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Topological Sweep in Degenerate CasesEynat Rafalin1, Diane Souvaine1, and Ileana Streinu21 Department of Electrical Engineering and Computer Science, Tufts University,Medford, MA 02155. ? ? ? ferafalin, dlsg@eecs.tufts.edu2 Department of Computer Science, Smith College, Northampton, MA 01063. ystreinu@cs.smith.eduAbstract. Topological sweep can contribute to e�cient implementa-tions of various algorithms for data analysis. Real data, however, hasdegeneracies. The modi�cation of the topological sweep algorithm pre-sented here handles degenerate cases such as parallel or multiply concur-rent lines without requiring numerical perturbations to achieve generalposition. Our method maintains theO(n2) andO(n) time and space com-plexities of the original algorithm, and is robust and easy to implement.We present experimental results.1 IntroductionDealing with degenerate data is a notoriously untreated problem one has to facewhen implementing Computational Geometry algorithms. Most of the theoreti-cal developments have avoided the special cases or proposed too general solutionsthat may produce other side-e�ects. One of the few papers that actively dealswith degenerate cases is Burnikel et al. [2]. The authors argue forcefully thatperturbation is not always e�ective in practice and that it is simpler (in termsof programming e�ort) and more e�cient (in terms of running time) to dealdirectly with degenerate inputs. Their paper presents two implementations forsolving basic problems in computational geometry. Note that the running timeof their implementation can be sensitive to the amount of degeneracy.The work in this paper is motivated by the practical need to have a robustimplementation of topological sweep to be used within implementations of sev-eral geometric algorithms for computing statistical measures of data depth, boththose already coded (e.g. [9]) and those currently in development. The implemen-tation is general enough to be used in place of any topological sweep subroutinein existing code.The topological sweep method of Edelsbrunner and Guibas [5] is one of theclassical algorithms in Computational Geometry. It sweeps an arrangement of nplanar lines in O(n2) time and O(n) space with a topological line and is a criticalingredient in several space and time e�cient algorithms (e.g. [12], [6], [9], [7]).The technique has been adapted for speci�c applications (e.g. [10]) and has a? ? ? Partially supported by NSF grant EIA-99-96237y Partially supported by NSF RUI grant 9731804



useful variant ([1]). The algorithm and its variations have been implemented byseveral groups (e.g. [11], [9]...).Computational Geometry libraries such as LEDA and CGAL o�er imple-mentations of related but slightly less e�cient line sweep algorithms. To thebest of our knowledge, no robust code dealing with all degeneracies is currentlyavailable.In contrast, the method proposed here is simple to compute and does notrequire special preprocessing. The modi�ed algorithm was coded and the codewas veri�ed on di�erent types and sizes of data sets. The code was incorporatedin an implementation of an algorithm for statistical data analysis.2 The Topological Sweep Algorithm [5]Let H be a arrangement of n lines in the plane. Vertical line sweep could reportall intersection pairs sorted in order of x-coordinate in �(n2 logn) time andO(n) space (e.g. [3], [4]). If one only needs to report the intersection points ofthe lines according to a partial order related to the levels in the arrangement,greater e�ciency is possible. To report all the intersection points of the lines,in quadratic time and linear space, we use a topological line (cut) that sweepsthe arrangement. A topological line is a monotonic line in y-direction, whichintersects each of the n lines in the arrangement exactly once. The cut is speci�edby the sequence of edges, one per line, each intersected by the topological line. Asweep is implemented by starting with the leftmost cut which includes all semi-in�nite edges ending at -1, and pushing it to the right until it becomes therightmost cut, in a series of elementary steps. An elementary step is performedwhen the topological line sweeps past a vertex of the arrangement. To keepthe sweep line a topological line we can only sweep past a vertex which is theintersection point of two consecutive edges in the current cut (a ready vertex).See Fig. 1 for an example of an arrangement of 7 lines and a topological cut.2.1 Data StructuresThe algorithm uses the following data structures:{ E[1:n] is the array of line equations. E[i] = (ai, bi) if the ith line of thearrangement sorted by slope ai is y = aix+ bi. This array is static.{ HTU[1:n] is an array representing the upper horizon tree. HTU[i] is a pair(�i, �i) of indices indicating the current lines that delimit the segment of liin the upper horizon tree to the left and the right respectively. If the segmentis the leftmost on li then �i = �1. If it is the right most then �i = 0.{ HTL[1:n] represents the lower horizon tree and is de�ned similarly.{ I is a set of integers represented as a stack that correspond to points thatare currently ready to be processed. If i is in I then ci and ci+1 (the ith andith+1 lines of the cut) share a common right endpoint and represent a legalnext move for the topological line.
