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Abstract 
Recently, a new type of mechanism called compliant mechanism has been developed and applied mainly in the field 

of micro-mechanics. A compliant mechanism has flexible parts to stabilize the structure, which is contrary to the 
conventional unstable mechanism. Although a compliant mechanism is usually modeled as a continuum with elastic 
joints, it is possible to generate the similar mechanism by a bar-joint system. Ohsaki and Nishiwaki (Struct. Multidisc. 
Optim., Vol. 30, pp. 327-334, 2005) presented a method for generating flexible multistable bar-joint mechanisms using 
nonlinear programming approach. However, due to high nonlinearity of the problem, the nonlinear programming 
problem should be solved many times starting from different initial solutions to obtain several types of mechanisms. 
Since the compliant bar-joint mechanism is usually statically determinate, the optimization problem can be solved easily 
if the design space is limited to statically determinate structures. 

In this paper, we present an algorithm for enumerating without repetitions all the non-crossing generically 
minimally rigid bar-joint frameworks, which are regarded as statically determinate trusses in structural engineering. 
Bistable mechanisms utilizing snapthrough behavior are generated from the statically determinate trusses. In the 
numerical examples, many bistable compliant mechanisms are generated to show the effectiveness of the proposed 
method. 
Keywords: Structural Optimization, Bistable Compliant Mechanism, Minimally Rigid Frameworks, Minimally Rigid 
Graph 

1 Introduction 

Contrary to unstable conventional bar-joint mechanisms, a compliant mechanism utilizes elastic deformation of 
structural parts to realize the mechanism for producing large output displacement in different direction from the input 
displacement. Although compliant mechanism is usually designed as continuum, it is also possible to use flexibility of 
members of a bar-joint structure to realize shape transformation of structure. Conventional link mechanism is unstable, 
and achieves stability at undeformed and deformed states by applying additional forces or constraints. However, a 
bistable compliant mechanism can keep stability at undeformed and deformed states through its own stiffness, because 
it has two stable states without any additional constraint. 

Ohsaki and Nishiwaki [7] presented an optimization algorithm for generating multistable compliant mechanisms by 
utilizing snapthrough behavior, where the conventional ground structure approach is used and the design variables of 
the optimization problem are the cross-sectional areas of members and the nodal coordinates of a bar-joint system 
(truss). Design conditions are given on the magnitude of output displacement, and the stability before and after 
deformation. The total structural volume is minimized as the objective function. However, due to high nonlinearity of 
the problem, the nonlinear programming problem should be solved many times starting from different initial solutions 
to obtain several types of mechanisms. 

Since the compliant bar-joint mechanism is usually statically determinate, the optimization problem can be solved 
easily if the design space is limited to statically determinate structure. To obtain several types of mechanisms for given 
members and nodes that can exist, many candidates of statically determinate structures should be given as initial 
solutions for the optimization problem. Therefore in this paper we propose an approach based on the enumeration of 
statically determinate structures to find many types of compliant mechanisms. 

The methodologies in graph theory and computational geometry can be effectively used for generating the 



candidate structures. Graph theoretical approaches are widely used in structural mechanics, where the bars and joints of 
the structure represent the edges and vertices in the graph, respectively. In this study, we present an algorithm for 
enumerating without repetitions all the planar embedded minimally rigid graphs, which are called non-crossing 
generically minimally rigid bar-joint frameworks or simply called non-crossing Laman frameworks. A Laman 
framework is regarded as a statically determinate truss in structural engineering. 

Our enumeration algorithm is based on the reverse search paradigm of Avis and Fukuda [2,3], which has been 
successfully applied to a variety of combinatorial and geometric enumeration problems. The necessary ingredients to 
use the method are an implicitly described connected graph on the objects to be generated, and an implicitly defined 
spanning tree in this graph. In particular, we obtain that the set of all non-crossing Laman frameworks on a given point 
set is connected by flips which remove an edge and then restore the Laman property with the addition of a non-crossing 
edge. To the best of our knowledge, this is the first algorithm proposed for enumerating (without repetitions, in 
polynomial time and without using additional space) all the non-crossing generically minimally rigid frameworks.  

