust once.

PROOF OF(3). On each oriented pseudolinei ∈ {1, . . . ,n − 1}, we put an arrowAni at
point ni pointing to the right side, or to the left side, of pseudolinei if the sign of element
n in the i th hyperline sequence is positive, or negative, respectively. We show that for any
two consecutive pointsnkj ,nkj+1, j = 0, . . . ,n− 2, the corresponding arrowsAnkj , Ankj+1

are compatible, i.e., the induced orientation of pseudolinen by Ankj coincides with that of
Ankj+1. We restrict the hyperline sequences to the set{1,k j , k j+1,n}. Applying the induc-
tion hypothesis for eachj shows that we have in each case a unique corresponding oriented
pseudoline arrangement with the desired property. This implies a unique orientation of thenth
pseudoline in the globally constructed pseudoline arrangement. This concludes the proof by
induction that a new pseudoline can be inserted in the uniform case. 2

The non-uniform case is also proven inductively, by eliminating a degeneracy at a time until
we obtain the uniform case. Denote byqi (t) the set containing elementt in the i th hyperline
sequence ofH S, andqi (s) < qi (t) says thatqi (s) lies in the chosen half-period left ofqi (t).

We start with a set of hyperline sequencesH S in normalized form and relabel and reori-
ent them so that line 1 is the line at infinity and the first degeneracy contains the elements
2,3, . . . ,k. In thenth hyperline sequence the sign of each elementi ∈ {1, . . . ,k} is positive
and the setsqn(i ), i ∈ {1, . . . ,k} are pairwise different. Relabel the elementsi ∈ {2, . . . ,k}
such thatqn(1) < qn(2) < · · · < qn(k). We construct from the given hyperline sequenceH S
a new oneH S′ with a reduced degeneracy. We change the position of element 2 in the first
hyperline sequence such thatq′1(2) < q′1(k), q′1(2) := {2}, andq′1(k) := {3,4, . . . ,k}. The
remaining changes inH S′ compared withH Sare consequences.

1 : {2 · · · i · · · k} · · · q1(n)
2 : {1,3 · · · k} · · · q2(n) · · ·

.

.

.

i : {1 · · · i − 1, i + 1 · · · k} · · · qi (n) · · ·

.

.

.

k : {1,2,3 · · · k− 1} · · · qk(n) · · ·

.

.

.

n : qn(1) · · · qn(2) · · · qn(k) · · ·


7→



1 : {2},q1(2) \ {2} · · · q1(n)
2 : {1},{k}, {k− 1} · · · {3} · · · q2(n) · · ·

.

.

.

i : qi (1) \ {2},{2} · · · qi (n) · · ·

.

.

.

k : qk(1) \ {2},{2} · · · qk(n) · · ·

.

.

.

n : qn(1) · · · qn(2) · · · qn(k) · · ·


.

After a finite sequence of changesH S1, H S2, . . . , H Si := H S, H Si+1 := H S′, . . . , H Sz

we end up with a uniform oriented matroid with hyperline sequencesH Sz. In the uniform
case we find a corresponding oriented pseudoline arrangement. We go back all the steps from
H Si+1 to H Si , i ∈ {z− 1, . . . ,1}. The corresponding changes of the oriented pseudoline
arrangements are evident (see Figure6). Of course, we have to perform in reverse order all
the previous reorientations and relabelings.

COROLLARY 4.2. There is a one-to-one correspondence between the reorientation classes
of rank 3 oriented matroids given by hyperline sequences and those of oriented pseudoline
arrangements.

4.1. Reorientation class invariant based on hyperline sequences.The unoriented pseudo-
line arrangementA(M) characterizes the reorientation class of an oriented matroidM. We
also provide a corresponding characterization in the hyperline sequence terminology. By iden-
tifying each unsigned hyperline sequence with its reversed one, we see that such an induced
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FIGURE 6. Inductive step for the pseudoline arrangements.

set of unsigned hyperline sequencesI(M) of a rank 3 oriented matroidM is an invariant of
its reorientation class. The unique construction in Theorem4.1 of the unoriented pseudoline
arrangement usesonly the ordering of the unsigned sequences.

COROLLARY 4.3. The reorientation class of a rank3 oriented matroidM is characterized
by both the unoriented pseudoline arrangementA(M) and the invariant of a set of hyperline
sequencesI(M).

