€» SMITH COLLEGE

- Smith ScholarWorks
Computer Science: Faculty Publications Computer Science
1-1-2001

On the Folkman-Lawrence Topological Representation Theorem
for Oriented Matroids of Rank 3

Jirgen Bokowski
Technische Universitdt Darmstadt

Susanne Mock
Technische Universitat Darmstadt

lleana Streinu
Smith College, istreinu@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

Cf Part of the Computer Sciences Commons

Recommended Citation

Bokowski, Jirgen; Mock, Susanne; and Streinu, lleana, "On the Folkman-Lawrence Topological
Representation Theorem for Oriented Matroids of Rank 3" (2001). Computer Science: Faculty
Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/258

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu


http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/258?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

-

View metadata, citation and similar papers at core.ac.uk brought to you byj’: CORE

provided by Elsevier - Publisher Connector

Europ. J. Combinatoric§2001)22, 601-615
doi:10.1006/eujc.2000.0482 @
Available online at http://www.idealibrary.com m;;m®

On the Folkman—Lawrence Topological Representation Theorem for
Oriented Matr oids of Rank 3

JURGEN BOKOWSKI, SUSANNE MOCK AND ILEANA Streinut

We present a new direct proof of the Folkman—Lawrence topological representation theorem for
oriented matroidsf rank 3.

(© 2001 Academic Press

1. INTRODUCTION

Oriented matroids capture combinatorial properties of finite vector configurations and ori-
ented hyperplane arrangements. However, not all oriented matroids have a vector or hyper-
plane model. It is a remarkable result, due to Folkman and Lawrence [9], that each oriented
matroid hasa topological representation as an oriented pseudosphere arrangement, even a
piecewise linear one, cf. Edmonds and Mandel [7]. Other auti®)E5] have later simpli-
fied or complemented the original proof, but all use fundamentally the same approach: the
face lattice (tope) formalism for oriented matroids and a shelling order to carry through the
construction.

Finding a reasonably direct proof in rank 3, one that would rely on the structural simplicity
of the planar case, has been posed as an open problem in the research monograph [3, Exer-
cise 6.3].In this article we provide such a proof. Unlike the previous ones, ours is based on
hyperline sequences, an equivalent axiomatization for oriented matroids which is particularly
natural in rank 3. We construct a piecewise linear pseudocircle arrangement$hsibigere,
compatible with a given rank 3 oriented matroid induced by hyperline sequences.

Hyperline sequences were first used in 1978 by Bokowski [1] (see [2] for an early reference
and {] for a more comprehensive exposition). Independently, Goodman and Pollack [12]
introduced therank 3 affine version known aslusters of starsor local sequencesand
Streinu [23] characterized them with a simple set of axioms. Hyperline sequences are a
compact representatidior oriented matroids and thus amenable to computer applications
(see [5]). Their axioms allow for simpler proofs, a fact exploited in [21] for applications to
visibility problemsin computational geometry. Because the key facts about this formalism
are scattered through the literature and have never been completely presented, in the format
needed for our proof, as a unified axiomatic system for oriented matroids, we will devote a
substantial part of this paper to them.

Our proof technique is based on a series of simple reductions and an inductive construc-
tion. We start with the most general setting (degeneracies included). The reductions transform
the sequences from degenerate to uniform, from arbitrarily oriented and arbitrary labeled to
a convenient normal form. The normalized sequences are then used to produce a piecewise
linear affine pseudoline arrangement. To obtain the oriented, degenerate spherical arrange-
ment, the reduction steps are now performed in reverse order: the pseudolines are oriented,
relabeled, projected radially onto the sphere and then the arrangement is perturbed to put back
the original degeneracies.

We use the oriented matroid axioms explicitly in performing the inductive construction, but
in a rather unexpected way: they are essentially needed only for the proof of the base case
(n < 5), on which the inductive step then relies.
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We remark that there exist other constructions for pseudoline arrangements, such as those
producing wiringdiagrams from allowable sequences [12], sweeping [8] or starting from a
matroid andjuestioning its orientability [6]. They are all based on the same idea: first finding
a totalordering of the vertices of the arrangement (co-circuits). This is essentially a simplified
version of a shelling order in rank 3. To the best of our knowledge, no other direct inductive
proofs, where pseudolines are added one at a time, have been proposed.

This paper is organized as follows. Secti@w®nd3 are devoted to the hyperline sequence
formalism. Sectiort containghe main result.

The following polar dual pairs of ordered geometric sets can be represented by a matrix:
vector configurations and arrangements of oriented central planes, arrangements of oriented
great circles and configurations of points on the 2-sphere, arrangements of oriented lines and
configurations of signed points. In Sectidwe extract combinatorial properties of these geo-
metrical objectas the oriented matroid induced by a set of hyperline sequences. In Sgction
we generalize this concept in two ways. The first one is topological: we define oriented ma-
troids asa topological invariant of oriented great pseudocircle arrangements. The second is
combinatorial: we define oriented matroids induced by abstract hyperline sequences satisfy-
ing a single axiom, the well-definedness of an alternating and anti-symmetric abstract sign of
determinant function. The two concepts will turn out to be cryptomorphic. In proving this in
Sectiond we provide the desired rank 3 version of the Folkman—Lawrence topological repre-
sentation theorerfor oriented matroids. We add a proof in Sect®that oriented matroids
induced byhyperline sequences are in one-to-one correspondence with oriented matroids de-
fined by chirotopes.