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Fig. 1. An arrangement of 7 lines and a cut de�ned by its edges. The cut edges aremarked as bold lines{ M[1:n] is an array holding the current sequence of indices from E[i] thatform the lines m1, m2..mn of the cut.{ N[1:n] is a list of pairs of indices indicating the lines delimiting each edge ofthe cut, one from the left and the other from the right.2.2 Horizon Trees and the Construction of the CutThe upper (respectively lower) horizon tree of the cut is constructed by extendingthe cut edges to the right. When two edges intersect only the one of higher(respectively lower) slope continues to the right (see Fig. 2 for an example ofupper and lower horizon trees). The upper (lower) horizon tree is initially createdby inserting the lines in decreasing (increasing) order of slope into the structure.To insert line lk+1 we begin at its endpoint on the left boundary. We walkin counterclockwise order around the bay formed by the previous lines to �ndthe intersection point of lk+1 with an edge. Given the lower and upper horizontrees, the right endpoint of the cut is identi�ed by the leftmost of the two rightdelimiters of HTU[i] and HTL[i].Time Complexity Each elementary step and the accompanying updates tothe upper and lower horizon trees, the cut arrays, and the ready stack takeamortized constant time. There are at most n2 elementary steps and thereforethe total time complexity is O(n2). The original paper [5] contains a detailedanalysis.2.3 Dealing with degeneraciesThe original paper proposes dealing with degenerate cases such as parallel linesor multiple concurrent lines by using a primitive procedure to treat two parallel
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Fig. 2. Upper and Lower Horizon TreesTable 1. Upper and Lower Horizon TreesUpper Horizon tree Lower Horizon treeLine Left delimiter Right delimiter Left delimiter Right delimiter1 -1 4 -1 12 4 5 4 13 5 6 5 24 2 6 2 15 3 6 3 26 -1 7 -1 37 -1 1 -1 3lines as non-parallel and three concurrent lines as non-concurrent ([5], [4]).This original method generates zero length edges and vertices at in�nity andthen performs topological sweep on an arrangement in general position that is� di�erent from the original arrangement. The original method demands thecomputation of the power series expansion (in the perturbation parameter �) ofthe value of a determinant until the �rst non-zero term is encountered (see alsoGomez et al [8]). Edelsbrunner and Guibas also propose to detect degeneraciesin con�gurations in O(n2) time and O(n) space by checking for edges of lengthzero.3 The Modi�ed Algorithm3.1 Data StructuresThe modi�ed algorithm uses many of the same data structures as in the originalalgorithm: E[] holds the line equations; M [], the order of the lines along thecut; HTL[] and HTU [], the horizon trees. The cut data structure N [] and theentries in the ready stack I , however, each have an additional �eld. N [i] is nowa triplet (�i, rup;i, rdown;i) of indices. If the right endpoint of N [i] is generatedby its intersection with a line from above (resp. from below), then rup;i (resp.rdown;i) is the index of that line; otherwise rup;i (resp. rdown;i) is null. At least



one is non-null, but both may be in instances where the right endpoint of thecut edge is the intersection point of three or more lines. The left delimiter �i canbe any line that intersects the current edge at its left endpoint. Given the lowerand upper horizon trees, these delimiters are computed in constant time.Each entry in the augmented stack I of ready vertices is now a pair of integers(i; k) where the segments of the lines mi, mi+1... mi+k (the ith until (i + k)thedges of the cut) share a common right endpoint and represent a legal nextmove. These modi�cations do not change the asymptotic space complexity ofthe algorithm.One new data structure is needed. MATCH [i] is a pair of indices pointing tothe uppermost and lowermost cut edges that currently share the same right endpoint as line li. MATCH [i] is initialized at the beginning of the algorithm andreset to the pair (i, i) every time li participates in an elementary step, meaningthat the match to line li is trivially line li itself. MATCH is updated