In the numerical examples, many bistable compliant mechanisms are generated to show the effectiveness of the 
proposed method. It is shown that large deformation can be realized by snapthrough behavior of local triangular 
elements of several types even for a simple structure with ten nodes including supports. 

2 Preliminaries 

2.1 Non-crossing Laman frameworks 
Let  be a graph with ( , )G V E= n V=  vertices and m E=  edges. G  is a minimally rigid graph (also called 

Laman graph) if and only if  and every subset of  vertices spans at most  edges. An 
embedding  of the graph  on a set of points  is a mapping of the vertices 

2 3m n= − ' 1n > 2 ' 3n −
( )G p G 2

1{ , , }np p= ⊂ �p L {1, , }V n= L  
to points in the Euclidian plane . The edges ii pa ij E∈  are mapped to straight line segments . An embedding 

 is non-crossing if no pair of segments  and  corresponding to non-adjacent edges  have a 
point in common. 

i jp p
( )G p i jp p k lp p ,ij kl E∈

Laman graphs embedded on generic point sets are called Laman frameworks and have the special property of being 
minimally rigid [5,6], when viewed as bar-joint frameworks with fixed edge-lengths, which motivates the tremendous 
interest in their properties. It is well-known that Laman frameworks are regarded as statically determinate trusses in 
structural engineering [8].  

Besides the above definition, Laman graphs can be characterized in a variety ways. In particular, Laman graph on n 
vertices has an inductive construction, called Henneberg construction [8,9]. Start from an edge for . At each step, 
add a new vertex in one of the following two ways: 

2n =

Henneberg I: add a new vertex and connect it to two old vertices via two new edges. 
Henneberg II: remove an old edge, add new vertex, and connect it to two endpoints of the removed edge and to some 
other vertex. 

The Laman frameworks on a generic point set form the set of bases of the generic rigidity matroid on the complete 
graph nK , see [9]. The bases have all the same size 2n 3− . Bases may be related via the base exchange operation, 
which we will call a flip between two Laman frameworks. Two Laman frameworks  and  are connected by a flip 
if their edge sets agree on  positions. The flip is given by the pair of edges  not common to the two 
bases, 

1L 2L
2n − 4 1 2( , )e e

1 1e L L= 2 , 2 2e L L= 1 . Using flips, we can define a graph whose nodes are all the Laman frameworks on n 
vertices, and whose edges correspond to flips. It is well-known that the graph whose nodes are the bases of a matroid 
connected via flips, is connected. But a priori, the subset of non-crossing Laman frameworks may not necessarily be. 

2.2 Reverse search 
This technique is a memory efficient method for visiting all the nodes of a implicitly defined connected graph 

whose nodes are objects to be enumerated and are connected to the other nodes by some local search operation (flip). It 
can be used whenever a spanning tree of the graph can be defined implicitly by a parent function. This function is 
defined for each vertex of the graph except a prespecified root. Iterating the parent function leads to a path to the root 
from any other vertex in the graph. The set of such paths defines a spanning tree, known as the search tree.  



3 The Search Tree 

In this section we define the main structure required by reverse search, a search tree on the set of all the 
non-crossing Laman frameworks of a given point set. We choose a certain Laman framework to be the root. Then we 
define a parent function for every non-root Laman framework. To show that the parent function defines a search tree we 
associate an index to every Laman framework such that the parent function always returns a Laman framework with 
smaller index. This gives a forest structure. We omit the proof that it forms a search tree (see [4] for the proof). 

Let us define the root. We choose the root of the search tree to be a greedy pseudo-triangulation corresponding to a 
fixed direction. For this, we first sort the points by x-coordinates and label them as  in this order. Then we 
construct a Henneberg I pointed pseudo-triangulation as follows. Start with the edge  and continue followings for 

 steps. At each step, the next vertex (in x-sorted order) is added (vertex 

{1, , }nK

12
2n − 2i +  at step , ), together 

with the two tangents from point  to (the convex hull of) the framework constructed so far. Fig.1(a) illustrates the 
root, and Fig.1(b) gives an example of a non-root framework. 

i 1, , 2i n= −K

2ip +

 

 
Figure 1. (a)The root framework. (b)A non-root Laman framework. 