Throughout this paper we will work only with rank 3 oriented matroids.

2. HYPERLINE SEQUENCES FROMLINEAR CONFIGURATIONS AND ARRANGEMENTS

In this section we define hyperline sequences as combinatorial abstractions arising from
diverse finite collections of geometric objects, such as vector configurations and arrangements
of oriented central planes, arrangements of oriented great circles and configurations of points
on the 2-sphere, arrangements of oriented lines and configurations of signed points.

2.1. Configurations and arrangementsVe consider a non-degeneratxtor configuration

in RS, i.e., a finite ordered s&f, = {v1,...,vn} C R3, n> 3, y #0,i=1,...,n,such

that the one-dimensional subspaces generateg,liy= 1, ..., n, are pairwise different and

such that the correspondimgx 3 matrix M with v; as itsith row vector has rank 3. The
vector configuration will be viewed as a representative of the equivalence class of matrices
ch(M) := {(M'|M’ = DM, D =diag(i, A2, ..., An), A > 0,i =1,...,n}.

We introduce additional configurations and arrangements representing geometrically the
class of matrices g{M). It is useful to think simultaneously of all of them and to pick the
most convenient model for a particular application.

A vector configuration V, induces an arrangement of oriented central planes
Hh, = {hy, ..., hp}, via the concept of polar duality. The unoriented planéofs given
as the zero spacgx = (x1,%2,X3) € R3|hj(x) = 0} of a linear homogeneous func-
tion hj(xX) = wvi; X1 + vi,X2 + vi3X3, vi = (viy, Vi,, Viz) # 0. The positive and negative
sides of an oriented central plane are the two induced half-sﬂrﬁceqy hij (x) > 0} and
hi™ : {X1hi(x) < 0}.

An arrangemenbf oriented central planell,, induces ararrangement of oriented great
circles G, = {c1, ..., Cy} on the 2-sphere and vice versa. An oriented central plane cuts the
unit sphereS? in R3 along a great circle which we consider to be parameterized and oriented
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FIGURE 1. An equivalence class of matrices and geometric representatives.

such that, when looking from the outside, the positive half-space lies to its left when the
parameter increases.

A vectorv # 0,v € R®induces a directed ling, : {av|le € R} through the origin,
which intersects the sphere in two antipodal pomtgin the direction ofv) ands, (in the
oppositedirection). A vector configuratiok, induces aonfiguration of points on the sphere,

S = {s1.%....,5}, wheres = s,,i = 1,...,n. Each pointp on the sphere has an
associated antipodal poipt

We carry over the previous polar dual pairs to the affine plapeiewed as a plane tangent
to the 2-sphere. We assume thati € {1,...,n} is neither parallel nor orthogonal to the
planeT.

The great circle parallel td defines two open hemispheres. One of them, calledipiper
hemisphere, contains the tangent poinfTofAn oriented great circle; induces an oriented
half-circle in this upper hemisphere which projects to an oriented straightlifwe) in the
planeT via radial projection, and vice versa, any oriented straight lin€ iskefines an ori-
ented great circle 08%. An arrangement of oriented great circles induceamangement of
oriented lines I = {1, ..., In}, wherel; := 17 (¢)), in the affine plane.

The same transition from the sphe$&to the planeT leads from a point configuration on
the sphere to a signed point configuration in the affine plane. We dging ) to be a pair
of a signed index and a poim; € T obtained via radial projection frorg, as follows. A
points on the upper hemisphere maps to the paf(s) = (i, pi),i € {1,...,n}, and a
points on the lower hemisphere maps to a pairp;) and p; := pi € T. We obtain from
S = {s1, ..., S} asigned point configuration P = {sp, ..., s}, with sp := sp'(s),
and vice versa.

We useE, = {1, ..., n}, endowed with the natural order, to denote the index set of geo-
metric objects such as vectors, planes, great circles and points on the sphere, lines and points
in the Euclidian plane, or of a finite ordered set of abstract elements. The asscoigied
index setE,, = {1,...,n,1,...,N} makes it possible to denote orientations or signs of these
elementsThes — S operator is required to be an involutid= s, Vs € Ej.

All orderedsetsVy, Hn, Cn, S, LI, PnT above can be viewed as geometric representations
of the same equivalence class of matriceghd), see Figurel. We can reorient the elements.
The reorientatiortlasses are the equivalence classes with respect to reorienting subsets such
as vector configurations or central plane arrangements, great circle arrangements or pairs of
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FIGURE 2. A hyperline sequence ovés.

antipodal points on the 2-sphere, line arrangements or point sets in the plane. These reorienta-
tion classesre obtained when the numbess# 0 can be negative as well. Theorientation

of a vectorv; is the vectorvy = —vj and thereorientation of an oriented central plaris

the change of the sign of its normal vector. Thieerientation of an oriented great circler

of anoriented linemeans replacing it by the same object with the reversed orientation. The
reorientation of a signed poird, pj),i € Ep, is the signed pointi, Pr), Bi = pr. Thereori-

entation of an index is its replacement by. Therelabelling of an ordered sés$ given by a
permutation of its elements.

