
Smith ScholarWorks Smith ScholarWorks 

Computer Science: Faculty Publications Computer Science 

11-16-2017 

Efficient pebble game algorithms engineered for protein rigidity Efficient pebble game algorithms engineered for protein rigidity 

applications applications 

Mojtaba Nouri Bygi 
Smith College 

Ileana Streinu 
Smith College, istreinu@smith.edu 

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Bygi, Mojtaba Nouri and Streinu, Ileana, "Efficient pebble game algorithms engineered for protein rigidity 
applications" (2017). Computer Science: Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/csc_facpubs/292 

This Conference Proceeding has been accepted for inclusion in Computer Science: Faculty Publications by an 
authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/292?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Efficient pebble game algorithms engineered for
protein rigidity applications

Mojtaba Nouri Bygi
Department of Computer Science

Smith College
Northampton, Massachusetts, USA

mnouribygi@smith.edu

Ileana Streinu
Department of Computer Science

Smith College
Northampton, Massachusetts, USA

istreinu@smith.edu

Abstract—Pebble game rigidity analysis is an efficient method
for extracting rigidity and flexibility information of biomolecules
without performing costly molecular dynamics simulations. The
standard algorithm works on a multi-graph associated to a
mechanical model constructed from an arbitrary atom-bond net-
work. Motivated by large scale protein flexibility and simulated
unfolding applications, we have developed a faster and more
robust variation tailored to the specificities of bio-polymers. We
describe this new phased pebble game as implemented in the new
version of our software Kinari-2.

Index Terms—protein rigidity, flexibility, simulated unfolding,
dilution, rigid clusters.

I. INTRODUCTION

Large conformational changes are evidence of important
functions performed by a protein. Studying such dynamic tran-
sitions is however challenging, both from an experimental and
computational point of view. Rigidity analysis is an alternative
method used to extract flexibility information from protein data
available in the Protein Data Bank. In this paper we describe a
new phased pebble game algorithm, engineered for efficiency
and robustness of the rigidity calculations implemented in the
new version of our software Kinari-2.

Modeling protein flexibility and motion. Hardware enhanced
physics-based molecular dynamics simulations have been suc-
cessful in simulating fast protein motions [12]. But such
computations are extremely intensive: even with access to
large computer clusters or specialized hardware, only spo-
radic results have been obtained in simulating the motions
of a single protein structure at biologically significant time
scales. Since slow motions can provide significant functional
insights about proteins, various alternative methods have been
explored.

To achieve efficient and reasonably accurate simulations,
there is a growing consensus that detailed, full atom infor-
mation must be sacrificed in favor of coarse-grained models,
which partition the molecule’s atoms into clusters and treat
each cluster as a single unit. Common clustering criteria are
based on the chemical structure, distance cut-offs or various
manners of modeling the inter-atomic bonds and interactions.
As an example of the first kind, protein residues can roughly

Funded by NIH 1R01GM109456 and NSF CCF-1319366.

be represented by their Cα atoms; the disadvantage is that,
unless incorporated by other means in the model, residue-
specific information is lost. Standard distance-based criteria
use a cutoff distance, and approximate the interactions between
atoms to shorter range versions.

The Gaussian Network Model (GNM) and its many varia-
tions are among popular coarse-grained approximation models,
with several implementations widely available (e.g. [22]).
They view the interactions between protein residues as elastic
springs, inducing oscillatory motions subject to Hooke’s Law.
An associated matrix is used to compute the normal modes and
to group the residues into domains, which help infer large scale
displacements among them. Useful functional information can
be gathered in this manner [15]. GNM has been shown
to have good agreement with experimental crystallographic
B-factors. Due to both experimental artifacts and motions
within the molecule, it provides a measure of uncertainty
for atomic positions in crystal structures solved with X-ray
crystallography [13]. GNM calculations have also been used to
compute clusters of protein residues, or GNM-based domains,
which have been compared to the structural domains assigned
by classification schemes (SCOP, CATH) and experimental
crystallographers [15].

RigidFinder [1] compares multiple X-ray structures or NMR
(Nucleic Magnetic Resonance) models of the same molecule.
Closely similar subsets of atoms in the two structures, up
to trivial rigid transformations, are treated as rigid clusters,
and differences between them are considered flexible regions.
By its nature, this method is limited by the availability of
NMR data or structures crystallized in multiple conformational
states.