Next let us define the index for each non-crossing Laman frameworks. Given a non-crossing Laman framework L, 
we define its index as a pair of integers index( ) ( , )L c d= , where ( ) {2, , }c c L n= ∈ K  and  are, 
respectively, the label of the critical vertex and the critical degree of the critical vertex, defined below. An edge in L is 
called non-root if it doesn't exist in the root. The critical vertex is the largest label of a vertex which has non-root edges. 
The critical degree is the number of non-root edges incident to the critical vertex. For example, the non-root framework 
in Fig.1(b) has index (6,1). We use the index as a measure of how far a node (Laman framework) is from the root, 
whose index is defined to be (1,0). 

( ) {1, , 2}d d L n= ∈ −K

The parent function for each Laman framework is defined in term of its critical vertex via a certain Remove-add flip. 
The removed edge which does not exist in the root will be incident to the critical vertex, and the added edge will be 
chosen so that it will decrease its index. The efficiency of the parent function depends on the lexicographic ordering on 
the edges. The correctness of the parent function which will be described in the next section follows from our Main 
Theorem: 

Theorem 1. Every non-root non-crossing Laman framework has a parent whose index is smaller than that of the 
current node. 

Based on Theorem 1, we will propose the following efficient algorithm for the enumeration: 

Theorem 2: The set of all non-crossing Laman frameworks on a given point set can be reported in  time per 
non-crossing Laman framework using  space. 

3( )O n
2( )O n

The precise proofs of the above theorems are omitted in this proceeding version (see [4] for the proof) . 

4 Algorithm for Enumerating Non-crossing Laman Frameworks 

In this section we give a more detailed version of the algorithm for enumerating non-crossing Laman frameworks. 
We start by introducing some notations. For each vertex , an upper-hull edge (lower-hull edge) of  is defined as 
the upper (lower) convex hull edge of  incident to , and let ( ) denote the other endpoint of the 
upper-hull (lower-hull) edge of . Note that  and i  are both root edges. When we refer to an edge , 
the label of  is assumed to be smaller than that of 

ip ip

1 1i−{ , , }p pK
up
i ip p p p

ip up
ip low

ip

ip low
i i jp p

ip jp . We define a lexicographical ordering on the set of all 
possible edges in such a way that: (i) an edge  precedes an edge  whenever , and (ii) when i jp p k lp p j l< j l=  



holds, low
j jp p  precedes all the other edges incident to jp , and up

j jp p  is ordered next to low
j jp p . If neither  

nor  is a root edge,  precedes  when 
i jp p

k jp p i jp p k jp p i k< . We use the notations  when  
precedes , and  when they coincide. For an edge set A, we use the notation max to denote the 
lexicographically largest edge in A. 

i j k lp p p p< i jp p

k lp p i j k lp p p p=

4.1 Parent function 
Let  be the set of all the non-crossing Laman frameworks on a given generic point set, and let  be the root 

on a search tree. We define the following parent function based on the correctness of Theorem 1: 
L rootL

parent root: /{ }f L →L L

Definition 1. (Parent function) For , let root\{ }L L′ = L cp ′  be the critical vertex in .  is the 
parent of , where , and . 

L′ 1 2\{ } { }L L e e′ ′ ′= U

L′ 1 rootmax{ | \ }e e e L L′ ′= ∈ 2 1max{ | , \{ } { } }up
n c ce e K e p p and L e e′ ′′ ′= ∈ ≤ ∈LU′

Note that the edge  to be deleted is incident to 1e′ cp ′  from the definition of the critical vertex in the previous section. 
We can show that the parent function can be performed in  time using  space (see [4]). 2( )O n 2( )O n

4.2 Finding a next object 

 Figure 2. The algorithm for enumerating 
non-crossing Laman frameworks. 