For the following invariantI(M) we reconstruct a representative of its reorientation class:

I(M) =



1 : {2,3}, {4,5}, {6,7}
2 : {1,3}, {5,7}, {4,6}
3 : {1,2}, {7}, {5,6}, {4}
4 : {1,5}, {7}, {6,2}, {3}
5 : {1,4}, {3,6}, {2,7}
6 : {1,7}, {3,5}, {2,4}
7 : {1,6}, {4}, {2,5}, {3}





1 : {2,3}, {4,5}, {6,7}
2 : {1,3}, {5,7}, {4,6}
3 : {1,2}, {7}, {5,6}, {4}
− − −−−−−−−−−−−−

4 : {1,5}, {7}, {6,2}, {3}
5 : {1,4}, {3,6}, {2,7}
6 : {1,7}, {3,5}, {2,4}
7 : {1,6}, {4}, {2,5}, {3}


.

We keep the half-periods in the first two hyperlines and we insert the signs (written as over-
bars) from hyperline 1.

The half-periods of hyperlines 3, 4, 5, 6, 7 are not necessarily kept. We consider hyperline 3
later since the set{2,3} in hyperline 1 plays a special role. The signs (written on the right-hand
side) determine whether to keep, or to reverse, the order in hyperlines 4, 5, 6, 7, respectively.
Compare signs in hyperline 2 with those of the actual hyperline.

1 : {2,3}, {4,5}, {6,7}
2 : {1,3}, {5,7}, {4,6}
3 : {1,2}, {7}, {5,6}, {4}
− − −−−−−−−−−−−−−−

4 : {1,5}, {7}, {6,2}, {3}
5 : {1,4}, {3,6}, {2,7}
6 : {1,7}, {3,5}, {2,4}
7 : {1,6}, {4}, {2,5}, {3}



χ(2,4,7)= −1, χ(2,5,6)= +1

χ(2,4,7)= −1, order kept
χ(2,5,6)= −1, reversed order
χ(2,5,6)= −1, reversed order
χ(2,4,7)= −1, order kept.
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We next determine the signs within the first sets in hyperlines 4, 5, 6, 7 from hyperline 2.

1 : {2,3}, {4,5}, {6,7}
2 : {1,3}, {5,7}, {4,6}
3 : {1,2}, {7}, {5,6}, {4}
− − −−−−−−−−−−−−−−

4 : {1,5}, {7}, {6,2}, {3}
5 : {1,4}, {2,7}, {3,6}
6 : {1,7}, {2,4}, {3,5}
7 : {1,6}, {4}, {2,5}, {3}


.

We determine the signs within the first set in hyperline 2 from hyperline 4.χ(3,4,5) = −1
from hyperline 4 implies that the order of the half-period of hyperline 3 is kept. Finally, we
obtain the signs within the first set of hyperline 3 from hyperline 2.

1 : {2,3}, {4,5}, {6,7}
2 : {1,3}, {5,7}, {4,6}
3 : {1,2}, {7}, {5,6}, {4}
4 : {1,5}, {7}, {6,2}, {3}
5 : {1,4}, {2,7}, {3,6}
6 : {1,7}, {2,4}, {3,5}
7 : {1,6}, {4}, {2,5}, {3}


.

5. CHIROTOPES ANDHYPERLINE SEQUENCES

Oriented matroids can be introduced via other axiomatic systems, such as chirotopes. In this
section we show that the sets of hyperline sequences admiting an abstract sign of determinant
function and the chirotopes define the same class of objects, thus establishing the equivalence
(not formally proven elsewhere) between these two systems of axioms.

DEFINITION 5.1. A chirotope of rank 3 withn elements isan alternating and anti-symmetric
mapχ : En

3
→ {−1,0,+1} such that for pairwise different elementsi, j, k, l ,m M :=

{χ(i, j, k) ·χ(i, l ,m),−χ(i, j, l ) ·χ(i, k,m), χ(i, j,m) ·χ(i, k, l )} = {0} or {−1,+1} ⊂ M.
The map−χ for which all signs are negated is identified withχ, and we require that for each
elementi, there is at least one pair( j, k) with χ(i, j, k) 6= 0.

THEOREM 5.2. There is a one-to-one correspondence between rank3 oriented matroids
given by hyperline sequences and those defined by chirotopes.

PROOF. Let the rank 3 oriented matroid withn elements begiven by hyperline sequences.
We will show that the abstract sign of determinant function fulfills the chirotope condition:
∀i, j, k, l ,m, pairwise different,

