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Abstract
Motivated by recently developed computational techniques for studying protein flexibility, and
their potential applications in docking, we propose an efficient method for sampling the
conformational space of complex molecular structures. We focus on the loop closure problem,
identified in the work of Thorpe and Lei (2004 Phil. Mag. 84 1323–31) as a primary bottleneck
in the fast simulation of molecular motions. By modeling a molecular structure as a branching
robot, we use an intuitive method in which the robot holds onto itself for maintaining loop
constraints. New conformations are generated by applying random external forces, while
internal, attractive forces pull the loops closed. Our implementation, tested on several model
molecules with low number of degrees of freedom but many interconnected loops, gives
promising results that show an almost four times speed-up on the benchmark cube-molecule of
Thorpe and Lei.

1. Introduction

Macromolecules undergo conformational changes to perform
their biological function. Experimental techniques, such as
x-ray crystallography and NMR, are used to extract
information on individual conformations or ensembles, but
lack the capability of capturing the entire conformation
space. In many biological processes, for example protein
docking, a protein molecule transitions from one low-energy
conformation to another in which it is able to bind the ligand.
To determine the function of a macromolecule, it is therefore
necessary to build a representation of feasible conformational
changes.

Many biologically relevant macromolecules contain
flexible loops. A valid conformation for such a molecule must
satisfy the loop closure constraints [15] for every one of
its loops. The set of all conformations that satisfy these
constraints represents a vanishingly small portion of the
overall conformation space. As a result, most conformations
generated by the perturbation of a set of bond angles will
violate the loop constraints. This makes the exploration of the

valid conformation space for a molecule with flexible loops
computationally very difficult.

Approaches to sample the conformation space of
molecules with loops employ a two-step approach. Initially, a
new configuration is obtained by rotating some of the bonds
of the molecule. The resulting conformation violates the loop
closure constraints. In a second step, these constraints are
re-attained using iterative procedures.

We propose a new, faster method for sampling the entire
conformation space of molecular structures containing loops.
The key contribution of our paper consists of our approach of
re-attaining loop closure constraints for a randomly perturbed
conformation. This method is based on standard techniques
from robotics. We model the molecule as a branching
robot that holds onto itself to maintain loop constraints.
New conformations can efficiently be generated by applying
random external forces, while internal, attractive forces pull
the loops closed.

Our work builds upon the general methodology of Thorpe
and Lei [32], which is incorporated into the ROCK software
system [22, 26]. They decompose a protein structure into
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regions with varying degrees of flexibility. Then they generate
random motions of the atoms, while attempting to reinstate
the constraints imposed by the bond lengths and angles of the
structure. Substantial computational effort goes into satisfying
the loop closure and steric constraints.

The proposed approach efficiently generates a
representation of the valid conformation space of molecules
with flexible loops. This valid conformation space is
significantly smaller than the conformation space of all
possible bond angles. Effectively, the proposed approaches
exploit the kinematic constraints imposed by loops to
determine a significantly reduced conformation space.
Using this reduced space, it becomes computationally much
more tractable to perform computations based on energetic
considerations. In this paper, we focus on the computation
of this smaller search space. Energetic considerations of
search in this reduced space are not considered, but can be
accomplished with a variety of methods found in the literature
(see section 2).

The loop closure problem is also relevant in other areas
of molecular biology. In homology modeling, for example,
the structure of a protein is predicted by assembling fragments
from a number of homologs. The matching of the termini
of these fragments can be viewed as an instance of the loop
closure problem. Canutescu and Dunbrack [7], Lotan et al
[23] and Kolodny et al [18] have successfully applied robotics
techniques to this domain.

2. Related work

Researchers have investigated a number of different
approaches to sample the conformation space of molecules.
Molecular dynamics [33] simulations numerically solve
Newton’s equations of motion for a detailed model (such as
an atomic model) of a molecule. This procedure generates
a trajectory through the conformation space of the molecule.
Since the trajectory is computed in a discretized fashion, we
can say that this method samples the conformation space
of the molecule. Molecular dynamics simulations require
large amounts of computation. Consequently, they can only
compute a small fraction of the total accessible conformation
space of a large molecule in a reasonable amount of time.

