€» SMITH COLLEGE

- Smith ScholarWorks

Computer Science: Faculty Publications Computer Science

1-1-2014

Singularity Locus for the Endpoint Map of Serial Manipulators
with Revolute Joints

Ciprian S. Borcea
Rider University

lleana Streinu
Smith College, istreinu@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

6‘ Part of the Computer Sciences Commons

Recommended Citation

Borcea, Ciprian S. and Streinu, lleana, "Singularity Locus for the Endpoint Map of Serial Manipulators with
Revolute Joints" (2014). Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/318

This Conference Proceeding has been accepted for inclusion in Computer Science: Faculty Publications by an
authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu


http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/318?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

PDFaid.Com
#1 Pdf Solutions

Singularity locus for the endpoint map of serial
manipulators with revolute joints

Ciprian S. Borcea and Ileana Streinu

Abstract

We present a theoretical and algorithmic method for describing the singularity lo-
cus for the endpoint map of any serial manipulator with revolute joints. As a surface
of revolution around the first joint, the singularity locus is determined by its inter-
section with a fixed plane through the first joint. The resulting plane curve is part
of an algebraic curve called the singularity curve. Its degree can be computed from
the specialized case of all pairs of consecutive joints coplanar, when the singularity
curve is a union of circles, counted with multiplicity two. Knowledge of the degree
and a simple iterative procedure for obtaining sample points on the singularity curve
lead to the precise equation of the curve.

Key words: serial manipulator, revolutejoints , endpoint map singularity.

1 Introduction

We consider a serial manipulator with an arbitrary number n > 2 of revolute joints.
The end-effector or hand is abstracted to a single point 7 on the last link. The n
joints, also called joint axes or hinges, are envisaged as full lines and labeled in
order Ay, ...,A,. For theoretical purposes, we assume full rotational capability around
each joint and allow all geometrical configurations, without regard for possible self-
collisions. Thus, the configuration space is parametrized by the n-dimensional torus
(S")". The endpoint map e : (S')" — R® takes a configuration 8 = (6y,...,6,) €
(S")" to the corresponding position of the endpoint T'(8) € R>. When the differential
De(6) has rank strictly less than three, we have a singular configuration. The locus
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of T for all singular configurations is called the singularity locus for the endpoint
map.

It is fairly well known that the singularity locus is a surface of revolution, with
the first joint as symmetry axis. When sectioned with a plane passing through this
axis, the singularity locus yields a plane curve which is part of an algebraic curve,
called here the singularity curve. In this paper we describe a complete and rigorous
procedure for obtaining the equation of the singularity curve.

The singularity locus is of fundamental importance not only for path planning and
avoidance of singular configurations, but also for positional workspace determi-
nation. The workspace boundary is necessarily included in the singularity locus
[4, 20].

Previous attempts for describing either the singularity locus or the workspace
boundary have usually addressed cases with a very small number of joints often re-
lying on numerical procedures of uncertain accuracy [1, 2, 3, 14, 15, 16, 18,19, 21].
The general recursion proposed in [11] seems difficult to work out for larger n and
has been explicitly used only in a few instances [12, 17].

The main elements of novelty of the solution presented here reside in the method
itself, centered on obtaining an explicit degree formula for the singularity curve, the
recognition of the algebraic and geometric advantage of using for this purpose the
specialized case of manipulators with any two consecutive joints coplanar and the
possibility of producing the necessary amount of sample points in the general case,
based on the geometric characterization of singular configurations.

More precisely, our determination of the singularity curve is based on the follow-
ing principles: (i) the degree of the curve does not change when the manipulator is
continuously altered until any two consecutive joints become coplanar, (ii) for a ma-
nipulator with any two consecutive joints coplanar, the singularity curve is made of
circles, counted with multiplicity two, (iii) recursion on n yields the general degree
formula, (iv) sample points on the singularity curve can be produced in arbitrary
numbers, (v) with known degree and sufficiently many sample points computed, the
equation of the curve is obtained from solving a linear system.

This summary leaves aside some technical details. It will be seen in due course that,
for full mathematical rigor, one has to work over the algebraically closed field of
complex numbers. The ‘continuity principle’ used in (i), while intuitively persua-
sive,is actually justified through a more elaborate argument [13]. However, when
assuming a certain background in algebraic geometry, these aspects take lesser roles.
Thus, the key elements of our approach rely on (a) the fact that manipulators with
coplanar pairs of consecutive joints allow the computation of the degree formula, in
combination with (b) the possibility of producing sample points based on a simple
geometrical characterization of singular configurations.

Part (a) follows from our work on extremal reaches and workspace determination
for manipulators with coplanar pairs of consecutive joints, also called panel-and-
hinge chains : [6, 7). This special class of manipulators is adequate for computing
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the degree §, of the singularity curve since the latter decomposes into irreducible
components of degree two and multiplicity two. The degree formula is obtained in
Section 3 from a linear recurrence relation which gives:

_ L
V3
with 6, = 4, 53 =16, Oy = 56, 55 =176, 66 =528 ...

