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Abstract

We propose a combinatorial approach to plan non-
colliding motions for a polygonal bar-and-joint frame-
work. Our approach yields very eÆcient deterministic
algorithms for a category of robot arm motion plan-
ning problems with many degrees of freedom, where
the known general roadmap techniques would give ex-
ponential complexity. It is based on a novel class of
one-degree-of-freedom mechanisms induced by pseudo
triangulations of planar point sets, for which we pro-
vide several equivalent characterization and exhibit
rich combinatorial and rigidity theoretic properties.

The main application is an eÆcient algorithm for
the Carpenter's Rule Problem: convexify a sim-
ple bar-and-joint planar polygonal linkage using only
non self-intersecting planar motions. A step in the
convexi�cation motion consists in moving a pseudo-
triangulation-based mechanism along its unique tra-
jectory in con�guration space until two adjacent edges
align. At that point, a local alteration restores the
pseudo triangulation. The motion continues for O(n2)
steps until all the points are in convex position.

1 Introduction

In this paper we present a new approach to a category
of planar motion planning problems, including non-
colliding unfoldings of open and closed chains (robot
arms), even in the presence of certain types of obsta-
cles (movable convex polygons or exible polygonal
chains). All of our constructions are elementary and
are based on a novel class of planar embedded graphs
called pseudo-triangulations which possess rich com-
binatorial properties. We use techniques from Rigid-
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ity Theory and Visibility graphs, together with in-
sights gained from Oriented Matroid Theory. The
main ideas of our approach are best illustrated by the
basic problem of continuously recon�guring a simple
planar polygon to any other planar con�guration with
the same edge-lengths, while remaining in the plane
and without creating self-intersections along the way,
for which we will describe a simple and eÆcient al-
gorithm. This is done by �rst �nding motions that
convexify both con�gurations with monotone motions
(de�ned below), then taking one path in reverse.

The paper is organized as follows. In the remain-
ing of this introduction, we give an informal high-level
view of the result and its connection with previous
work. Preliminary concepts are de�ned in section 2.
Section 3 contains several combinatorial characteri-
zations of pseudo triangulations, as well as a sketch
of algorithms for computing them. Section 4 contains
the rigidity theoretic results on pseudo-triangulations.
Section 5 contains the description of the global con-
vexi�cation motion and complexity analysis. We con-
clude with some suggestions for further research.

Frameworks and Robot arms. A bar-and-joint
framework is a combinatorial graph G = (V;E) em-
bedded in the plane with rigid bars (�xed length
straight line segments) corresponding to the edges.
Edges can move freely in the plane around adjacent
joints (vertices). The motions preserve rigidly the
lengths of the graph edges, but impose no restric-
tion on the non-edges, which may increase or decrease
freely. In general, edges may cross and slide over each
other during the motion, but in this paper we are in-
terested in avoiding collisions and will not allow this.

Of particular interest are the monotone motions,
where all the pairwise interdistances between vertices
never decrease during the motion, thus guaranteeing
non-collision.

A linkage or robot arm is a planar framework whose
underlying graph is a non-self-intersecting path with n
vertices, and a closed chain is a simple planar polygon
on n vertices. Straightening a linkage means moving it
continuously until all its vertices lie on one line with
non-overlapping edges. Convexifying a chain means
moving it to a position where it forms a simple con-



vex polygon. Other types of frameworks of interest in
this paper include semi-simple polygons and pseudo-
triangulations, de�ned below.

The Carpenter's Rule Problem: Is it always pos-
sible to straighten a planar linkage, or to convexify a
planar chain? This question has been open since the
1970's. Recently, Connelly, Demaine and Rote [12]
have answered it in the aÆrmative. Their solution
still left open the problem: Find, algorithmically, a
�nite sequence of simple (�nitely described) motions
to straighten a linkage, or to convexify a polygon.

Previous Results on Recon�guring Linkages.
The general techniques for solving motion planning
problems based on roadmaps work well on problems
with bounded degrees of freedom, but yield exponen-
tial algorithms for high degree of freedom problems
such as the one we are interested in. See [32], [10],
[4] and [5]. In practical applications, probabilistic
roadmap heuristics were used instead, see [24], [18].
Under various conditions, problems about recon�gu-
ration of linkages range in complexity from polynomial
([26]) to NP- and even PSPACE-hard, see [19], [38],
[21].

The particular problem of straightening bar-and-
joint linkages and convexifying polygons has accumu-
lated a distinguished history, with some approaches
going back to a question of Erd�os [14]. See Toussaint
[34] for a fascinating account. There are abundant
connections with work done in the computational bi-
ology, chemistry and physics literature and motivated
by topics such as protein folding or molecular model-
ing. When crossings are allowed, Lenhart and White-
sides [26] have shown that the con�guration space has
at most two connected components and gave a linear
algorithm for convexi�cation based on simple motions
moving only a constant number of joints at a time. Re-
cent results in the mathematics literature [22] aim at
understanding the topology of the con�guration space
of closed chains, but they allow crossings. The univer-
sality result for mechanical linkages ([20], [23]) holds
for the general self-intersecting case.