2.2. Hyperline sequences of configurations and arrangemewis.now extract combina-
torial information from all the geometric sets defined above. We will warky with signed
subsetsy ¢ Ep which do not simultaneously contain both an elerieandits negation .
If g c En, we defineq = {S|s € q}. The unsigned support supp(C En of q c E, is
obtained byignoring all the signs imj. A signed partitionof Ej, is a signed set = 1t U |~

with 1, T- € En, ITUT- = Ep.

DEFINITION 2.1. Ahyperline sequence heverE,,i € E,, with half-period Ig\gthki i§a
pairhg = (i, i), wherer; is a double infinite sequeneg = (q})jez with q} C En\{i,i},
qf = dj,. Vi € Z, sup{Ujcz dj) = En \ supgfi}), where the unsigned supports of

Ops s q{(i are mutually disjoint. We considéis = (i, 7j) andhs = a, 77) to beequivalent
wheng; is obtained fromr- by reversing the order.

The name hyperline for a subspace of codimension 2 is justified by the concept in higher
dimensions. In the particular case when all u}lls are one-element subsets, the sequence is
said to be ingeneral positionsimple or uniform, and we replace the sei-Fwith their ele-
ments. In this case, any half-periodmfis a sighed permutation &, \ supp({}). In general
we have an additional ordered partition into pairwise disjoint subsets of the signed elements.
An infinite sequencer; in a hyperline sequendes = (i, ) can be represented by any
half-period, i.e., by ank consecutive signed sedg, ;, ..., G ., qt'Jrj C Ep\{i,i},teZ.

ExAMPLE 2.1. (1,7p) = (1,(...,{3},{2,4},{5},{3},{2,4},{5},...)) is a hyperline
sequence oveEs, Es = {1, ..., 5}, with half-period lengthk; = 3, see Figure.

We obtain thenormalized representation hs= (r, ;) of a hyperline sequendes = (i, ;)
by first choosing(r, n;) = (i, 7j) if i € Enor (r,ny) = (i, reverse(r;)) if i € E,, and
afterwards choosing the half-period sf starting with the sequ C Ep containing thesmallest
positive element.
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ExAmMPLE 2.2. The normalized representation of the hyperline sequence in the previous
exampleis (1, ({2,4}, {3}, {5})). From now on, we will use the more convenient notation
(1:{2,4}, {3}, {5D.

To asigned point configuration P = {(i, pi) | i € |} (obtained from a vector configuration
as described above) we associate a8tPJ) = {hs, ..., hs)} of n hyperline sequences
hs = (i, m;) over Ep. The sequence;, denoted by a half-period; , @}, <+ s O, With q'j C
En \ {i, 1}, corresponds to the signed poiitp) € P . Itis obtained by rotating an oriented
line in counterclockwise (ccw), or in clockwise (cw), order aroymdf i € Ep, orifi € Ep,
respectiely, and looking at the successive positions where it coincides with lines defined by
pairs of points(p;, pj) with pj # pi. WhenP is not in general position, several points may
become simultaneously collinear with the rotating line, and they are recorded ay, alStte
point p; of the signed pointj, pj) is encountered by the rotating line in positive direction
from pj, it will be recorded as the indek, otherwise as the negated indgxThe whole
sequencés recorded in the order induced by the rotating line, and an arbitrary half-period is
chosen to represent it.

DEFINITION 2.2. The rank 3oriented matoid induced by hyperline sequences associ-
ated to a signed point configuration/P= {(i, pi)li € 1}, wherel is a signed partition
of En, is HS(PnT) = {(hg = (i,7) | i € |} as described above. We identiFyS(PnT)
with {(i, ) |i € 1}.

Note that if the orientation of the plarkis reversed, all the sequences are reversed. The
identification in the previous definition makes the notion of hyperline sequences independent
of the chosen orientation of the plafie

REMARK. When we start with a set of vectok4, and two admissible tangent plands
and T’, by radial projection we obtain two sets of signed planar potsand PT ". The
reader can verify that our definition ensures that the resulting hyperline seqdéﬁ(:é’,%{)
andH S(PnT') will coincide. This allows for a definition of hyperline sequences associated to
any of the previously considered geometric ordered sets: vectors, oriented central planes, etc.

Consider an arrangeme@t= {cy, ..., ¢} of n oriented great circles on the sph&® To
each circlec; associate a hyperline sequence by recording the points of intersection (ordered
according to the orientation of the ciratg) with the remaining oriented circles. An indgx
is recorded as positive (resp. negative) when the cogclerosses; from left to right (resp.,
right to left).
An arrangement of oriented Iinda:{ ={l1, ..., Iy} induces a set afi hyperline sequences
H S(LI): for each linelj, record the points of intersection with the other lines (ordered ac-
cording to the orientation of the line). Each elemegris signed: positive if lind; crosses
from left to right, negative otherwise.