5n [(1 + \/g)n+l _ (1 _ \/g)nJrl] _ 2n+l

The exponential complexity of the workspace boundary described in [8] is aptly
reflected in this degree formula.

The geometric characterization of singular configurations used in (b) is the fol-
lowing singularity criterion: the nR manipulator is in a singular configuration 0
i.e. rank(De(0)) < 2 when there is a line through T projectively incident with all
Jjoint axes [5, 9, 10]. A line of this type will be called a T-transversal. This criterion
and its sibling for the end-to-end (squared) distance from a marked start point S on
the first link are already implicated in (a), leading to the important notions of fold
point and pivoting [7, 8]. For (b) the criterion serves in the following way.

We choose an arbitrary line through the terminus point 7" and the last hinge A,, and
then find the two solutions given by the intersection of this line with the hyperboloid
generated by rotating A,,_| around A,. Then, with any one of these two solutions in
place, we look for the two solutions given by intersecting the line with the hyper-
boloid generated by rotating A,,_» around A,_; and so on. This procedure produces
2"~! singular configurations i.e. 2"~! points of the singularity curve. With suffi-
ciently many sample points determined in this manner all coefficients of the curve
can be determined (up to proportionality) by solving the resulting homogeneous
linear system. Actually, (5”; 2) — 1 points imposing independent conditions suffice.

2 Fold points and pivoting

In this section we review the argument showing that a manipulator with all pairs of
consecutive joints coplanar has a singularity curve made of irreducible components
of degree two, which have to be counted with multiplicity two. The key notions are
those of fold point and pivoting at a first fold point introduced in [6, 7, 8].

Let p; ;11 = AiNA;11 denote the intersection of a pair of consecutive joint axes.
The plane containing this pair of joint axes is called a panel. Our nR manipulator can
thereby be conceived as a panel-and-hinge chain since one panel is joint to the next
by their common joint axis or hinge. The fist panel is taken as a fixed plane through
A and the last panel is the plane given by A, and 7. As recalled in the introduction,
a singular configuration must allow a T-transversal for all hinges. As long as the T -
transversal avoids intersection points p; ;. 1, consecutive panels must remain in one
and the same plane. Thus, singular configurations are either flat, with all panels in
the same plane, or non-flat, with at least one point p¢ s, on the T-transversal such
that the three consecutive panels incident to pys r41 are not coplanar. Such a point
pr.r+1 1s called a fold point of the singular configuration.
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For the notion of pivoting it is useful to review first the case of a 2R manipulator
with incident joints, illustrated in Figure 1. Note that, by definition, all configura-
tions are singular, since n = 2 and the rank of De(6) cannot be 3. Thus, as a set,
the singularity locus is given by all possible positions of 7. These positions cover a
ring-shaped region of a sphere centered at p; » = A1 NA,. Algebraically, one should
remain alert to several aspects: the actual singularity locus is only part of an alge-
braic surface, but this ‘inconvenience’ is removed when reformulating the problem
over the field of complex numbers. Then, ‘complex configurations’ would map to
the complex quadric whose real points are seen as the sphere, and in fact cover it
twice. This double covering can be seen on the real scenario over the ring-shaped
region and becomes intuitive also when imagining the manipulator with incident
joint axes as a limit of manipulators with two skew joint axes. In the latter case, the
locus of T is a torus and when the joint axes intersect, the torus degenerates to a
‘doubled’ spherical region.

In short, all matters algebraic
become simpler over the complex
field C and this must be the adopted
setting in general for properly
speaking about irreducible compo-
nents and degree for the singularity
curve.

Returning now to arbitrary n
and a given configuration, we de-
fine pivoting at p; ;41 to mean ‘
‘locking’ all joints except Ay and >
A+ and using only these two de-
grees of freedom. Thus, the nR ma-

2 AL

. . Fig. 1 The locus of 7 for a manipulator with two
nipulator becomes a 28 manipulg intersecting hinges is a ring-shaped spherical region
tor. When we have a singular con- (covered twice). In the reference plane through A;
figuration with first fold point at  given by the red grand circle it traces two arcs along
Df.f+1, we take as reference plane this circle.

the common plane of the first f

panels and pivoting at py 71, together with the singularity criterion, show that all
configurations with 7" in this reference plane are singular configurations for the nR
manipulator. When we start with a flat configuration, pivoting at any py 1 immedi-
ately provides a degree two irreducible component of the complex singularity curve
passing through the corresponding 7.

Thus, over C, any point of the singularity curve belongs to some degree two irre-
ducible component. In other words: the complex singularity curve of a manipulator
with all pairs of consecutive joints coplanar decomposes into irreducible compo-
nents of degree two (which must be counted with multiplicity two).

Before engaging the degree computation, we recall the analogous case of the end-
to-end squared distance function for a panel-and-hinge chain [6]. The first panel is
fixed and has a marked point S (start). The end-to-end function f : (S')" — R gives
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the squared distance f(60) between S and the endpoint 7(0) = ¢(6). When the dif-
ferential d f(0) = 0, we have a critical configuration. The geometrical criterion for
critical configurations says that the end-to-end line ST must intersect (projectively)
all hinges. Thus, all critical configurations of an end-to-end function are singular
configurations for the endpoint map.