Rigidity analysis is an alternative clustering method based
on kinematics principles and combinatorial rigidity theory.
Instead of using springs to models the molecular bonds and
other weak interactions, it treats them as rigid bars or hinges
connecting small rigid bodies centered at atoms. Larger groups
of atoms that are likely to move together as rigid units are
then identified. The molecule is decomposed as a collection
of rigid clusters connected into a flexible network. This de-
composition can then be used as a starting point for analyzing
and predicting motions and conformations of a molecule, or



for a simplified, combinatorial version of unfolding based on
the dilution of weak, non-covalent interactions.

The rigid cluster decomposition, illustrated in Fig. 1, pro-
vides immediate information on the flexibility of the molecule.
For example, having many small clusters in some areas (the
uncolored parts in Fig. 1) may be related to small fluctuations
responsible for the B-factors. A small number of large clusters
(colored differently in Fig. 1) suggests the presence of slow
motions that would bring these large clusters apart.

Heuristic implementations of rigidity-based decompositions
of protein structures have been available for over 15 years,
such as the stand-alone executable ProFlex-FIRST [14], the
web server FlexWeb-FIRST [10] and, more recently, our
own KinariWeb [7]. Without the need of detailed dynamic
simulations, biologically relevant information extracted from
rigidity analysis has been demonstrated on a handful of protein
structures [9], [11], [18]. Yet, the model has not provided
convincing evidence that it has predictive power or that func-
tional information can be automatically extracted on a larger
scale, in part due to the complexities involved in developing a
robust software suite capable to handle very large molecules
and datasets. The KINARI project, described next, aims at
fulfilling this need.

KINARI (KINematics And RIgidity Analysis of
biomolecules) is an on-going project aiming at overcoming
many of the limitations of previous rigidity-based
implementations. The first version, available since 2011
at http://kinari.cs.umass.edu, is a free open-access web server.
In this paper, we present a key algorithmic improvement
developed for the software kernel of the second version
of KINARI. For comparison purposes, we refer to the first
released version of the software [7] as Kinari-1 and use
Kinari-2 for the new version described here.

Kinari-1 was designed to analyze a single biomolecule at
a time. It was tested and profiled in 2011 on approx. 28000
entries from the Protein Data Bank (PDB); we know that it
fails to run to completion on many other entries. This is due
primarily to the idiosyncrasies of the PDB file formats and to
the limitations in processing very large size molecules. The
goal of Kinari-2 is to eliminate these limitations and to make
possible the efficient large scale study of protein flexibility. An
overview of the new design can be found in [19], and various
aspects of the new system have been previously reported in
[2]–[4]. In this paper we focus on new methods engineered
for allowing rigidity analysis to be performed efficiently on
large and very large protein structures and complexes.

Single molecule rigidity analysis, on a large scale. In
KINARI, the rigidity analysis of a single molecule proceeds
along the computational pipeline described in Fig. 2. The
input is a PDB file. The output is a file describing the rigid
cluster decomposition of the selected molecule. This file is
subsequently sent to a JMol visualizer to produce interactive
3D images with colored clusters as in Fig. 1. A tutorial
introduction to the method of rigidity analysis is available on
the KinariWeb site [20]. One of the goals of the new design of

Fig. 1. Rigid cluster decomposition of horse heart cytochrome c (PDB id
1HRC) from [5].

KINARI was to make it work on a large scale, on big data and
on biologically motivated applications. This paper addresses
the specific software engineering, modeling, algorithmic, and
mathematical problems that underlie the re-designed software
kernel based on pebble game algorithms.

Simulated unfolding with Kinari-Dilution. Bond dilution,
an application of rigidity analysis pioneered in [18], is a
simplified model of protein unfolding. It starts with a single
protein and generates a large dataset of rigid decompositions
diluted by strength of non-covalent interactions (hydrogen
bonds and hydrophobics). The method was implemented as
a prototype in Kinari-1 [6] but, due to an underlying quick-to-
implement but slow-to-execute algorithm and an unsatisfactory
visualization method for the rigidity dilution results, it was not
made publicly available. In Kinari-2 we avoid unnecessary re-
runs of the pebble game algorithm by streamlining the kernel
code. We also provide an improved visualizer with a dilution-
specific consistent colorings of the clusters described in [3],
[4].