ExAMPLE 2.3. For the arrangement of oriented great circles in Fi@umge have the fol-
lowing induced set of normalized representations of hyperline sequéh86Ss). We obtain
the same set of normalized representatidr& M) of hyperline sequences fod,

1: {2}, {3}, {5, {4} 1 1 1
2: {1}, (3,4}, (B} 0 -4 1
HS(Cs) = HS(M) = | 3: {1}, ({5}, {2.4} M=|0 1 o0
4: {1}, {2.,3}), {5} 0 0 1
5: {1}, {4}, {2}, {3} 1 0 O
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FIGURE 3. ArrangemenCs of oriented great circles on the 2-sphere.

3. HYPERLINE SEQUENCES ANDPSEUDOLINE ARRANGEMENTS

We start by describing a useful representation of great circle and affine line arrangements,
which smooths the transition from lines to pseudolines.

Standard representation for great circle and line arrangements. Choose an oriented great
circlec; of the oriented great circle arrangement on the spBer@rient the plane spanned by
G so that its positive side lies to the left when walking around the circle in the given direction
and looking from the outside. Lek be the oriented plane and™ and A~ its two induced
open half-spaces. Do an orthogonal projection from the closed hemisptietét U A) onto
A. The resulting planar picture (an oriented circle with oriented arcs inside) will be called the
standard representatioof the oriented great circle arrangem@ntwith equatorc;. From the
standard representation we can always recover the whole oriented great circle arrangement on
the sphere: do the orthogonal projection in reverse onto the closure of the hemiSphérg,
to obtain oriented half-circles, then by taking antipodal points, complete them to great circles.

According to Sectior2 the standard representation of the oriented great circle arrangement
Cn = {c1, ..., Ccy} with equatorc; can also be viewed as a representation for an oriented
line arrangemenltg_1 ={l1,...,In}\ {li} with n — 1 elements. If we forget all orientations
and extendT to its projective plane, the standard representation also corresponds to an ar-
rangement of projective lines, théth element being thiéne at infinity of T. The standard
representation with antipodal points on the cirglédentified defines a cell decomposition
of the projective plane induced by tindines. Note that in the projective setting any pair of
lines cross exactly once. We will use the standard representation in two ways: as the projective
model, for the cell decomposition properties and incidence properties of its lines, and as the
sphere model (as the double covering of the projective plane), for oriented objects.

A pseudolinen the projective plane is the image of a projective line under a homeomorphic
transformation of the projective plane.pseudoline arrangement in the projective plane is
a finite ordered set of pseudolines, each pair of which crosses exactly once. We exclude the
case when all pseudolines have one point in common. This concept goes back to Levi [20].
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FIGURE 4. Homeomorphic image of the front half-sphere of FigRre

Let GT be the group of homeomorphic transformations of the projective plafie Bbr an
arrangemeni4 we have the equivalence class of arrangements cl&Aj A’ | A" = tA,t €
GT}. We always consider pseudoline arrangemehtss representatives of their equivalence
class cl(A).

We now come back to the sphe®éas a double covering of the projective plane. As we use
the transition from the standard representation back to the sphere as before, the pseudolines
become centrally symmetric simple closed curves on the sphere which vpseatocircles.

Any pair of pseudocircles crosses in a pair of antipodal points on the sphere (i.e., exactly once
in the projective sense). But now we can introduce orientations for all elements to obtain an
arrangement of oriented pseudocircles. By abuse of terminology, we will refer to our object
as anmarrangement of oriented pseudolineben we want to emphasize the incidence proper-
ties inherited from the projective setting and the orientations from the spherical setting. The
standard representation has the advantage of showing both of these properties.

DEeFINITION 3.1. Theoriented matoid associated to an arrangement of n oriented pseu-
dolinesis its equivalence class with respect to homeomorphic transformations of the projective
plane.

The oriented pseudoline arrangement is cadi@aple,uniformor in general positionif no
more than two pseudolines cross at a point.

ExampPLE 3.1. The class of uniform oriented pseudoline arrangements with five elements
contains gactly one element, up to reorientation and up to relabeling. Start with line 1 as
the line at infinity. The next three pseudolines form an interior triangle. The insertion of the
last pseudoline at pseudoline 1 is unique up to symmetry. The remaining possibilities all lead
to the same equivalence class, that of the arrangement of five lines extending the sides of a
regular 5-gon.

ExAmMPLE 3.2. In Figure4 we have depicted a standard representation of a nhon-uniform
examplea homeomorphic image of the front half-sphere of Figdire

The ruleto create a set of hyperline sequen¢€S(L,) from an arrangement of oriented
linesL, = {l1,...,In} can be carried over in the same way to any arrangerRdnt =
{pl1, ..., pln} of oriented pseudolines. Since there are oriented pseudoline arrangements
for which there is no oriented line arrangement within the class of homeomorphic trans-
formations forn > 9, we obtain in the pseudoline case a strictly more general concept,
HHS(Ln)IVLn} < [{HS(PLn)|VPLn}| forn > 9.
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We extend the concept of oriented matroids induced by hyperline sequences in another way.
Hyperline sequenceasf configurations and arrangements of the last section store the signs of
determinants of 3 3 submatrices of the matrid of a corresponding vector configuration
Vo ={v1,...,on} C R®, n>3,v #0,i =1,...,n. Thisis an invariant for all matrices
M’ e cln(M). Leti, j, k be three distinct signed indicesty,. Let[i, j, k] bethe determinant
of the submatrix oM with row vectorsvi, vj, v. If j andk appear within the same saj
of xj, we have sigri, j, k] = 0. If j andk occur in this order in some half-period af,
we have sighi, j, k] = +1, and sigri, j, k] = —1 otherwise. The sign of the determinant
x(jk) = signli, j, k] is independent of the chosen half-periods and compatible by alter-
nationy (ijk) = x(jki) = x(kij) = —x(kj) = —x(kji) = —x(jik) and anti-symmetry
x(jk) = =x(jk).