Studying recon�gurations of linkages with non cross-
ing motions has received a recent impetus in [28],
and results on planar linkages using spatial motions
([7], [1]), trees, 3 and higher-dimensional linkages ([6],
[11]) have followed. The Carpenter's Rule question,
raised in the 1970's in the Topology community by G.
Bergman, U. Grenander, S. Schanuel (cf. [25]) and
independently in the early 1990's in the Computer
Science community by W. Lenhart, S. Whitesides, J.
Mitchell, seems to have �rst appeared in print in [26]
and [25]. It was recently settled by Connelly, De-
maine and Rote [12]: all chains can be convexi�ed,
all linkages can be straightened. Their approach is
to �rst prove (using linear programming duality and
Maxwell's theorem, using a technique originating in
Crapo andWhiteley [13] and Whiteley [35]) that there
always exists a local, in�nitesimal motion which never
decreases any interdistances. The actual velocities can
be found using linear programming. Then they pro-
vide a global argument, showing the existence of a

continuous deformation obtained by integrating the
resulting vector �eld.

Our Results. We strengthen and provide an al-
gorithmic extension of the above mentioned result.
While they have proven that the con�guration space of
planar non-crossing chains with the same orientation
is connected, we show how to algorithmically com-
pute a path, consisting of a �nite number of �nitely-
described arcs, between any two such con�gurations.
Along the way, we characterize a family of planar rigid
frameworks called pseudo-triangulations, which yield
1DOF monotone mechanisms when a convex hull edge
is removed, a result of independent interest in Rigidity
Theory. The rich combinatorial and rigidity-theoretic
properties of pseudo-triangulations which we present
in this paper are likely to add to the applicability of
this versatile data structure, a slight generalization
of the one introduced by Pocchiola and Vegter[29] in
their study of the visibility complex and recently ap-
plied to kinetic geometric algorithms ([2], [3]).

Novelty. Our approach is based on the idea of ab-
stracting oriented-matroidal properties that hold
throughout a portion of a continuous motion. The
rigidity theoretic properties of our generalized pseudo
triangulations are novel, as is the pseudo-triangulation
based approach to 1DOF monotone mechanisms for
�nding a path in con�guration space. Along the way,
we also give a generalization of a key lemma in [12]
by showing the non-existence of self-stress in bar-and-
strut frameworks of a more complex structure than
those arising from polygons.

Proof Techniques and Overview of the Convex-
i�cation Algorithm. The convexifying path, seen in
the (2n�3)-dimensional con�guration space (transla-
tions and rotations of the original chain being factored
out), is a �nite sequence of curve segments (arcs) con-
necting continuously at their endpoints.

Each arc corresponds to the unique free motion of
a monotone, one-degree-of-freeedom (1DOF) mecha-
nism induced by a planar pseudo-triangulation with
a convex hull edge removed. The mechanism is con-
structed algorithmically by adding n � 4 bars to the
original polygon. It is set in motion by pinning down
an edge and rotating another edge around one of its
joints. We show that this induces the whole frame-
work to move monotonically, i.e. with non-decreasing
interdistances between all pairs of vertices. One step
of the convexi�cation algorithm consists in moving
this mechanism until two adjacent edges align, at which
moment it ceases to be a pseudo-triangulation. We ei-
ther freeze a joint (if the aligned edges belong to the
polygon) and locally patch a pseudo-triangulation for
a polygon with one less vertex, or otherwise perform
a local ip of the added diagonals.

There are many ways to construct the initial pseudo-
triangulation (e.g. using an adaptation of the greedy
ip algorithm of Pocchiloa and Vegter [29]) or to patch
it at the alignment points. For the sake of the analysis,
we use a canonical way which helps us to keep track
of a global integer valued weight function f(n). Each



alignment step decreases f(n) by at least one unit.
Hence the algorithm stops in at most f(n) such steps.
The analysis of one of the convexi�cation schemes
would yield O(n2).

Combinatorial Rigidity and Pseudo triangula-
tions. A 1DOF monotone mechanism obtained from
a pseudo-triangulation is an abstraction and a canon-
ical representation of one of the many basic solutions,
inducing monotone in�nitesimal motions, that the lin-
ear programming approach of [12] would �nd for a cer-
tain position of the polygon in its con�guration space.

We characterize pseudo-triangulations in several
equivalent ways, exhibiting their rich combinatorial
properties. Some of these are specialized versions of
Laman's 2n � 3 count and Henneberg constructions
from combinatorial rigidity (see [36] or [17]). The
proof of correctness of our approach derives from these
properties, as well as from a generalization, from sim-
ple polygons to the wider class of pseudo-triangulation
frameworks, of the approach used in [12] based on LP
duality and Maxwell's theorem.

2 De�nitions and Preliminaries

References. For rigidity theory terminology and ba-
sic results, we refer the reader to [30], [36], [37] and
[17]. In particular, rigidity, �rst-order and generic
rigidity, as well as classical results on 2-dimensional
rigidity such as Laman's theorem, the Henneberg con-
structions, Lovasz and Yemini covering with two trees
[27] and Maxwell's Theorem are to be found there.
For oriented matroids, see [8], although we won't need
more than the circular hyperline (or local) sequences
of [9] and [16] (see also [33]).