Overview. This paper focuses on ‘methods’ and describes
the principles underlying the newly engineered phased pebble
game for protein rigidity analysis, along with its complexity
analysis and implementation in Kinari-2. The algorithm has
been tested for correctness and accuracy. The corresponding
code and kernel library are currently being integrated in the
larger Kinari-2 system. Large scale testing and profiling are
under way, and the results are planned to be reported in the
long, journal version of this paper.

II. METHODS

In this section we start by briefly describing the original
pebble game algorithm implemented in Kinari-1, followed by
a presentation of the various techniques and optimizations that
underlie the phased versions of both the new single-protein and
the protein-dilution methods.

http://kinari.cs.umass.edu


Fig. 2. The processing pipeline of Kinari-1 [7] as modified in Kinari-2. A
pre-processing step is extracting the tree for the first part of the phased pebble
game, prior to running the second phase.

A. Single Molecule Rigidity Analysis in Kinari.

Kinari rigidity analysis of a single molecule proceeds ac-
cording to the computational pipeline synthesized in Fig. 2.

The first step is to extract the molecules of interest from
the input PDB file, and prepare them for analysis by extract-
ing the atom-covalent bond network and calculating relevant
weak bonds and interactions. A mechanical body-bar-hinge
structure is constructed from the atom-bond network. A body
corresponds to small groups of atoms known a priori to
behave like rigid units. For example, a body is assigned to
an atom connected by covalent bonds to three or more other
atoms, or to an entire peptide unit. Bonds connecting these
bodies are modeled as either hinges or with a small number
of bars, reflecting their strength. To produce rigidity results
consistent with previous implementations, and which were
validated on experimental data, it was found that covalent and
hydrogen bonds are best modeled as hinges, and hydrophobic
interactions as 3 bars. However, this mechanical model has not
yet been validated on a large scale. Therefore, Kinari includes
a parameter-tuning step, where the user can experiment with
other values of the bond modeling parameters, and use a
number of bars between 1 and 6 for each type of chemical
bond.

The next step is to build a multi-graph representation for
body-bar-hinge structure. By using a standard, mathematically
proven approach to analyze body-bar-hinge frameworks de-
scribed in [21], we associate a node to each body, an edge to
each bar and 5 edges to a hinge. The resulted multi-graph is
the input to the main algorithmic procedure underlying body-
bar-hinge rigidity analysis, called the (6, 6)-pebble game and
introduced in [16]. This algorithm is combinatorial and does
not depend on the atom coordinates, which makes it much
faster than numerical calculations such as the linear algebra
required by GNM.

The pebble game algorithm computes a decomposition of
the multi-graph into components, which are then translated
into rigid clusters in the mechanical and molecular model.
Unless the entire structure is rigid, the rigid clusters are
connected (through hinges and bars) into a flexible framework.
The mechanical interpretation is that any possible motion of
the flexible framework near the native state maintains these
rigid clusters, i.e. the pairwise atomic distances within a given
cluster are maintained.

Finally, Kinari integrates a JMol-based visualizer scripted
to allow the user to interactively explore the resulting rigid

cluster decomposition.

B. The Pebble Game Algorithm

The computational core of Kinari-1 is the provably correct
(6, 6)-pebble game algorithm on multi-graphs from [16]. The
algorithm starts by creating a data structure called a pebbled
graph, which is maintained throughout the execution. The
pebble graph is an oriented multi-graph with additional data
called pebbles on its vertices. The initial state of the pebbled
graph has 6 pebbles on each vertex of the input multi-graph
and no edges.

The algorithm uses an arbitrary ordering of the input edges
and loops through them. At each step in the loop, an attempt is
made to insert a new edge of the multi-graph into the pebbled
graph. The attempt is successful if at least 7 pebbles are
present, or can be gathered on the endpoints of the candidate
edge; otherwise the edge is rejected. If inserted, the edge is
oriented arbitrarily and a pebble is removed from the source
of the directed edge. To gather pebbles from other vertices,
the rules of the ‘game’ require a depth-first search along the
existing directed edges of the pebbled graph, followed by a
‘transport’ of the pebble from the location where it was found
to its destination via a reversal of direction of edges along the
path. After adding all the edges, the remaining pebbles give
precise quantitative information on the number of degrees of
freedom in the corresponding mechanical structure from which
the multi-graph was constructed.