Given an abstract set of hyperline sequences, let us choose its corresponding normalized
form and definey : Eﬁ — {—1,0, +1}, (partially) by: x (ijk) := 0, if j andk appear within
the same safs of 7j, fori in Ep, j,Kin En, j # K, x(ijk) := +1, if j andk occur in this
order insj, andy (ijk) := —1, if j andk occur in the reversed order if}.

Extending this partial definition of by alternation and anti-symmetry, the valuexdfjk)
for0 <i < | < kis obtained either directly, by the above rule applied to each of the three
hyperline sequences, or via alternation and anti-symmetry. When these three vaju@gdor
are compatible in all cases, we say ttia set of hyperline sequences admit an abstract sign
of determinant function.

DEFINITION 3.2. Arank3 orientedmatroid with n elements given by hyperline sequences
is a set of hyperline sequencgs, ;) | i € |} over E, which admit an abstract sign of deter-
minantfunction. The oriented matroid is uniform when all hyperline sequences are uniform.

THEOREM 3.3. The hyperline sequences KIFEL,,) of an oriented pseudoline arrange-
ment P L, admit an abstract sign of determinant function.

PrROOF When we restrict the oriented pseudoline arrangement to three elements, the
corresponding orientedseudoline arrangement can be represented by three oriented lines.
Hyperline sequences of oriented lines admit an abstract sign of determinant functiom

4., THE TOPOLOGICALREPRESENTATIONTHEOREM

The following theorem shows that rank 3 oriented matroids given by hyperline sequences
constitute a topological invariant with respect to the group of homeomorphic transformations
of the projective plane. For each rank 3 oriented matroid given by hyperline sequéises
we can find an oriented pseudoline arrangenteby which induces itHS = HS(PLp).

It will be clear from our construction that the oriented pseudoline arrangement represents a
whole equivalence class with respect to homeomorphic images, each element of which leads
back to the given hyperline sequences.

Similarly, it can be seen easily that mapping the oriented pseudoline arrangement via The-
orem3.3to its hyperline sequences can be carried over to the whole equivalence class with
respect tthomeomorphic images.

The resulting map followed by our construction of the next theorem leads back to a rep-
resentative of the equivalence class we started with. This can be seen via induction on the
number of elements.

When we start in the following construction with a polygon as a representative for the
projective plane, we see that we can carry on with our construction having convex polygons
as cells all the time when some of which are subdivided by straight line segments.
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THEOREM4.1 (FOLKMAN —LAWRENCE TOPOLOGICAL REPRESENTATIONTHEOREM).
There is a one-to-one correspondence between Bankented matoids given by hyperline
sequences and the equivalence classes of oriented pseudoline arrangements.

PrROOF We start with a rank 3 oriented matroid withelements gien by hyperline se-
guenced Sin normalized form. We are going to construct an arrangement of oriented pseu-
dolines with line 1 being the line at infinity. We first prove the uniform case by induction,
showing that if an arrangement nf— 1 oriented pseudolines has been constructed, it is pos-
sible to insert theith oriented pseudoline in a manner compatible with the given hyperline
sequences.

We start the induction fon < 5. Let H S be a uniform rank 3 oriented matroid with five
elements given by hyperline sequences. How many such different oriented matroids can we
find? After relabeling and reorientation (in order to obtain 13,21, 5 as the first hyperline
sequence), we can assume that the abstract sign of determinant function yields positive values
for the following 3-tuples 123, 124, 125, 134, 135, 145.

All possible extensions admitting an abstract sign of determinant function turn out to be the
following:

1: 2,3, 4,5 1: 2, 3, 4,5 1: 2, 3, 4,5 1: 2, 3, 4,5
2:1, 3, 4,5 2:1, 3, 4,5 2:1, 4, 3, 5 2:1, 3,5, 4
3:1, 2 4,5 3:1, 2,5, 4 3:1, 4, 2, 5 3:1, 2, 5, 4
4.1, 2, 3,5 4: 1, 2,5, 3 4:1, 3,2, 5 4: 1,5 2 3
5:1, 2, 3,4 5:1, 2, 4, 3 5:1, 2, 3,4 5:1, 4, 2, 3
relabeling: (1)(2 5,4,3) (1)(2,3,4,5) (1)(2 4)(3,5)
reorientation 2,3,4 3,4,5 4.5
1: 2, 3, 4,5 1: 2, 3, 4,5 1: 2, 3, 4,5 1: 2, 3, 4,5
2: 1,5, 4,3 2:1, 5 4,3 2:1, 5, 3, 4 2:1, 4,5, 3
3: 1,5 4, 2 3:1, 4,5 2 3:1, 5, 2, 4 3:1, 4,5 2
4: 1, 5, 3, 2 4:1, 3,5, 2 4: 1,5 2, 3 4: 1, 3,2, 5
5.1, 4, 3, 2 5:1, 3, 4, 2 5:1, 4, 3, 2 5:1, 3, 2, 4
(1)(2,5,4,3) (1)(2 3,4,5) 1)(2,4@3,5)
2,3,4,5 5 2 2,3