3 Counting circles and the degree formula

We consider critical configurations for a panel and hinge chain with k hinges and
marked § (start) and 7 (terminus) points. The first panel is fixed. We denote by c;
the number of (real or complex) configurations with line ST intersecting all hinges
(i.e. critical configurations).

There are 2* flat configurations.
For non-flat configurations we look at the first fold point p¢ ¢, ;.

From this point to 7 we have a chain with k — (f + 1) hinges (and k — f panels).
There are ¢y 1) critical configurations (with line py ¢41 T intersecting all k — (f +
1) hinges.

The first £ panels have 2/~ flat configurations.

By pivoting at py r,1 there are two (real or complex) alignments of Sp ¢, with
pr.r+1T, hence:

k—1
a=2+2Y 2" ey iy ()
F=1
with ¢g = 1. If we put c_; = 1, we have:
k
=y, 2ka—(f+1)7 c-1=cp=1 2
=1
This gives the linear recurrence relation:
Cr1 =2(ck+er1), co=c1=1,k>1 3)
For the number of (complex) circles v, traced in the plane of the first panel by

the (complex) singularity locus of the endpoint map, we look again at the first fold
point py r1. (Note that the circle is traced by pivoting at this point.) We have:

n—1
va=Y 2, pr), n>2 4)
k=1

It follows that:

Vil =2V +cp1, B2 )
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which yields by (3) the linear recurrence relation:

V43 = 2(2Vn+2 —Vny1 — ZVn), n>2 (6)
withv, =1, v =4, v, = 14.

Remark: When passing from counting circles to degrees, the circles have degree
two and have to be counted twice since each ‘sphere’ is covered doubly. Two skew
hinges give a torus (for the real picture) i.e. a degree four surface.

From (2) and (4) we obtain:

Cn =2V 2", n>2 )

hence

1
Vi =2Vy it Cpa=cp1+epa—2"" = 76— 21 ®)

The degree §, of the curve made of v,, double circles is 4v,, and we have there-
fore:

R
V3

where the last part of the formula follows from solving the linear recurrence (3).
The first few terms of the degree sequence are:

8, =2¢c,— 2" =

[(1 4 \@)n-k—l _ (1 . \/g)n—&-l} _2n+l (9)

8 =4, =16, 5 =56, 55 =176, 5 =528 ...

4 Generating sample points

With the degree &, determined
from nR manipulators with all pairs
of consecutive joints coplanar, we
return to the general case when
consecutive joints would be skew
lines in space. In order to deter-
mine the equation of the singu-
larity curve, we need (5”; 2) -1
points of the curve which impose
independent conditions. As already
described in the introduction, we
may produce any number of sam-
ple points on the curve since we
may execute the procedure with ar-
bitrary positions of the T-transversal in the last link. In fact, the needed number of
independent sample points is roughly halved by virtue of the reflection symmetry of
the singularity curve in the A point axis.

Fig. 2 The main iterative step for generating sample
points. The green line is the intended T'-transversal,
with 7 marked larger in green.



Singularity locus for the endpoint map of serial manipulators with revolute joints 7

We illustrate in Figure 2 the main step of the iterative procedure which starts with
a chosen line through T and some point on A,,, our ‘designated’ 7T-transversal.

After successively plac-
ing A,—1, ..., Ay—k in con-

/// ~ ] IS tact with this line, we have
a ‘ \ T the situation depicted in
[ i \ " ]

\ \ | /

PR the figure, with the des-
\ \ .‘"‘ / ] .,7 ' ignated T-transversal in
- = L. green, the joint axis A,_
" ] in red and A,_j_ in blue.
When all the remaining
part of the manipulator
is rotated around A, _j,
the blue line sweeps: the
shown hyperboloid and the
two specific rotations which position A,_;_; in contact with the designated 7 -
transversal are determined from simple quadratic conditions. Thus, using one or
the other rotation we have one more joint on the designated T-transversal. At the
final step, A; is positioned in contact with the green line, making it a genuine 7 -
transversal.

4 2 0 2 4

Fig. 3 The singularity curve for a 2R manipulator, obtained af-
ter computing all coefficients of the degree four equation from
sample points illustrated nearby.

Figure 3 shows sample points for a 2R manipulator next to a full plot of the
(real points of the) singularity curve. The degree is & = 4 in this case and one
needs ((2’) — 1 = 14 independent points for the determination (up to a proportionality
factor) of the 15 coefficients implicated in the general equation of a plane curve of
degree four.

5 Conclusions

We addressed and solved the fundamental problem of obtaining the equation of
the singularity curve of a serial manipulator with an arbitrary number n of revolute
joints. The key elements of our solution are the degree formula (9) , derived from the
specialized case of manipulators with any two consecutive joints coplanar and the
general possibility of obtaining sample points on the curve by an iterative procedure.
The full singularity surface for the endpoint map of the manipulator is generated
by rotating the singularity curve around the fixed first joint axis. Computational
designs for effective implementations of this solution will be detailed in separate
publications.
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