Algorithm Reverse Search

1: Lroot:= the root of the search tree;

2: L := Lroot; i, j := 0; Output(L);

3: repeat

4: while i ≤ |L| do

5: i := i + 1;

6: while j ≤ |Kn| do

7: j := j + 1;

8: if Adj(L, i, j) �= null and fparent(Adj(L, i, j)) = L then

9: L := Adj(L, i, j); i, j := 0;

10: Output(L);

11: go to line 4;

12: end if

13: end while

14: end while
15: if L �= Lroot then

16: L′ := L; L := fparent(L);

17: determine integers pair (i, j) such that Adj(L, i, j) = L′;

19: end if
20: until L = Lroot, i = |L|, j = |Kn|

18: i := i − 1;

Given . Let L∈L LList  and KnList  be the list of 
edges of L and nK  ordered lexicographically. Let L  a  nd

nK  be nthe number of elements of L and K , and let 
 and  be the i-th elements of ( )LList i ( )KnList i LList  and 

KnList , respectively. Then, we define the local search 
operation for each L, called adjacency function, such that, 

1 2 1 2\{ } { } \{ } { } ,
( , , )

,
L e e if L e e

Adj L i j
null otherwise

∈⎧
= ⎨
⎩

LU U
 

where  and 1 ( )Le List i= 2 ( )Kne List j= . 
Based on the algorithm in [2,3], we describe our 

algorithm in Fig.2. An example of the search tree of 
non-crossing Laman frameworks on five points is given in 
Fig.3. 
 
 

5 Finding Bistable Compliant Mechanisms 

Various types of compliant mechanisms are found from the set of eight free nodes and two supports as shown in Fig. 
4, where W = 0.2 m and H = 0.1 m. An input force is applied at node B in the negative y-direction to produce an output 
displacement of 0.05 m at node A in the y-direction. Young’s moduls is 2.0 GPa and the rotated engineering strain is 
used for the definition of strain-displacement relation. The equilibrium path is traced by the displacement increment 
method. 

Optimization is carried out by IDESIGN Ver. 3.5 [1], where the sequential quadratic methods is used. The lower 
bound AL for the cross-sectional area Ai of the i-th member is 1.0×10-6 m2, and the members with Ai = AL after 
optimization are removed. The details of the problem formulation and the optimization approach are described in [7]. 

Using the proposed enumeration method, 7793 different initial topologies have been generated. The total number of 
non-crossing statically determinate structure is rather small, because the nodes are located at a regular grid and many 
solutions are rejected due to existence of overlapping bars. 

By carrying out optimization from 7793 initial solutions, we found 1148 different types of mechanisms. Figs. 5-7 
show the three typical solutions, where (a) is the initial topology, (b) is the relation between the input displacement and 
the input displacement at node B, (c) is the optimal topology, (d) is the deformed shape of the optimal solution, and (e) 
is the optimal topology consisting of the flexible members only. It is seen from Figs. 5-7(b) that a limit point of the load 
that leads to snapthrough is reached as the input force is increased. It can be confirmed from Figs. 5-7(c-e) that a 



triangle unit in each type degenerate to a set of three collinear members after deformation to produce the snapthrough 
behavior. 
 
 

 Figure 4. Initial set of nodes and supports. 
 Figure 3. An example of a search tree of non-crossing Laman

frameworks on five points. Top figure represents the root.  
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       (c)      (d)       (e) 

Figure 5. Optimal topology (Type-1) 
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        (c)      (d)       (e) 

Figure 6. Optimal topology (Type-2) 
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       (c)      (d)         (e) 

Figure 7. Optimal topology (Type-3) 
 

 

6 Conclusions 

An enumeration algorithm of non-crossing Laman frameworks, which is equivalent to a statically determinate 
bar-joint system in engineering field, has been developed based on the reverse search paradigm of Avis and Fukuda 
[2,3]. Many bistable compliant mechanisms can be generated from the initial solutions obtained by the proposed 
enumeration algorithm. It has been shown in the numerical examples that large deformation and bistability can be 
realized by snapthrough behavior of local triangular elements. 
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