The last seven cases are equal to the first one when applying first the given relabelings and
afterwards the given reorientations. In particular, we have that each of the last four cases
differs from the corresponding upper one just by a suitable reorientation. This implies that
up to reorientations and up to relabelings, we have just one example which matches the
corresponding oriented pseudoline arrangement, compare Ex&mpl€he theorem is true

forn < 5. |

REMARK. Itis noteworthy that the axiom concerning the abstract sign of determinant func-
tion isused later only in the case when we come back to this assertion.

We apply induction to obtain an arrangeméht,_; of n — 1 oriented pseudolines with
pseudoline 1 as the line at infinity, whose set of normalized hyperline sequences is obtained
by removing the element from each sequence and deleting tith sequence. Using the
position of elemenh in each of the original hyperline sequences, ntark 1 points, labelled
with unordered pairs of indice§, n),i = 1,...,n — 1 (denoted for simplicity asi) on
the existing pseudolines 1, ..n,— 1 (see Figuré). Thenth hyperline sequence defines an
orderingof these points : 1,kj, ko, ..., kn—2. Here and in what follows we understandthe
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FIGURE 5. Essential step of the induction.

index j modulo(n — 1) andkg = 1. To prove the inductive step, it suffices to show that the
following three conditions hold.

(1) We can join any two consecutive poimtkj andnkji1, j = 0,...,n — 2 with a pseu-
doline segment such that the open segment does not meet any of the already existing
pseudolines.

(2) The resulting curvéC obtained fromall these segments together with the already exist-
ing pseudolines form a pseudoline arrangenteht, i.e., K is a simple closed curve
which crosses each pseudolipg < n — 1 atnj, and nowhere else.

(3) Thenth pseudoline has a unique orientation.

PROOF OF(1). We show that any two consecutive points,nkjy1,j =0,...,n —2
belong to the same cell of the arrangemPrt,_1, i.e., they are not separated by any of the
existing pseudolinesi # 1,K;, Kj+1.

Consider two consecutive pointkj, nkj1 for anindexj = 0,...,n — 2 and a pseudo-
linei # 1,kj, kj11. Applying the induction hypothesis to the restrictiontdt to the set of
five, resp. four, elementd, kj, kj41, i, n} (extensions up to four and five elements are even
unique) implies a unique corresponding oriented pseudoline arrangdmentesp. P L4,
up to a homeomorphic transformation of the projective plane. We have four elements, e.g.,
in the special cas¢ = 0, becauség = 1. Theith pseudoline does not separate the points
nkj, nkj 1. Therefore any two consecutive poimgj, nkj11,j = 0,...,n — 2 of the ar-
rangementP L_; are not separated by any of the existing pseudolines# 1,K;j, Kj41.
This implies that we can connect two consecutive paikis nkj 1 by a pseudoline segment
without crossing any of the existing pseudolines.

PROOF OF(2). We consider two consecutive poimik;, nkj;+1, j =0,...,n — 2 and we
pick a pointnp; on the open pseudoline segmeit, nkj 1, as constructed above. We show
that all pointsnk;, i € {j +2,...,n—2} are separated from poinp; by the pseudoling;j ,
and in a similar way that all pointsk;,i  {1,...,] — 1} are separated from poinfp; by
pseudolinek;. The argument in both cases is the same, so we prove only the first case (see
Figure5). We restrict the hyperline sequences to the{$gk;, kj 1, i, n} (the cased = kg
andk,_1 = 1 are included) in which we find a unique corresponding pseudoline arrangement
which uses the open pseudoline segment frdgnto nkj1. The separation property holds,
and it carries over to the arrangement with 1 elements. This implies that the closed cuke
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above consisting of all pseudoline segments has no self-intersections, and it crosses all other
n — 1 pseudolinefust once.

PROOF OF(3). On each oriented pseudolines {1,...,n — 1}, we put an arrowA,; at
point ni pointing to the right side, or to the left side, of pseudolinéthe sign of element
n in theith hyperline sequence is positive, or negative, respectively. We show that for any
two consecutive pointskj, nkj;1, j =0, ...,n— 2, the corresponding arrowsni; , Ank; 4
are compatible, i.e., the induced orientation of pseudatiy Ang; coincides with that of
Ank;,- We restrict the hyperline sequences to the{dekj, kj+1, n}. Applying the induc-
tion hypothesis for each shows that we have in each case a unique corresponding oriented
pseudoline arrangement with the desired property. This implies a unique orientatiomtif the
pseudoline in the globally constructed pseudoline arrangement. This concludes the proof by
induction that a new pseudoline can be inserted in the uniform case. |

The non-uniform case is also proven inductively, by eliminating a degeneracy at a time until
we obtain the uniform case. Denote tjy(t) the set containing elementn theith hyperline
sequence oH S, andq' (s) < q' (t) says that' (s) lies in the chosen half-period left of (t).