This basic pebble-game algorithm is further enhanced to
also compute and maintain the rigid components as sets of
vertices in the pebbled graph. When a new edge is inserted,
the algorithm checks whether two or more components should
be merged together into some new, larger component. This
algorithm lies at the core of the software library underlying
Kinari-1.

C. Phased pebble game algorithm

In Kinari-2, we have developed a variation of the pebble
game algorithm with components called the phased pebble
game. It takes advantage of the fact that polymers such as
proteins, RNA and DNA have a specific tree structure with
a well-defined linear backbone. The underlying tree, properly
constructed in a pre-processing phase, is used to improve the
algorithm’s efficiency by eliminating over 5

6 of the pebble
searches that the original algorithm would have performed.

The phased pebble game splits the edge-inserting loop into
two (or more) phases. The state of the pebble game is saved
after each phase, and the algorithm is resumed from this
saved state rather than started from scratch. For clarity, we
illustrate our method only with proteins. Due to the sequential,
polymeric structure, it is easy to see that a similar technique
can be applied to the DNA or RNA structures available in
PDB files.

Initial phase. Instead of starting with an initial empty pebbled
graph (with 6 pebbles on all vertices and no edges), the initial
phase uses the linearity of the protein backbone and a tree
obtained by attaching the residues to it. With the exception of



five residues which have cycles in their atom-bond network
(HIS, PHE, PRO, TRP, TYR), the standard amino-acids lead
immediately to such a tree structure. The exceptions are treated
separately by taking a spanning tree (breaking the cycles
arbitrarily). In this phase we use a pre-computed tree produced
by a (new to Kinari-2) pre-processing phase which calculates
a well structured body-bar-hinge structure from the input PDB
file: it is well structured because the order of the bodies and
hinges is not arbitrary, but is dictated by this underlying tree
structure. The tree has one node for a body and an edge for
a hinge arising from the protein covalent structure. The linear
backbone has two types of nodes, corresponding, alternately,
to the rigid peptide unit and the rigid body centered at the
Cα atom. The backbone edges are oriented from the N to the
C terminus of the protein. The non-backbone tree edges are
oriented towards the linear backbone.

Linear Backbone. We do not need to run the pebble game to
insert the backbone edges. Rather, we can directly leave the
pebbled graph in a state compatible to what would result after
inserting all the backbone edges, in their natural, sequential
order and oriented from the N to the C terminus of the
protein backbone. This state can be generated directly from
the input body-bar-hinge file, by placing 1 pebble on each
backbone body, except on the C-terminus body, which gets
6 pebbles. It is easy to prove the validity of this simple rule,
since the backbone bodies are connected by hinges, and each
hinge amounts to 5 edges in the pebbled graph (which thus
consumes 5 pebbles and leaves just one on each body except
the last one at the C terminus).

Tree towards the backbone. Similarly, the tree edges arising
from residue bodies and their covalent bonds, being oriented
towards the linear backbone, will lead to the residue bodies
all being left with exactly 1 pebble after each edge insertion.

General phased pebble game. Generalizing the previous
procedure, our new phased pebble game algorithm saves an
internal pebble-graph state and makes it available as the
starting state for the next phase. This approach is used to
significantly improve the calculation of a protein dilution
rigidity analysis, described next.

D. Dilution analysis

Dilution is a simplified model for protein unfolding. It
removes all the hydrogen bonds one by one, in the order of
some pre-computed energy. Hydrogen-bond dilution [17], [18]
is one of the first applications that demonstrated the usefulness
of rigidity analysis in protein studies. With the tools provided
by the FIRST software [11], the dilution rigidity results are
reported using a 1D comparison plot called a dilution plot,
which traces the residues inside a rigid cluster with similar
colors and along the protein sequence.

In FIRST and in Kinari-1, dilution was performed by
running the full rigidity analysis for each structure of the
sequential diluted dataset, where one structure differs from
the previous one by a single hydrogen bond. The redesigned
kernel in Kinari-2 permits the saving of the state of the pebble

game on one structure, with the purpose of reusing it as a first-
phase when analyzing the rigidity status of the next structure
(which has just one more hydrogen bond). Therefore, we only
need to run the pebble game once and persist the structure each
time we add a new bond. When the algorithm is completed
with all the edges being inserted, we run a post-processing
phase in which the persisted structures are analyzed in order
to produce the consistent coloring described in [3], [4] and
assign it to all the rigid components, throughout the dilution.