Notation and abbreviations. Our setting is the
Euclidian plane. All index arithmetic is done mod n
in the set [n] := f1; � � � ; ng. We abbreviate \counter-
clockwise" as ccw and \one-degree-of-freedom mecha-
nism" as 1DOF mechanism.

(a) (b) (c)

(d) (e) (f)

Figure 1: (a), (b) and (c) Acyclic and (d), (e) and (f)
cyclic sets of vectors.

Acyclic sets of vectors and edges. A set of vectors
in R2 (with a common origin) is acyclic if it is strictly
contained in a half-plane, and cyclic otherwise. The
terminology comes from oriented matroid theory (see
[8]), an approach we won't explain in this abstract,
but which provided the guiding line in our search for

combinatorial properties of rigid frameworks. More
precisely, a set of acyclic vectors has no linear com-
bination with positive, not all zero coeÆcients that
sums them to zero, while in the cyclic case there is al-
ways one. Collinearities may occur, see the examples
in Fig. 1. The acyclic case of several collinear vec-
tors but in the same direction, and the rest in acyclic
relation with them will occur in our algorithm at the
beginning of each step. A special cyclic case, which
will occur at the end of each step of our convexi�ca-
tion algorithm, will have some vectors collinear and in
opposite directions, and all the others contained in a
half-plane.

An acyclic set of edges is a set of segments with
endpoints in a �nite set of planar points such that
the vectors around each vertex, taken in the direction
of the adjacent segments and directed away from the
vertex, form an acyclic set. See Fig. 2.

(a) (b)

1

Figure 2: (a) An acyclic set of edges. Around each
vertex, the vectors in the directions of the adjacent
edges are depicted. (b) A set of edges which is cyclic,
due to vertex 1.

Polygons, pseudo-triangles and pseudo k-gons.
A polygon on the ordered set of points P = fp1; � � � ; png
is obtained by joining pairs of consecutive points with
line segments (edges of the polygon). It is simple if
non-adjacent edges do not meet. In this case, there
is a well-de�ned and connected interior and exterior
of the polygon. We will assume that the vertices are
labeled in ccw order, i.e. such that the interior lies to
the left when the boundary of the polygon is traversed
in that order.

(a) (b) (c)

Figure 3: (a) A pseudo-triangle. (b) A semi-simple
pseudo-triangle. (c) A pseudo 4-gon and its two pos-
sible minimum pseudo-triangulations.

A pseudo-triangle is a simple polygon with three
vertices on its convex hull, joined by three inward



convex polygonal chains. In particular, a triangle is
a pseudo-triangle. We introduce semi-simple pseudo-
triangles as a special case which allows for some degen-
eracies: some of the inner convex angles may be zero,
but none of the inner reex angles should be � or 2�.
More generally, if we focus on the convex vertices of
a simple polygon and on the inner convex chains be-
tween them, we will refer to the polygon as being a
pseudo k-gon if it has exactly k convex vertices. See
Fig. 3(c) for an example. Semi-simple pseudo k-gons
allow simple types of degeneracies: some of the k con-
vex angles may be zero, but none of the reex angles
is � or 2�.

Note. A complete treatment of the general concept
of semi-simple polygons as the limit case for simple
polygons needs more technical apparatus and will not
be covered in this paper. See Fig. 4 for examples and
hints to some of the complexities involved in giving a
complete de�nition.
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Figure 4: (a) A semi-simple and (b) a simple poly-
gon on the same set of points, and (c) a semi-simple
collinear polygon and several possible interpretations
(and perturbations) of it. The main question is: which
way could an opening motion go?

For the main problem treated in this paper, and
if we start with a simple polygon, then the only non
simple polygons appearing along the way and which
are needed to make our approach work will be semi-
simple k-gons.

(a) (b) (c)

Figure 5: (a) A minimum pseudo-triangulation. (b)
A non-minimum pseudo-triangulation which contains
a minimum one. (c) A non-minimum pseudo trian-
gulation which does not contain a minimum pseudo
triangulation.

Pseudo Triangulations. A pseudo-triangulation of
a point set P is a partitioning of the convex hull of
P into pseudo triangles such that every point appears

as the vertex of at least one pseudo triangular face.
We can view it as a collection of edge segments with
this property. Equivalently, it is a special embedding
of a special planar graph such that the outer face is
convex and all internal faces are pseudo triangles. A
minimum pseudo triangulation is one which has the
least number of edges among all pseudo triangulations
of the same point set. See Fig. 5.

Pseudo k-gons can also be further subdivided into
smaller pseudo l-gons, l < k by the addition of inner
diagonals. Call that a pseudo subdivision. E.g. a
pseudo 4-gon can be partitioned into two (or more)
pseudo triangles, see Fig.3(c).

Frameworks. A framework (G;W ) is a graph G =
(V;E), jV j = n, together with a set of positive weights
(lengths) W = fleje 2 Eg. A realization of (G;W ) on
a set pf points P = fp1; � � � ; png is a mapping of ver-
tices to points and edges to line segments (i.e. an
embedding of G) so that the length of the segment
corresponding to edge e is le. The set of all possible
realizations of a framework is called its con�guration
space. As usual, we factor out translations and rota-
tions. The con�guration space may be empty, discon-
nected and in general has a complicated topological
structure. The actual values of the edge lengths are
not relevant to our discussion, hence by abuse of ter-
minology, from now on we will refer to a realization
(G;P) as a framework. A motion or recon�guration of
the framework is a curve (one dimensional trajectory)
in con�guration space going through the point giving
the framework realization.