In molecular structures, atoms do not move independently
but instead are constrained by covalent bonds and other
interactions with atoms in the molecule. To ensure
that a molecular dynamics simulation does not violate
these constraints, researchers have proposed a number of
augmentations to the basic molecular dynamics algorithm.
The Shake method [27] implements an iterative procedure to
satisfy spatial constraints between atoms. The Rattle algorithm
[2] extends Shake by also considering velocity constraints.
Settle [25] further improves on Rattle by providing more
efficient computations. These approaches consider the motion
of every atom independently. Due to this independence, the
motion of an atom will violate the constraints imposed by the
molecular structure. The Shake, Rattle and Settle methods
employ an iterative approach to re-attain violated constraints.
Because the various constraints are dependent, this is a

computationally costly procedure. In contrast, the approach
proposed in this paper exploits techniques from robotics to
maintain all but one constraint per loop during the motion.
Consequently, only a single constraint has to be re-attained per
loop, irrespective of the number of atoms present in that loop.
This significantly reduces the computational cost compared to
methods that move each atom of a molecule independently.
The computational cost of the proposed algorithm depends on
the number of loops per molecule, rather than the number of
atoms, making it efficient even for very large molecules.

Monte Carlo simulations are a different method of
sampling the conformation space of a molecule. They
perform a random walk in conformation space, biased by
the Metropolis criterion [24]. This random walk is not
constrained by Newton’s law of motion, as was the case
in molecular dynamics simulations, and hence Monte Carlo
simulations are computationally more efficient than molecular
dynamics simulations. One of the drawbacks of Monte Carlo
simulations is that they spend considerable computational
resources exploring local minima. Researchers have devised
a large number of extensions to the Monte Carlo algorithm
to address this problem. These extensions include: the
replica Monte Carlo method [30], the multicanonical ensemble
method [3], entropic sampling [21], methods based on
weighted histograms [19], parallel tempering [17], jump
walking [14], multicanonical jump walking [34], smart
walking [36] and local energy flattening [35]. These methods
attempt to render the exploration of conformation space
more efficient based on energetic considerations. However,
in the context of molecules with flexible loops, the most
severe constraints on configuration space are imposed by loop
closure constraints and not by energetics. An energetically
favorable conformation will generally have very few other
favorable conformations in its neighborhood, since adjacent
conformations may violate the loop closure constraints.
Without an explicit treatment of loop closure constraints, these
extensions to the Monte Carlo method are not well suited for
molecules with flexible loops.

The proposed approach can be viewed as complementary
to Monte Carlo simulations in the context of molecules with
flexible loops. The method described in this paper determines
the part of the conformation space of a molecule with loops
that satisfies the loop closure constraints. This subset of
the conformation space is computed without considering
energetics. Monte Carlo simulations that are restricted to this
valid subset of the overall conformation space can then be used
to consider energetic considerations much more efficiently, as
they will only sample conformations that satisfy loop closure
constraints. Effectively, the method described in this paper
exploits the kinematics constraints of molecules with loops to
reduce the search space available to Monte Carlo simulations,
thus significantly increasing their computational efficiency.

During a Monte Carlo simulation, the random change
of a single bond angle may result in a large displacement
of large portions of the molecule. This is not necessarily
biologically plausible, and therefore researchers have devised
special Monte Carlo moves that only affect a local area of
the molecule. A move consists of selecting a short linear
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segment of the molecule and changing its conformation
without affecting other parts of the molecule. Note that
the short linear segment can be viewed as a flexible loop.
Methods to perform such local moves include random walks
in a lattice [29], numerical approaches to determine valid
conformations for the short linear segment [13], ‘wriggling’
the chain and re-attaining constraints using linear algebra [6],
and the local application of Shake [1]. All of these methods
suffer from the same problems as Shake that were discussed
above. Furthermore, they have only been applied to short
segments, rather than loops of arbitrary length.

Another method of sampling the conformation space
of molecules performs exhaustive search [4]. The search
space for such an exhaustive search grows exponentially
with the number of rotatable bonds. Consequently, these
computations become intractable, even for relatively short
molecules. Furthermore, this approach is not well suited for
molecules with loops: depending on the discretization of the
space, loop closure constraints cannot necessarily be satisfied
by configurations chosen from a lattice in conformation space.