III. IMPLEMENTATION

To achieve both high performance and ease of development,
we implemented the phased pebble game in C++, and used
Python for the pre-processing and post-processing phases.

File formats. The input files are PDB files from the Protein
Data Bank. The mechanical structure of the molecule is
extracted from a PDB file into an XML-formatted BBH (body-
bar-hinge) file.

We also have XML-based formats for the multi-graph and
the pebbled graph, when it is necessary to have them serialized
(e.g. during dilution). Other utilities include conversions from
internal pebbled graph format to body-bar-hinge, and this is
especially useful during dilution and at the end of a single-
molecule rigidity analysis.

Multiplicity of edges. As a simplification in maintaining
and using the multi-edges corresponding to different types of
bonds, we assign integer weights rather than multiplying the
edges. The new pebble game algorithm will attempt to insert a
multi-edge rather than a single, simple edge. However, in some
cases we will not be able to collect sufficiently many pebbles
to insert the entire multi-edge. Instead, our algorithm will add a
partial multi-edge (whose multiplicity depends on the number
of simple edges that could be accepted), and mark as rejected
a corresponding multi-edge with complementary multiplicity.
In terms of bonds, this type of acceptance or rejection must
be interpreted in terms of rigid redundancy [8], a topic which,
for lack of space, is not covered in the current version of
this paper. Indeed, a bond must be accepted or rejected as
a whole, but its presence inside a rigid component may just
make the component more rigid, i.e. redundantly rigid rather
than minimally rigid. To cover these details and to improve
the process of adding edges, we define both a multiplicity and
a capacity on the edges of the pebbled graph. The multiplicity
is the current accepted weight of the edge (a normal edge has
multiplicity of one). The capacity is the maximum possible
multiplicity of that edge. As stated above, while trying to add
an edge to the pebble graph, we may not be able to add it with
the desired multiplicity, i.e. up to full capacity. In preparation
for the full treatment of redundancy, we have implemented
the algorithm with both the option of rejecting the edge (if
not accepted to capacity), or partially accepting it with the
currently accepted multiplicity.

Reversed edges. While moving the pebbles in the graph,
sometimes we have to reverse the edges through the transfer-
ring paths. It is possible that we reverse an edge several times



during the algorithm. Therefore, for each edge in the pebble
graph, we add a twin edge with reverse direction, and with
the same capacity and zero multiplicity. Therefore, instead of
reversing an edge, we just subtract from the multiplicity of the
edge and add this multiplicity to its twin.

Overview of the Pebble Game algorithm implementation.
The C++ class PebbleGame contains the implementation of
the original pebble game algorithm from [16]. The algorithm
is run on an instance of PebbledGraph. This class represents
a directed multi-graph and contains a set of graph operations
required by the pebble game. It contains methods for DFS,
finding connected components and computing the Reach of a
vertex [16]. A Component is represented by a set of vertices in
the PebbleGraph. We also maintain a tree structure to preserve
the hierarchy of Components created while running the pebble
game; this is used for computing the consistent coloring after
a dilution calculation. Edges are inserted in the PebbledGraph
after collection of pebbles, or rejected and added to a list of
rejected edges.

Snapshots of the game. We added the possibility of mak-
ing single or periodic snapshots of the pebbled graph. The
snapshot period, the output format and other parameters are
given when we start the game. These snapshots can be used
to analyze the changes in the structure of the molecule and
its rigidity during a dilution analysis, or, more generally, to
resume the algorithm at any particular time.

Phased Pebble Game. Saving the status of the Pebble Game
as a pebbled graph makes it is possible to run the game for
some part of the input data, save the game status and later
resume the game and continue adding other parts of data.
In phase one, we insert the backbone, resp. the tree of the
protein molecule, and then retain the resulted pebbled graph,
exporting it to a file if necessary. Next, we resume the pebble
graph for the new bonds, repeating the process for all desired
configurations.

Visualization. Kinari-2 integrates a JsMol viewer to visualize
the rigidity analysis results. It provides utilities for converting
the information in the post-pebble-game BBH file to JMol
commands. A consistent coloring for rigid components during
dilution is implemented, making the visualization particularly
useful for visualizing the process of adding bonds and forming
the rigid components during a dilution experiment.