We start with a set of hyperline sequend#s§ in normalized form and relabel and reori-
ent them so that line 1 is the line at infinity and the first degeneracy contains the elements
2,3, ...,k. In thenth hyperline sequence the sign of each element{1, ..., k} is positive
and the setg"(i),i € {1,...,k} are pairwise different. Relabel the elemeints {2, ...,k}
such thag"(1) < g"(2) <--- < q"(k). We construct from the given hyperline sequehts
a new oneH S with a reduced degeneracy. We change the position of element 2 in the first
hyperline sequence such thgt(2) < q1(k), g1(2) := {2}, andq*(k) := {3,4,...,k}. The
remaining changes il S compared withH S are consequences.

1: {20k - qtm) 1: 21,02\ {2} qtm)
2: 1,3k -+ qA() 2: (1), (k) (k=1}--- @) -+ g
it {1i-17+1 k) : q'm i q' M\ (2}, {2} g q'm
ki {1,2,3---k-1) qkam) k: ak@\ (2}, {2} qkam)
9" 9"@ - q" k) S g"W---q"@ - gk

n

n

After a finite sequence of changesS, HS,, ..., HS := HS HS,; :=HS,...,HS
we end up with a uniform oriented matroid with hyperline sequend&g. In the uniform
case we find a corresponding oriented pseudoline arrangement. We go back all the steps from
HS;1toHS, i € {z—1,...,1}. The corresponding changes of the oriented pseudoline
arrangements are evident (see Fig6yeOf course, we have to perform in reverse order all
the previous reorientations and relabelings.

COROLLARY 4.2. There is a one-to-one correspondence between the reorientation classes
of rank 3 oriented matroids given by hyperline sequences and those of oriented pseudoline
arrangements.

4.1. Reorientation class invariant based on hyperline sequentas. unoriented pseudo-

line arrangemen#d (M) characterizes the reorientation class of an oriented matvoidVe

also provide a corresponding characterization in the hyperline sequence terminology. By iden-
tifying each unsigned hyperline sequence with its reversed one, we see that such an induced



612 J. Bokowskeet al.

Y &

FIGURE 6. Inductive step for the pseudoline arrangements.

set of unsigned hyperline sequend@g&d\1) of arank 3 oriented matroid1 is an invariant of
its reorientation class. The unique construction in Theogehof the unoriented pseudoline
arrangement usemly the ordering of the unsigned sequences.

COROLLARY 4.3. The reorientation class of a rarkoriented matoid M is characterized
by both the unoriented pseudoline arrangemdf\1) and the invariant of a set of hyperline
sequenceg(M).

For the following invarianf (M) we reconstruct a representative of its reorientation class:

1: {2,3}, {4,5}, {6,7}
1: {2,3}, {4,5}, {6,7} 2. (1.3) {E %) {21 6}
2: (1,3}, (5,7}, {4.6) LSk e, 4.6
3: (1,2}, (7}, (56) {4} 812, {7 5.6 4

IM)=1] 4: {1,5}, {7}, {6,2}, {3} ] _ Z

5: {1,4}, {3,6}, {2,7) ‘5‘: Eii {é% {{62,27}}, {3}
6: (1.7}, {3.5), {2.4) o L4 3.8, (2
TR B 7: (L6l (4] (2.5). (3)

We keep the half-periods in the first two hyperlines and we insert the signs (written as over-
bars) from hyperline 1.

The half-periods of hyperlines 3, 4, 5, 6, 7 are not necessarily kept. We consider hyperline 3
later since the sd¢®, 3}in hyperline 1 plays a special role. The signs (written on the right-hand
side) determine whether to keep, or to reverse, the order in hyperlines 4, 5, 6, 7, respectively.
Compare signs in hyperline 2 with those of the actual hyperline.

1: {2,3}, (4,5}, {6,7}

2: {1,3}, (5,7}, (4,6} x(2,4,7)=-1,x(2,5,6)=+1
3: (1,2}, {7}, {5,6}, {4}

4: (1,5}, {7}, (6,2}, {3} x(2,4,7) = —1, order kept

5: {1,4}, {3,6}, {2.7) x(2,5,6) = —1, reversed order
6: (1,7}, (3,5}, {2.4) x(2,5,6) = —1, reversed order
7: {1,6) {4}, (2,5}, {3} x(2,4,7) = —1, order kept.
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We next determine the signs within the first sets in hyperlines 4, 5, 6, 7 from hyperline 2.

1: {2,3}), {4,5}, (6,7}
2: {1,3}, (5,7}, {4.6}
3: (1,2}, {7}, (5,6}, {4)
4: (15, ({7}, {62}, {3}
5: {1,4}, (2,7}, {3.6}
6: {1,7), (2,4}, {3.,5)
7: {1,6}, {4}, (2,5}, {3}

We determine the signs within the first set in hyperline 2 from hyperling3,4,5) = —1
from hyperline 4 implies that the order of the half-period of hyperline 3 is kept. Finally, we
obtain the signs within the first set of hyperline 3 from hyperline 2.