Thorpe and Lei [32] were the first to be explicitly
concerned with molecules containing many interconnected,
flexible loops. Given a conformation, Thorpe and Lei’s
approach attempts to sample the space around it by randomly
perturbing the angles at a chosen set of bonds. The difficulty
of the loop closure problem lies in finding a solution to
a complicated algebraic system of equations, accomplished
by minimizing a fictitious loop closure potential. However,
because the perturbed bond angles are often interdependent, a
solution may not exist, resulting in a high rejection rate.

To the best of our knowledge, only one other approach
has been proposed for generating molecular conformations,
with loops taken under consideration. In the recent work of
[10], the general technique for loop closure of [11], called
random loop generator (RLG), is applied to proteins. RLG
has been developed in robotics and follows from the work of
LaValle et al [20] and Han and Amato [16] in the domain
of path planning. The algorithm of [20] breaks the loops,
then uses iterative distance minimization to restore the loop
constraints. Both [16] and [11] partition the loops into active
and passive chains; forward kinematics is applied to the active
chains, while inverse kinematics is applied to maintain the
loop closure. More specifically, sampling is accomplished
by selecting random values for the active chains, then finding
values for the passive chains that close the loop; however, just
as in the case of Thorpe and Lei’s approach, it is not always
possible to find a valid configuration for the passive chains,
resulting in a rejection.

3. Methodology

We now describe our method for efficiently sampling the
conformation space of a molecular structure when steric
clashes are ignored. Indeed, as we already pointed out, a major
challenge in generating new conformations is loop closure.

Figure 1. Example robot arm and attached frames.

3.1. Initial framework

To begin with, we describe the framework used to model the
molecular structure: a branching robot, whose key building
block is a simple robot arm.

3.1.1. Simple robot arm. The kinematics of robot arms is
well understood and covered in most graduate-level robotics
texts, such as [12]. We present here a brief overview, adapted
to our specific context.

Frame assignment. A robot arm is a single chain consisting of
joints connected by links. It is important to note that the first
and last elements of the chain are special; they actually are
not considered joints and are called the base and end effectors,
respectively, of the robot arm. See figure 1 for an example. We
consider only revolute joints, i.e. joints that allow rotational
motion about a fixed axis; we call θi the variable representing
this single degree of freedom. Joints are labeled 1, . . . , n; link
i connects joint i to joint i +1. In our model, revolute joints are
associated with atoms and constant-length links with bonds.

We attach rigidly to each link a coordinate frame; although
any frame may be chosen, there is a standard convention in
robotics for frame assignment. Refer to figure 1 for frame
assignments on the example robot arm. We denote by frame
i the frame attached to link i; by convention, its origin pi lies
on joint i and its zi aligns with joint i’s axis of rotation. The
x-axis is on the common normal of zi and zi+1, and the y-axis
is chosen to obey a right-hand coordinate system. A special
world frame, denoted frame 0, is chosen as the frame in which
to express all others; for simplicity, its origin is chosen as
the base’s position. Once frames have been chosen, a 4 × 4
homogeneous transformation matrix Ti from the world frame
to frame i is determined.

Force propagation. The Jacobian matrix J relates the rate
of change of the position and orientation of the end effector
to those of the joints. We now show how to compute it. The
6×n Jacobian consists of a column for each degree of freedom
(or joint), with three rows corresponding to position and three
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(b) (c)(a)

Figure 2. Initialization and loop closure on simple 2D example. (a) Initial structure. (b) Tree with new (lighter) loop vertices and
corresponding partners. (c) Attractive loop closure forces on branching robot.

rows corresponding to orientation, and is expressed as follows:[
z1 × p1 z2 × p2 · · · zi × pi · · · zn × pn

z1 z2 · · · zi · · · zn

]
.

For joint i, we use the axis of rotation zi and origin pi of the
frame attached to link i, found in the third and fourth columns
of Ti , respectively.

The instantaneous effect of a force F (with six
components, corresponding to position and orientation) at the
end effector can now be expressed by the equation

τ = J T F,

where τ is an n-vector for the torques at each joint resulting
from the force. We approximate the next configuration of the
robot arm by updating each θi to the value θi + kτi , where k
is a constant that can be thought of as the time step; note that
we consider all joints to have unit mass.

3.1.2. Branching robot. Molecular structures are often more
complicated than a simple open chain. We introduce the
concept of a branching robot to accommodate such structures.
A branching robot is precisely its namesake: joints connected
by links in a tree-like fashion. For such a robot, there is a
special base, corresponding to the root of the tree. Every
other joint is connected to the base by links along a single
well-defined branch or path.