(a) (b)

Figure 6: The same graph embedded as two combina-
torially distinct frameworks, which are 1DOF mecha-
nisms: (a) is monotone, (b) is not.

A combinatorial framework (G;M) associated to a
framework realization (G;P) is obtained by retaining
(in M) only some combinatorial information from the
underlying oriented matroid of the set of points P.
Since in this paper we work only with special types
of frameworks, we do not give here the general def-
inition. In our particular case, the information M
retained from the embedding will be, for each ver-
tex, the signed circular sequence in which a directed
line rotating ccw encounters the adjacent edge vectors.
An edge vector is recorded positively or negatively de-
pending on whether the rotating line encounters it in
its direction or in the opposite one. This concept is a
specialization of the local sequences of Goodman and
Pollack [16] (see also [9] and [33]) and retains (partial)
oriented matroid structure from the underlying set of



points P . In particular, we can read o� from this in-
formation the planar nature of an embedding of the
framework and the cyclic or acyclic nature of the edge
vectors at each vertex.

A framework is planar if its underlying graph is a
plane graph (i.e. a planar graph plus the information
about its face structure), and is embedded in a man-
ner compatible with the plane graph structure (i.e.
all faces are embedded as simple polygons). It is a
pseudo-triangulation if all internal faces are pseudo-
triangles and the outer face is convex. A framework
is acyclic if all the edge vectors around each vertex
are acyclic. We also allow for the special situation (to
the best of our knowledge, not dealt with in the lit-
erature on planar graph embeddings) when the faces
of the embedded framework are semi-simple pseudo k-
gons (in particular semi-simple pseudo-triangles). For
the careful reader who already noticed that some care
must be exercized with the de�nition of what it means
for the outside face to be a semi-simple pseudo k-gon,
we rush to add that it can be done in a natural way.
First we have to show that the outer face is also some
sort of pseudo k-gon. If the outer face is the con-
vex hull of the points, when we \look from the out-
side" (i.e. from inside the outer face) it has no convex
vertex, just a single reex chain, hence it is an outer
pseudo 0-gon. If it has a convex vertex (and hence one
reex chain) it is an outer pseudo 1-gon, etc. Notice
that the outer pseudo 3-gon looks quite di�erent from
the usual pseudo triangle: its vertices are outside, not
inside the convex hull of three convex vertices. For ex-
ample, the outer face of the framework in Fig. 6(a) is
an outer pseudo 1-gon, and for (b) is an outer 2-gon.
In general, the outer face will be the only one with
this special type of pseudo k-gon. Once we �xed this
detail, semi-simplicity is then extended in the obvious
way.

(a) (b)

Figure 7: (a) A generically rigid graph in an in�nitesi-
mally exible embedding. (b) A rigid framework with
a non-generically rigid underlying graph.

Two frameworks are combinatorially equivalent if
there is a one-to-one correspondence between their
vertices preserving edges and faces, the outer face and
its orientation, and the underlying partial oriented
matroid, i.e. the circular ccw order of lines through
the edges around each vertex. This just means that
they have the same underlying combinatorial frame-
work (and the embeddings have the same orientation,
but we'll skip this detail here). In particular, we de-
�ne equivalent pseudo triangulations. The class of
all combinatorially equivalent pseudo triangulations

is called a combinatorial pseudo triangulation. The
underlying combinatorial framework captures the in-
formation (and can be used to represent) the combi-
natorial pseudo triangulation.

A crucial idea in our convexi�cation algorithm will
be to use mechanisms obtained from pseudo triangu-
lations, and to recon�gure them continuously as long
as the combinatorial pseudo triangulation does not
change.

Rigidity, Generic Rigidity, In�nitesimal Rigid-
ity. A framework is (locally) rigid if its vertices cannot
be moved continuously while preserving the lengths of
the edges, except for translations and rotations. Oth-
erwise it is exible. It is in�nitesimally exible if there
exists an assignment of velocity vectors vi to each ver-
tex pi so that hpi � pj ; vi � vji = 0, where h; i is the
dot product. Otherwise it is in�nitesimally (or �rst-
order) rigid. A graph is generically rigid if it is rigid
for all embeddings on generic sets of points (see the
rigidity theory references for precise de�nitions). Cer-
tain embeddings of generically rigid graphs may be
in�nitesimally exible, or even exible. See Fig. 7.
Notice that these frameworks are cyclic. A graph is
minimally rigid if it is rigid and removing some edge
creates a graph which is no longer rigid.

Laman's theorem provides a combinatorial char-
acterization for minimally rigid graphs on generic em-
beddings: these are graphs on n vertices with exactly
2n� 3 edges, and such that every subset of k vertices
spans no more than 2k�3 edges. Henneberg construc-
tions provide an inductive construction of generically
rigid graphs via two types of local additions. A step
of type 1 involves adding a vertex, joined by two new
adjacent edges to two previously constructed vertices.
A step of type 2 adds a new vertex and three adjacent
egdes to three old vertices such that at least two are
joined by an edge, and then drops one of the exist-
ing edges among these three old vertices. The reader
unfamiliar with these constructions may recognize, in
the simplest applications of the type 1 steps which
preserve planarity, basic ways of producing triangula-
tions.