1: (2,3}, {4,5), {6,7}
(1,3}, {5,7}, {4,6}
{125, {7}, {56}, {4
{155, {7}, (6.2}, {3}
(1,4}, {2,7), {3,6}
(1,7}, {2,4), {3,5)
{1.6}, {4}, {2,5}, {3}

~NOoO O~ WN

5. CHIROTOPES ANDHYPERLINE SEQUENCES

Oriented matroids can be introduced via other axiomatic systems, such as chirotopes. In this
section we show that the sets of hyperline sequences admiting an abstract sign of determinant
function and the chirotopes define the same class of objects, thus establishing the equivalence
(not formally proven elsewhere) between these two systems of axioms.

DEFINITION 5.1. A chirotope of rank 3 with elements ign alternating and anti-symmetric
map x : En3 — {—1,0, 41} such that for pairwise different elemernitsj,k,I,m M :=
@, j - x @ Lmy, —xd, j. - x @k m, x@, j.m-x(@,k D} ={0}or{-1,+1} C M.
The map— x for which all signs are negated is identified wjthand we require that for each
element, there is at least one pajy, k) with x(, j, k) # 0.

THEOREMS.2. There is a one-to-one correspondence between Baokented matoids
given by hyperline sequences and those defined by chirotopes.

PROOF Let the rank 3 oriented matroid withelements bgiven by hyperline sequences.
We will show that the abstract sign of determinant function fulfills the chirotope condition:
vi, |, k, I, m, pairwise different,

M = {X(Ir ]’k) X(|,|,m), _X(I’ J’I) X(Iaka m)’ X(Iv J»m) X(I’kvl)} = {0}
or{—1,+1} C M,

which is invariant under permuting the elemeptg, I, m and reorienting all its five elements

i, j, k, I, m. When considering thgh hyperline sequence, we can assume that the elements
i, k, I, moccur in that order. When the elements belong pairwise to diffeggrhis implies

x@, j, K =xG,1,m = xq, |, = x@,k,m = x(, j,m) = x(i,k, 1) = 1. When all the
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elements belong to the samgg we have x (i, j, k) = x(,I,m) = x(, j,1) = x(@,k,m) =
x(@,],m = x(@,k, 1) = 0. We useq(t) for the set containing elemetitandq(s) < q(t)
says that(s) lies in the chosen half-period left gi(t). The remaining cases are nawj) <
qk) < qd) =qm), q(j) < qk) =qd) < aqm), q(j) = qk < qd) < gm), q(j) <
qk) = qd) = qm), q(j) = qk) = q() < qm), andq(j) = qk) < q) = q(m). We
easily see that the chirotope condition holds in all these cases.

To prove the other direction, let the chirotope be given. We have to show that we can con-
struct an oriented matroid induced by a set of hyperline sequences. The abstract sign of de-
terminant function in the sense of Secti®mvill be the functiony of the chirotope. During
the construction process, we confirm that all imageg @fre compatible with the hg/perline
sequence structure. For the given elemiente have at least one paja, b) € En”~ with
x(i,a,b) = 1. We start to construct a half-period of thiéh hyperline by sorting these two
elements in the correct order beginning withe E,, followed byb e E,,. Now we use in-
duction.Using for the next elemerkt ¢ q(a) k or k depends ory (i, k, a). Using for the next
element € q(a) k or k depends orx (i, k, b). The first elemenk not belonging tay(a) and
q(b) gets its unique position by (i, k, b). For additional insertions we have to show compat-
ibility. Assume thatkk — 1 elements have been sorted already in the correct way, forming the
ordered setsj; < (2 < -+ < G, t > 3. We consider all signg (i, k, X). We insert thekth
element which was not used so far. We observe firsttligtk, x) is the same for alk € gs
for somes. We show this foilgs # q(a). Otherwiseq(b) can be used instead. Fet, X2 € s
we havey (i, X1, X2) = 0 andy (i, a, x1) = x(i, a, x2) = 1. The chirotope property gives
us eithery (i, k, x1) = x(i,k,x2) = 0, i.e.,k € gs or x(i,k, x1) = x(i,k, x2) # 0. The
sorting of the elements € E,, in theith half-period is a sorting of its classggx). Assuming
a@ < q(x) < q(y) andq@ < q(y) < q(2), a,X, Y.z € Ep, we havex(i,a,x) = 1,
x(,y,2 =1, x(,a,y) =1, x@i,a,2 =1, x(i,X,y) = 1. The chirotope property im-
pliesq(x) < q(2), i.e., the ordering is always compatible: foer= x we find that there
is a smallest upper bound or no upper bound, Koe= z we find that there is a largest
lower bound and thus insektin the sequence. For allwe can construct the correspond-
ing half-period in accordance with the chirotope function which serves as the abstract sign of
determinant function. O

6. CONCLUSION

In higher dimensions, the existing proofs of the Folkman—Lawrence representation theorem
can also be greatly simplified using our inductive approach based on hyperline sequences.
But even in the uniform case, the proof has to use topological results that would go beyond
the elementary character of this paper, and the non-uniform case is even more involved. The
hyperline sequences, as a model for oriented matroids, need a slightly lengthier description in
the general non-uniform case. To keep the results in this note as elementary as possible, we
defer the higher dimensional case to another article.
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