M := {χ(i, j, k) · χ(i, l ,m),−χ(i, j, l ) · χ(i, k,m), χ(i, j,m) · χ(i, k, l )} = {0}

or {−1,+1} ⊂ M,

which is invariant under permuting the elementsj, k, l ,m and reorienting all its five elements
i, j, k, l ,m. When considering thei th hyperline sequence, we can assume that the elements
j, k, l ,m occur in that order. When the elements belong pairwise to differentqs, this implies
χ(i, j, k) = χ(i, l ,m) = χ(i, j, l ) = χ(i, k,m) = χ(i, j,m) = χ(i, k, l ) = 1.When all the
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elements belong to the sameqs, we haveχ(i, j, k) = χ(i, l ,m) = χ(i, j, l ) = χ(i, k,m) =
χ(i, j,m) = χ(i, k, l ) = 0. We useq(t) for the set containing elementt , andq(s) < q(t)
says thatq(s) lies in the chosen half-period left ofq(t). The remaining cases are nowq( j ) <
q(k) < q(l ) = q(m), q( j ) < q(k) = q(l ) < q(m), q( j ) = q(k) < q(l ) < q(m), q( j ) <
q(k) = q(l ) = q(m), q( j ) = q(k) = q(l ) < q(m), andq( j ) = q(k) < q(l ) = q(m). We
easily see that the chirotope condition holds in all these cases.

To prove the other direction, let the chirotope be given. We have to show that we can con-
struct an oriented matroid induced by a set of hyperline sequences. The abstract sign of de-
terminant function in the sense of Section3 will be the functionχ of thechirotope. During
the construction process, we confirm that all images ofχ are compatible with the hyperline
sequence structure. For the given elementi we have at least one pair(a,b) ∈ En

2
with

χ(i,a,b) = 1. We start to construct a half-period of thei th hyperline by sorting these two
elements in the correct order beginning witha ∈ En followed by b ∈ En. Now we use in-
duction.Using for the next elementk 6∈ q(a) k or k depends onχ(i, k,a). Using for the next
elementk ∈ q(a) k or k depends onχ(i, k,b). The first elementk not belonging toq(a) and
q(b) gets its unique position byχ(i, k,b). For additional insertions we have to show compat-
ibility. Assume thatk − 1 elements have been sorted already in the correct way, forming the
ordered setsq1 < q2 < · · · < qt , t ≥ 3.We consider all signsχ(i, k, x). We insert thekth
element which was not used so far. We observe first thatχ(i, k, x) is the same for allx ∈ qs

for somes. We show this forqs 6= q(a). Otherwiseq(b) can be used instead. Forx1, x2 ∈ qs

we haveχ(i, x1, x2) = 0 andχ(i,a, x1) = χ(i,a, x2) = 1. The chirotope property gives
us eitherχ(i, k, x1) = χ(i, k, x2) = 0, i.e.,k ∈ qs or χ(i, k, x1) = χ(i, k, x2) 6= 0. The
sorting of the elementsx ∈ En in thei th half-period is a sorting of its classesq(x). Assuming
q(a) < q(x) < q(y) andq(a) < q(y) < q(z), a, x, y, z ∈ En, we haveχ(i,a, x) = 1,
χ(i, y, z) = 1, χ(i,a, y) = 1, χ(i,a, z) = 1, χ(i, x, y) = 1. The chirotope property im-
plies q(x) < q(z), i.e., the ordering is always compatible: fork = x we find that there
is a smallest upper bound or no upper bound, fork = z we find that there is a largest
lower bound and thus insertk in the sequence. For alli we can construct the correspond-
ing half-period in accordance with the chirotope function which serves as the abstract sign of
determinant function. 2

6. CONCLUSION

In higher dimensions, the existing proofs of the Folkman–Lawrence representation theorem
can also be greatly simplified using our inductive approach based on hyperline sequences.
But even in the uniform case, the proof has to use topological results that would go beyond
the elementary character of this paper, and the non-uniform case is even more involved. The
hyperline sequences, as a model for oriented matroids, need a slightly lengthier description in
the general non-uniform case. To keep the results in this note as elementary as possible, we
defer the higher dimensional case to another article.
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17. M. Las Vergnas, Matröıdes orientables,C.R.Acad. Sci., Paris, Ser. A,280(1975), 61–64.
18. M. Las Vergnas, Bases in oriented matroids,J. Comb. Theory, Ser. B,25 (1978), 283–289.
19. J. Lawrence, Oriented matroids and multiply ordered sets,Linear Algebr. Appl.,48 (1982), 1–12.
20. F. Levi, Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade,Ber.Verh. S̈achs. Ges.

Wiss. Leipzig, Math. Phys. Kl.,78 (1926), 256–267.
21. J. O’Rourke and I. Streinu, Pseudo-visibility graphs: characterization and recognition,Proc.Symp.

Comp. Geom., Nice, 1997, pp. 119–128.
22. J. Richter-Gebert and G. Ziegler,Oriented Matroids, in [12], 1997, pp. 111–132.
23. I. Streinu, Clusters of stars,Proc.13th ACM Symp. Comput. Geometry, Nice, 1997, pp. 439–441.

Received 31 January 2000 and accepted 1 December 2000
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