(a) (b)

Figure 8: (a) A 1DOF mechanism (Peaucellier's link-
age). (b) A framework with an underlying generically
minimally exible graph, and with a rigid (but not
in�nitesimally rigid) embedding.

One-degree-of-freedom mechanisms. A mecha-
nism is an embedded framework which is exible. Its
degree of freedom (DOF) is the dimension of its con�g-
uration space (after factorization to translations and
rotations). A generic minimally exible graph is a



generically rigid graph with one edge removed (in par-
ticular, it has exactly 2n� 4 edges). In a generic em-
bedding, a minimally exible graph is a one degree of
freedom (1DOF) mechanism, but in other embeddings
it may even be rigid, see Fig.8. Notice that these ex-
amples are planar but not acyclic.
Monotone mechanisms. A 1DOF mechanism is
monotone if the non-rigid pairwise interdistances ei-
ther all increase or all decrease during the local mo-
tion. See Fig.6 for examples. E.g the Peaucellier link-
age in Fig.8 is not monotone, neither is it acyclic.

3 Rigidity of Pseudo-Triangulations

From now on we are interested only inminimum pseudo
triangulations and show that they have a wealth of
combinatorial and rigidity theoretical properties.

Theorem 3.1 (Characterization of minimum
pseudo triangulations) Let G = (V;E) be a graph
embedded on the set P = fp1; � � � ; png of points. The
following properties are equivalent.

1. G is a minimum pseudo-triangulation.

2. The edges E of G form an acyclic and planar set
of segments, and E is maximal with this property
(of being both planar and acyclic).

3. G is an acyclic pseudo triangulation of the con-
vex hull of P.

4. (pseudo triangle Laman count) The faces of G
are pseudo-triangles and the number of edges is
2n� 3.

5. (planar acyclic Laman count) The set of edges
E is planar, acyclic and has 2n� 3 elements.

6. (planar acyclic Henneberg construction) G can
be constructed inductively as follows. Start with
a triangle. At each iteration, add a new ver-
tex in one of the faces of the already constructed
embedded graph (which will be an acyclic pseudo
triangulation). Connect in one of the two ways
(see Fig. 9):

(a) Type 1: (degree 2) Join the vertex with two
tangents to the already constructed part. If
the new vertex is outside the convex hull,
the two tangents are uniquely de�ned. If it
is inside an internal pseudo triangular face,
there are three di�erent ways of adding two
tangents to the three inner convex chains of
the face.

(b) Type 2: (degree 3) Add two tangents as be-
fore. Then choose an edge on the convex
chain between the two tangent points, re-
move it. This creates a pseudo 4-gon. Re-
pseudo triangulate by adding the unique bi-
tangent di�erent from the one just removed.

Moreover, if any of the above conditions is satis-
�ed, then the subgraph induced on any subset set of
k vertices has at most 2k � 3 edges (the hereditary
property).

For the proofs, we will need a series of basic de�ni-
tions and facts, which we present in a sketchy manner.
Given a point outside a convex hull, a tangent from the
point to the hull is a line segment containing all the
hull vertices on one side and touching it at a vertex.
Given two convex hulls, a bitangent is a line segment
touching each hull in one point and whose supporting
line does not separate the vertices on the same hull.

1. Given a convex hull and an exterior vertex, there
exist exactly two tangents from the point to the
hull.

2. Given a pseudo triangle and a vertex interior
to it, there exist exactly 3 tangents, all interior
to the pseudo triangle, from the point to the
(convex hull of the) three inner convex chains.

3. Given a pseudo 4-gon, there exist exactly two
ways of adding a bitangent between (the convex
hulls of) two inner convex chains. Each one in-
duces a partitioning of the pseudo 4-gon into two
pseudo triangles.

4. (Flips in pseudo triangulations) Two adjacent
pseudo triangles can be ipped: the unique com-
mon edge is deleted and replaced with another
one (for which there is a unique choice) to ob-
tain again two adjacent pseudo triangles (see
Fig.3(c)).

(a) (b)

Figure 9: Henneberg steps. (a) type 1 and (b) type
2. Top level, when the new vertex is added on the
outside face, bottom level, when it is added inside a
pseudo triangular face.

Proof: 1 ! 2 This is the most tedious to prove,
so we give only a short sketch here. The proof is by
contradiction. Assume G contains an acyclic vertex
A. Then A is internal (not on the convex hull). Using
the above properties, we argue that there is a sequence
of deletions of edges, starting with an edge adjacent
to A, and re-pseudo-triangulations of the larger faces
thus obtained, which contains fewer edges.