IV. RESULTS

Large scale testing. While designing and implementing the
project, one of our main concerns was to insure that our
implementation would work correctly and efficiently on large
input files, and on a large collection of files. Currently, we
have tested our implementation on large randomly generated
graphs and are in the process of integrating the large scale
testing on large PDB datasets.

Performance improvement. We are performing studies to
compare the performance improvements in Kinari-2 over

Fig. 3. Linear input graph.

Fig. 4. Pebble game steps in Kinari-1.

Kinari-1. A thorough report on profiling and testing experi-
ments will be included in the full version of the paper. A back-
of-the-envelope analysis, discussed next, provides theoretical
evidence that Kinari-2 is expected to perform better than
Kinari-1.

Single Molecule Rigidity Analysis. Assume that body-bar-
hinge structure of the molecule is given by the graph in Fig. 3
and we want to run pebble game on this graph. In this graph,
each node is a body, and each edge is a hinge. The order of
adding the hinges is given by the edge numbers of the graph.

In Kinari-1, each hinge is replaced by 5 edges in the multi-
graph. It starts with an empty multi-graph and add edges
according to the given order. To satisfy the pebble game
conditions and collect enough pebbles to be able to add the
new edges, the direction of the edges has to be reversed so that
the pebbles can be moved (see Fig. 4). In total, it performs
O(5 + (5 + 5) + . . .+

∑n
1 5) = O(5n2) edge reversions and

pebble movements to add the hinges.
Now let’s consider the same input graph in Kinari-2. First

of all, by introducing the multi-edges, each hinge will be
replaced by a single multi-edge, and this leads to a constant
factor improvement in the computations, from 5 to 1. Using
the phased pebble game, we can process the backbone of the
graph separately, and later add the additional edges to the
pebble game. In particular, we can run the pebble game on
the backbone in linear time. If the graph has other edges apart
from the linear backbone, it would take square time to add
them to the pebble graph.

In practice, we can have a backbone of size n/2, where
n is the size of the molecule. Running the pebble game on
these molecules in Kinari-1 would take O(5n2) time, while
in Kinari-2 the running time is O((n/2)2 + n/2). Although
the two approaches have the same asymptotic running times,
the difference in their constant factors is noticeable and in
practice, this is expected to lead to a significant improvement
in performance.
Dilution. Assume the the fixed part of protein has n hinges,
and we want to compute the dilution generated by m << n
hydrogen bonds. In Kinari-1, this can be done by running the
full pebble game algorithm on each structure. As we have



m different structures of sizes n, n + 1, . . . , and n +m. the
running time of computing the dilution is O(5n2+5(n+1)2+
. . .+ 5(n+m)2) = O(5(n2m+m2n)) = O(n3).

In Kinari-2, we run the pebble game for the common part
of the protein, which is induced by the covalent network. Then
for each additional (hydrogen) bond, we add the corresponding
edge to the pebble graph and save the state of the graph. The
running time is O(n2), one order of magnitude faster than in
Kinari-1.

V. CONCLUSION

Rigidity analysis is a promising method for protein flex-
ibility analysis, but it requires a large scale validation to
demonstrate its full potential. Large scale surveys, e.g. of
the entire Protein Data Bank, require improved algorithms
and software implementations. In this paper, we presented
carefully engineered algorithms designed to take advantage
of the specificities of protein structures to improve the per-
formance of Kinari. The theoretical analysis indicates a sig-
nificant improvement over the previous version of Kinari. A
comprehensive testing and profiling of the new implementation
is currently under way and the results will be reported in the
full version of this paper.

REFERENCES

[1] A. Abyzov, R. Bjornson, M. Felipe, and M. Gerstein. Rigidfinder: A fast
and sensitive method to detect rigid blocks in large macromolecular com-
plexes. Proteins: Structure, Function, and Bioinformatics, 78(2):309–
324, 2010.

[2] J. C. Bowers, R. T. John, and I. Streinu. Managing reproducible
computational experiments with curated proteins in kinari-2. Proc.
Bioinformatics Research and Applications (ISBRA’15), Lecture Notes in
Computer Science, 9096:72–83, 2015. ISBN: 978-3-319-19047-1 (Print)
978-3-319-19048-8 (Online).

[3] E. Flynn and I. Streinu. Consistent visualization of multiple rigid
domain decompositions of proteins. Proc. Bioinformatics Research and
Applications (ISBRA’15), Lecture Notes in Computer Science, 9683:151–
162, May 2016.