Branching robots [9] have the following theory
established for force propagation. When a force is applied at
a joint, we can consider the branch from the base to that joint
to be a simple robot arm; the techniques from section 3.1.1
are applied. If multiple forces are applied simultaneously, the
resulting torques are additive and independent; thus, we simply
accumulate the torques from each force before approximating
the next configuration of the robot.

Breaking loops. Because our input structure is expected
to have many interconnected loops, we initially break these
constraints to associate a branching robot. We begin by
viewing the structure as a simple graph on edges and vertices;
a root and spanning tree are arbitrarily chosen for this graph
(using a standard linear-time spanning tree algorithm, e.g.
breadth-first-search), to allow the structure to be interpreted
as a branching robot. Then we introduce several new vertices,
to be used in the loop closure method, as follows. Consider
the edges not included in the spanning tree; they correspond

to loops that have been broken. For each such edge, we
duplicate the endpoints; we call the duplicated endpoints the
loop vertices and the corresponding originals their partners.
See figure 2 for a simple 2D example; figure 3 contains
a 3D example. Each duplicated endpoint is then attached
to the opposite original loop endpoint, maintaining the tree
constraint. This completes the construction of the branching
robot.

3.2. Sampling the conformation space

We now describe the sampling of the conformation space.
While we experimented with a few other approaches, what we
present here is the most effective and efficient. Generation of
a new sample consists of two stages: the first stage breaks the
loop constraints, while the second restores them.

3.2.1. Stage 1: external force. The first stage applies a
random external force to the branching robot; the effect of
such a force breaks the loop constraints. See figure 3(b) for
an example of the effect of such a force. Note that the lighter
loop vertices are no longer aligned with their partners.

3.2.2. Stage 2: internal, attractive forces. Once the loop
constraints have been violated, we use internal, attractive
forces to close the loops. Each loop vertex and partner that
are not aligned results in an attractive force between them; see
figure 2(c) for a simple two-dimensional example illustrating
this concept. We apply all such internal forces and iterate until
the loop vertices and their partners align; note that we allow
a small error tolerance. Because rotation about the loop edge
is allowed, this satisfies the loop constraint. A more complex
three-dimensional example of the loop closure approach is
shown in figure 3.

4. Model molecules and results

To validate our method and compare timings, we present
three model molecules. They correspond to subdivisions
of the simplest platonic polyhedra: the tetrahedron, cube
and octahedron. The cube model molecule C8S20H8 was
designed in [32] to demonstrate the effectiveness of exploring
conformation space of molecules with many interconnected
loops. We use it to compare our method with [32]. We have
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(b) (c)(a)

(e) (f ) (g)(d)

Figure 3. 3D example of loop closure approach. (a) Initial structure. (b) A random external force breaks loop constraints; note tree
structure with (lighter) loop vertices. (c) Attractive, internal forces begin to close loops. (d) Loop closure. (e) Loop closure. (f ) Loop
closure. (g) Loops considered closed with a small error tolerance.

designed several other models starting from pure mathematical
principles: the reader is advised that we did not intend them to
have any chemical meaning. They have exactly two degrees
of freedom, to allow for the effective visualization of the
conformation space sampling. The broken loops correspond
to faces of the corresponding polyhedron and allow for a
reliable mathematical accounting of the stated degrees of
freedom. They permit an easy replication of our computational
experiments, which suggest that the method scales well with
the number of broken loops. The geometry for our models
was found using the freely licensed ArgusLab software [31],
which also attached atomic interpretations to the nodes and
added the hydrogen atoms connected to the corner nodes of
our polyhedra.

4.1. Cube model molecule

Figure 4 depicts an example conformation of the molecule. It
consists of eight carbon atoms (medium gray spheres) at the
corners of a cube, with eight hydrogen atoms (small white
spheres) attached to each; 20 sulfur atoms (large gold spheres)
make up the rest of the molecule. The distances between
carbon and sulfur, sulfur and sulfur, and carbon and hydrogen
atoms are 1.805 Å, 2.019 Å and 1.120 Å, respectively. All bond
angles about the carbon atoms are 109.5◦; sulfur bond angles
are 135◦. As stated in [32], the molecule has two degrees of
freedom, which can be represented as torsional angles θ1 and
θ2 in figure 4.