2 ! 1 Assume G is maximally planar and acyclic.
We prove by contradiction that if G is not a pseudo
triangulation, then we can add edges in an acyclic and



planar fashion, thus contradicting maximality. If G
is not connected, add bitangents between the convex
hulls of di�erent components. If it does not contain
its convex hull edges, add them. These operations
preserve planarity and acyclicity, hence by maximality
we can assume G is both connected and contains the
convex hull edges. Similarly, we may argue that its
faces are semi-simple polygons. If they are not pseudo
triangles, we can always add internal bitangents.

2 ! 3 follows immediately now, and the reverse
from an adaptation of the proof of the �rst implica-
tion.

3 ! 2 is straightforward.
3 ! 5 This is one of the interesting parts. We

present here a proof based on a continuous motion ar-
gument. Move the points continuously from the orig-
inal position to convex position. Changes happen at
discrete steps, when three points on the same face
become collinear. It is easy to show how to locally
patch the pseudo triangulation at each event without
increasing the number of edges. When all the points
reach convex position, the pseudo triangulation be-
comes a triangulation of a convex set, which has ex-
actly 2n� 3 edges.

5 ! 4 follows from 1 and 2.
The fact that any subset of k vertices induces at

most 2k � 3 edges folllows easily, since acyclicity and
planarity are hereditary properties (hold on subsets).

5 and 4 ! 6 We work out the construction in
reverse. Because of the edge count, a simple count-
ing argument showss that there must exist at least
one vertex of degree strictly less than 4. If there ex-
ists a vertex of degree 2, its two adjacent edges are
tangent to the face obtained by removing them, be-
cause of acyclicity. For a vertex of degree 3, the two
extreme edges adjacent to it must be tangents (be-
cause of acyclicity). The face obtained by removing
the third edge is a pseudo 4 gon (follows from the
other equivalences), and the addition of the second
bitangent recreates a pseudo triangle. Removing the
vertex, the remaining graph satis�es the same prop-
erties (because of the hereditary property). Hence the
argument continues.

6 ! 3, 5 and 4 are straightforward: at each step
the number of vertices increases by 1 and the number
of edges by 2.

2

To simplify the terminology, in the rest of this paper
we will refer to a minimum or acyclic pseudo triangu-
lation as simply a pseudo-triangulation.

Theorem 3.2 (Algorithms) Any acyclic set of edges
can be extended to a pseudo-triangulation by arbitrar-
ily adding edges while preserving acyclicity. A canon-
ical extension can be constructed deterministically in
O(n log n) time. If the set of points contains repeti-
tions or collinearities, the resulting faces may be semi-
simple pseudo triangles.

Note that in this paper we have not aimed at propos-
ing the best algorithmic solutions for constructing
pseudo triangulations and concentrated instead on

their properties and relationship to the convexi�ca-
tion problem. To illustrate that there is not a unique
way for constructing them (because just simply adding
edges at randomwhile preserving acyclicity would work),
we sketch here two possible constructions for pseudo
triangulations of polygons which run in O(n2) time.
We will use the second one in the complexity analysis.
More eÆcient constructions (canonical greedy), run-
ning in O(n log n) can be obtained via an adaptation
of Pocchiola and Vegter's greedy ip algorithm [29].
We wish to thank Michel Pocchiola for pointing this
out.

Incremental algorithm. The pseudo triangulation
is constructed incrementally, adding one edge of the
polygon at a time, in ccw order, starting at a vertex
on the convex hull. This insures that the last step
will reuse a previously inserted edge and won't neces-
sitate any additional deletions. At each step of the
insertion we add a vertex, a polygon edge and one ad-
ditional edge. However, we might have to displace or
modify several other edges, depending on whether the
acyclicity condition, the planarity condition, or both
are violated by the insertion of the new polygon edge.
We show how to modify some of the added pseudo-
triangulation edges using an argument which we call
the rubber band argument with snapping, which locally
modi�es (in linear time) the edges adjacent to the new
polygon edge to preserve acyclicity and planarity. The
details are deferred to the full paper.

Figure 10: A typical step of the incremental algorithm
for computing the pseudo-triangulation of a polygon.

Recursive algorithm. Compute the convex hull of
the polygon. The edges of the convex hull which are
not edges of the polygon are subdividing the polygon
into pockets. Imagine removing the pockets: what is
left is a convex polygon. Triangulate it. Then put



back the pockets and bend the diagonals of the tri-
angulation along shortest (geodesic) paths inside the
polygon.

The process can now be repeated for each pocket.
But the convex hulls of pocket subpolygons may in-
tersect (not along polygon edges, but along some of
the added hull edges). Again, we will bend the added
convex hull edges to get geodesic convex hulls, then
recurse inside each pocket.

The construction has the added advantage of be-
ing able to count the number n�3 of added edges via
a simple charging scheme, whereas an edge is charged
to either a geodesic hull of some subpolygon or to a
shortest path between two vertices of such a subpoly-
gon. We omit the details here.

We associate a weight function to the pseudo trian-
gulation constructed by this algorithm: f(n) = num-
ber of bends in all the shortest paths and geodesic
hulls of this construction. Since there are linearly
many shortest paths and geodesics accounted for (we
consider maximal paths only, not subpaths), and each
can have at most linearly many bends, f(n) = O(n2).
When the polygon is convex f(n) = O(n). We will
use this function for the complexity analysis.