[4] E. Flynn and I. Streinu. Matching multiple rigid domain decompositions
of proteins. IEEE Transactions on Nanobioscience, 16(2):1–10, 2017.

[5] N. Fox. Kinari-web case study: 1HRC. Technical report, Smith College,
February 2011.

[6] N. Fox. Accurate and robust mechanical modeling for protein rigidity
analysis. Phd thesis, University of Massachusetts Amherst, 2012.

[7] N. Fox, F. Jagodzinski, Y. Li, and I. Streinu. Kinari-web: A server
for protein rigidity analysis. Nucleic Acids Research, 39(Web Server
Issue):W177–W183, 2011. doi:10.1093/nar/gkr482.

[8] N. Fox and I. Streinu. Redundant and Critical Noncovalent Interactions
in Protein Rigid Cluster Analysis, pages 167–196. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[9] B. M. Hespenheide, D. J. Jacobs, and M. F. Thorpe. Structural rigidity
in the capsid assembly of cowpea chlorotic mottle virus. Journal of
Physics: Condensed Matter, 16(44):S5055, 2004.

[10] B. M. Hespenheide and M. F. Thorpe. Flexweb. http://flexweb.asu.edu.
[11] D. J. Jacobs, A. Rader, L. A. Kuhn, and M. Thorpe. Protein flexibility

predictions using graph theory. Proteins: Structure, Function, and
Bioinformatics, 44(2):150–165, 2001.

[12] J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw. Long-
timescale molecular dynamics simulations of protein structure and
function. Current Opinion in Structural Biology, 19(2):120 – 127, 2009.
Theory and simulation / Macromolecular assemblages.

[13] D. A. Kondrashov, Q. Cui, and G. N. Phillips. Optimization and
evaluation of a coarse-grained model of protein motion using x-ray
crystal data. Biophysical journal, 91(8):2760–2767, 2006.

[14] L. A. Kuhn. First installation and user’s guide (floppy in-
clusion and rigid substructure topography, version 4.0), 2004.
http://www.kuhnlab.bmb.msu.edu/software/proflex/index.html.

[15] S. Kundu, D. C. Sorensen, and G. N. Phillips. Automatic domain
decomposition of proteins by a gaussian network model. Proteins:
Structure, Function, and Bioinformatics, 57(4):725–733, 2004.

[16] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs.
Discrete Mathematics, 308(8):1425 – 1437, 2008. Third European
Conference on Combinatorics – Graph Theory and Applications.

[17] A. Rader, G. Anderson, B. Isin, H. G. Khorana, I. Bahar, and J. Klein-
Seetharaman. Identification of core amino acids stabilizing rhodopsin.
Proceedings of the National Academy of Sciences of the United States
of America, 101(19):7246–7251, 2004.

[18] A. Rader, B. M. Hespenheide, L. A. Kuhn, and M. F. Thorpe. Protein
unfolding: rigidity lost. Proceedings of the National Academy of
Sciences, 99(6):3540–3545, 2002.

[19] I. Streinu. Large scale rigidity-based flexibility analysis of biomolecules.
Structural Dynamics, 3(012005), January 2016.

[20] I. Streinu, F. Jagodzinski, and N. Fox. Tutorial: Analyzing protein
flexibility: an introduction to combinatorial rigidity methods and applica-
tions. In IEEE International Conference Bioinformatics and Biomedicine
(BIBM 2011), Atlanta, GA, Nov 12-15, 2011, 2011.

[21] T.-S. Tay. Rigidity of multi-graphs. i. linking rigid bodies in n-space.
J. Comb. Theory, Ser. B, 36:95–112, 1984.

[22] L.-W. Yang, A. J. Rader, X. Liu, C. J. Jursa, S. C. Chen, H. A. Karimi,
and I. Bahar. ognm: online computation of structural dynamics using
the gaussian network model. Nucleic Acids Research, 34:W24–W31,
2006.


	Efficient pebble game algorithms engineered for protein rigidity applications
	Recommended Citation

	Introduction
	Methods
	Single Molecule Rigidity Analysis in Kinari.
	The Pebble Game Algorithm
	Phased pebble game algorithm
	Dilution analysis

	Implementation
	Results
	Conclusion
	References