4.1.1. Symmetries. The model molecule has two symmetries
on θ1 and θ2.

Symmetry 1. (θ1, θ2) → (θ2, θ1)

Symmetry 2. (θ1, θ2) → (−θ1,−θ2)

We make use of them in our sampling method, as in [32].

Figure 4. Model molecule C8S20H8. There are eight carbon atoms
(medium gray spheres) with eight hydrogen atoms (small white
spheres) attached to each; 20 sulfur atoms (large gold spheres) make
up the rest of the molecule. This molecule has two degrees of
freedom, shown as torsional angles θ1 and θ2.

4.2. Tetrahedron and octahedron model molecules

The tetrahedron model molecule (depicted in figure 5(a)) has
four carbon atoms (medium gray spheres) at the corners of a
tetrahedron. Each carbon has a hydrogen atom (small white
sphere) attached to it; 14 sulfur atoms (large gold spheres)
lie along the edges of the tetrahedron. The octahedron model
molecule is depicted in figure 5(c). An octahedron is defined
by the six carbon atoms (medium gray spheres) with 32 sulfur
atoms (large gold spheres) on the edges. It is interesting to note
that the sampling results for the tetrahedron molecule show
that not all the values of the sampled degrees of freedom are
present in the real conformations of the molecule.

4.3. Results

Our system was implemented in Java and run on a Intel
Pentium M 1600 MHz processor. Figure 6 depicts several
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Figure 5. Tetrahedron and octahedron model molecules and results. (a) The tetrahedron model molecule has two degrees of freedom, shown
as torsional angles θ1 and θ2. (b) Sampled conformation space of the tetrahedron model molecule. (c) The octahedron model molecule has
two degrees of freedom, shown as torsional angles θ1 and θ2. (d) Sampled conformation space of the octahedron model molecule.

(b)

(c) (d)

(a)

θ θ
θθ

Figure 6. Sampled conformation space results; note that symmetries were applied to the generated conformations. (a) 32 conformations in
6 min. (b) 152 conformations in 22 min. (c) 415 conformations in 73 min. (d) 5022 conformations in 13 h, 27 min.
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Figure 7. Generated conformation of model molecule. On the left is
a zoom of several loop closures; the small vertices represent the
loop vertices. Note the small amount of tolerated error.

Table 1. Comparison of three model molecules.

Number of Time to generate
Number Number ‘broken’ 500 conformations
of atoms of bonds loops (min)

Tetrahedron 22 24 3 60
Cube 36 40 5 100
Octahedron 38 44 7 130

results on the cube molecule, showing that our approach
quickly begins sampling the space (see figure 6(a)); as
more conformations are produced, the sampling becomes
finer. Note that the previously discussed symmetries on the
cube model molecule were applied. An example generated
conformation along with a zoom of the loop closures is shown
in figure 7.

Results for the tetrahedron and octahedron molecules are
shown in figures 5(b) and 5(d), respectively. Table 1 compares
results on all three molecules.

5. Conclusions and future work

We have presented a new approach based on robotics
methodology for effectively sampling the conformation space
of molecular structures, particularly those with interconnected
loops. By modeling a molecule as a branching robot, we
apply external forces to generate new conformations, and use
attractive, internal forces to maintain loop closure constraints.
While based on techniques from robotics, the background
required in this field is minimal.

We are aware only of [32] and [10] as other algorithms
for generating conformations of molecular structures with
loop constraints taken into consideration. Both of them must
deal with the problem that randomly perturbing portions of
interconnected loops could result in an algebraic system with
no solution; our approach is able to avoid the observed large
rejection probability by using internal forces to pull loops
closed.

The system, implemented in Java, was tested on several
model molecules with many interconnected loops, but few
degrees of freedom; even with no particular attention to code
optimization, it performs almost four times as fast on the cube
model molecule from [32]. Our results also show that the
algorithm begins sampling the space very effectively within a

short period of time (about 5 min), with the sampling becoming
finer as more conformations are generated.

Future directions. While our results indicate significant
speed-up in sampling conformational spaces, van der Waals
overlap and energy calculations have not yet been considered
in this paper. Their integration into our system, with a
special attention paid to speed and accuracy and along with a
systematic mathematical and bio-chemical validation, will be
pursued next.
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