Theorem 3.3 (Rigidity property of pseudo tri-
angulations) Pseudo-triangulations are in�nitesimally
rigid (and hence rigid), and minimally so (removing
an edge the property no longer holds).

The proof is an adaptation, using the properties
of pseudo triangulations, of known proofs of Laman's
theorem for generic rigidity of graphs with the heredi-
tary (2n�3)-property (every subset of k vertices spans
at most 2k � 3 edges, and there are 2n � 3 edges in
total).

4 Monotone 1DOF mechanisms from pseudo trian-
gulations

Theorem 4.1 (Main property of acyclic pla-
nar pseudo-triangulations) A rigid bar-and-joint
framework whose underlying graph is obtained by re-
moving a convex hull edge from a pseudo-triangulation
is a 1DOF monotone mechanism.

Proof (sketch). The proof is an extension of the
one in [12] (subsequently refered to as the \CDR proof"),
using the acyclic property of the edges, and the linear
independence in the con�guration space of the 2n-4
bars. In particular, we have strengthened their result,
by showing that any framework which is generically
independent (obtained from a generically rigid (de-
pendent) framework by removing some bars), acyclic
and does not contain all the convex hull edges is ex-
ible and monotone.

We �rst show that there exists a unique in�nitesi-
mal motion (this is a stronger statement than the one
in the CDR proof for polygons, because we restricted
the number of degrees of freedom of the mechanism).
The proof depends only on the combinatorial type of
the pseudo triangulation, hence as long as this does not

change, the motion continues. This step can be made
more precise by an argument as in the CDR proof
(based on integration of the resulting vector �eld), and
produces the desired trajectory in con�guration space.

To prove the existence of the monotone in�nitesi-
mal motion, we also have to adapt slightly the argu-
ment in the CDR proof, using LP duality, Maxwell's
Theorem lifting and the mountain-valley argument of
[36]. Add all possible diagonals (\struts") and pla-
narize the graph. By LP duality it suÆces to show
that there exists no self-stress which is positive on
the struts. For the sake of a contradiction, assume
there exists such a self-stress and use Maxwell Theo-
rem to lift the picture in 3d to a polyhedral surface.
Then cutting the polyhedral surface with a horizon-
tal plane epsilon below the vertex with maximum z-
coordinate in the lifting, one obtains a polygon, which
will have at least three vertices on the convex hull that
must correspond to mountain edges. The projection
of the mountain edges on the plane of the section in-
duces three cyclic vectors, which can only be along
the edges of the pseudo triangulation. This contra-
dicts the acyclicity of the pseudo-triangulation. See
Fig. 11, where M is the vertex where the maximum
is attained. Just like in the CDR proof, the argument
can be easily extended to the case when the maximum
is attained on an edge or face, and acyclicity guaran-
tees that we obtain a contradiction.
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Figure 11: The mountain/valley argument: (a) Cut-
ting just below the vertex of maximum z-coordinate,
we get the image in (b).

Our case needs a few more details added to the
basic structure of CDR proof. First, we need the as-
sumption that the rank of the original system of equal-
ities (corresponding to the bars of the framework) is
2n � 4, otherwise there will be no basic solutions to
the linear program. The argument based on Maxwell
lifting is then used to show the existence of a positive
solution, however we need extra care, since removing
an edge from the framework to get the rank down to
the critical value of 2n � 4 does not, in itself, imply
that there exists a strictly increasing motion on all di-
agonals despite the fact that the mountain-valley ar-
gument holds on the interior points. Indeed, there are
both monotone and non-monotone mechanisms aris-
ing from pseudo-triangulations by removing an edge,
but only those obtained by removing a convex hull
edge are monotone. A simple extension of the argu-
ment covers the convex hull vertices and semi-simple
pseudo triangles. We defer these details to the full
paper.



5 The Main Result

Each monotone mechanism induced by a pseudo tri-
angulation can be moved as long as the edge vectors
remain acyclic. We complete the proof by showing
how to glue together the trajectories corresponding to
these motions. A change in acyclicity occurs when
two bars become collinear. At that point, we have to
recompute a new pseudo triangulation. The following
theorem proves that this can be done either with local
changes and keeping the same number of vertices in
the original polygon, or by decreasing by at least one
the number of vertices of the polygon and applying
induction.

Theorem 5.1 (Gluing trajectories at alignment
events) When two edges align, one of the following
cases two can occur:

1. Two adjacent edges of the polygon become collinear.
In this case, we freeze the joint, eliminating one
vertex of the polygon (and apply induction to
continue).

2. Two adjacent added diagonals or one diagonal
and an edge of the polygon become collinear. In
this case, we perform a ip in the pseudo trian-
gulation to obtain a pseudo triangulation with a
semi simple face.

An example is depicted in Fig. 12.

(a) (b) (c)

Figure 12: Patching the pseudo triangulation by a lo-
cal ip when two bars (not both polygon edges) align.

The above theorem is not stated in full generality,
to avoid cluttering the overall picture with details. In
particular, several vertices may straighten simultane-
ously, but the same type of argument would work. Al-
ternatively, we can imagine a perturbation argument,
used to help with the computation of a new pseudo-
triangulation at the boundary case. We must avoid
using the same two edges that just became collinear.
This can be done by perturbing the joint vertex to
a nearby position which would intuitively correspond
to what the mechanism would look like \right after"
passing through the straightened position. It will no
longer be acyclic, and there will be exactly one edge
whose removal will make it acyclic again. Then we can
use the extension theorem for pseudo triangulations to
add a new edge. Perturbing back to the original po-
sition of the vertex, the induced mechanism will have
two overlapping edges and one of its faces will be a
semi-simple pseudo triangle (see Fig.12).

Another problem occurs whan we freeze two aligned
edges of the polygon. In this case we must get rid of
the other diagonals (if any) adjacent to the vertex,
which can also be done by local changes (but may
involve linearly many edges). Occasionally this oper-
ation rigidi�es the framework: then we must pick up
another convex hull edge to remove from the convex
hull. All these details are unproblematic, and the full
description is deferred to the full paper.

Theorem 5.2 Termination and complexity anal-
ysis The convexi�cation of a polygon terminates in
�nitely many steps, which is at most O(n2) steps if
we use the weight function based on shortest paths and
geodesic hull as invariant.

Proof With some care in the patching strategy, it
can be shown that no combinatorial pseudo triangula-
tion will occur twice in the convexifying motion. Since
there are �nitely many combinatorial pseudo triangu-
lations, the algorithm terminates.

A B

 A  B
 C

  A
  B

  C

C

Figure 13: When the two aligning edges do not belong
to the polygon, there are two possible diagonal ips.
A ip reduces the number of bends in geodesic paths
using the vertex involved in the alignment.

Amore careful accounting can bring down the num-
ber of steps to O(n2). We use the weight function
introduced for the recursive algorithm in section 3 to
keep track of the number of bends in the shortest paths
and geodesic hulls. The key observation is that a lo-
cal ip decreases the number of bends by at least one
(or more, depending on how many geodesic paths go
through the vertex where the event happened). The
special events (when two edges of the polygon align)
are only linearly many, and they may not increase the
weight function by more than O(n) each (or: recom-
pute a recursive pseudo triangulation on fewer vertices
at that point). The �nal value of the weight function
is at most linear. Hence the number of steps is at most
O(n2).

Theorem 5.3 Main Result: Convexi�cation of
Planar Chains with Monotone Motions Every
planar polygon can be convexi�ed with at most O(n2)
motions. Each motion is induced by a 1DOF mono-
tone mechanism constructed from a pseudo triangula-
tion with a hull edge removed, which is moved until
two of its adjacent edges align. At that point a local
ip of the diagonals restores a pseudo triangulation.
The complete trajectory in con�guration space is a se-
quence of simple curves, each one naturally parametrized



by a rotating edge in the work space. A �rst pseudo
triangulation can be computed eÆciently (O(n log n)
or O(n2)) by several algorithms and updated in (at
most) linear time per step.

6 Conclusions

We have shown how to compute algorithmically a tra-
jectory in the con�guration space of a planar linkage,
corresponding to a motion that convexi�es the poly-
gon without producing self-crossings along the way.
The proof is based on a number of novel ideas, most
prominently the use of pseudo triangulations, whose
main combinatorial and rigidity theoretic properties
have been described. But still many more await at-
tention, such as: study the graph whose vertices corre-
spond to pseudo triangulations and whose edges cor-
respond to ips in pseudo 4-gons. What is its diam-
eter? How many pseudo triangulations of a point set
or polygon are there? Is there any interesting poly-
tope whose 1-skeleton is the graph of pseudo triag-
ulations (as there is for regular triangulations [15])?
Since pseudo triangulations can be naturally de�ned
in the coordinate-free context of oriented matroids,
what combinatorial properties would distinguish them
(as a collection) from the ones realizable in the eu-
clidian plane? Is there a concept of a regular pseudo
triangulation, as it is for triangulations?

From the point of view of Rigidity Theory, we have
exhibited a class of planar rigid graphs with elegant
combinatorial properties. We think that the rigid-
ity theoretic properties of pseudo triangulations will
prove to be useful in other applications. It would be
interesting to understand the properties of the non-
monotone mechanisms obtained by removing a non-
convex hull edge of a pseudo triangulation and their
degenerate con�gurations.

All the pictures in this paper have been produced
using the software package Cinderella [31], which sup-
ports motions of 1DOF mechanisms and even ani-
mates them. But not all \pseudo-triangulation-minus-
hull-edge" mechanisms admit a Cinderella construc-
tion. It would be interesting to classify pseudo trian-
gulations in a complexity hierarchy, based on the ex-
tra primitives that should be included in Cinderella to
simulate them (i.e. added to basic ruler and compass
constructions). This is also related to the problem of
computing (in the real RAMmodel) the coordinates of
the points realizing a con�guration of a pseudo trian-
gulation mechanism at one edge alignement moment,
given the coordinates of the points at the previous
event. It probably cannot be done better than using
standard numerical approximation techniques.

A web page containing Cinderella animations
and other graphical and 3d illustrations of our
approach can be found at the author's url,
http://cs.smith.edu/ streinu. Thanks to my stu-
dents Beenish Chaudry, Victoria Manfredi, Christine
Rice and Elif Tosun for their help.
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