at theconclusion of each elementary step to detect new alignment of right end points.The fact that the edges along the cut sharing the same right endpoint form atmost one connected component of adjacent edges (see Lemma 1 below) allowsus to update only two boundary edges (top and bottom of the edges found sofar) and ignore the intervening entries.3.2 Computing Ready VerticesDe�ne a matching pair as a pair of consecutive lines li; lj in the cut where rup;iis j and rdown;j is i. When at most two lines participate in an intersection, amatching pair implies a ready vertex. For the more general case, we de�ne amatching sequence of consecutive lines li; :::; lj in the cut where every adjacentpair of lines forms a matching pair. A ready vertex is generated by a completematching sequence where the bottom line is li and the top line is lj and in whichrdown;i and rup;j are both null.After each update to the cut, we test whether two newly adjacent lines form amatching pair. If so, this new pair either augments a matching sequence alreadyrepresented in MATCH [] or initializes a new one. Updating MATCH [] andchecking whether the matching sequence is not complete takes constant time(see Lemma 3 below).3.3 Parallel Lines and Identical LinesParallel lines create an intersection point at in�nity. Their intersection pointis not treated di�erently than that of any other line. Identical lines are linesthat have the same slope and y-intercept. We currently treat identical linestogether as a single line, under the assumption that the application that callstopological sweep will note and handle the impact of duplicate lines. For example,our application code, that computes depth contours based on the levels of thearrangement, handles this phenomenon (see [9]).



3.4 Additional Changes to the AlgorithmTests called `above' and `closer' are used when the data structures are con-structed and updated. Each comparison has three possible outcomes (instead oftwo): TRUE, FALSE and EQUAL. The EQUAL state is not part of the originalalgorithm since it is only generated in degenerate cases. (see 6). To deal withparallel lines, special test cases were added, that check if the lines in questionare parallel or not. The tests are peformed during the initialization phase of thealgorithmEach update step may involve two or more updates, depending on the size ofthe intersection. The di�erent data structures demand di�erent update strate-gies. One update method is to replace each of the lines from i to j in a matchingsequence. Lines are paired from the outermost lines to the innermost (i to j, i+1to j� 1, etc). This procedure is used to update the left delimiters of the cut andthe upper and lower horizon trees and to update the order of the lines along thecut (M). Another method of updating is by computing the updated lines one byone. This method is used to update the right delimiters of the horizon trees andthe cut. The horizon trees must be processed consecutively, otherwise the cutwill not be updated correctly.4 Example of a Degenerate CaseFor the arrangement of 5 lines depicted in Fig. 3, the information in Table 4,describing the current cut, is computed from the upper and lower horizon trees.For each line li, the right delimiter of the lower horizon tree initially becomes rup;iand the right delimiter of the upper horizon tree initially becomes rdown;i. In thenext step each pair of delimiters is compared to see which implied intersectionpoint is closer: the delimiters for line 1 are 1 and 5, therefore only 5 remainsand the right-up delimiter of line 1 becomes null. Line 2 and 5 are similar toline 1 since one horizon tree delimiter is 1 and it becomes null. The delimitersof lines 3 and 4 intersect in the same point and hence both remain.In the matching procedure we only look for matches for the edges that werecreated after processing the last ready point (the intersection between lines 1and 4). We start by looking for a match for line 1. Since right-down of line1 is 5 and right-up of line 5 is 1, we have a matching pair. Since both theother delimiters of lines 1 and 5 are null, we will have a complete matchingsequence and must update the stack I with the pair (4; 1). We now consider line4. Since right-up of line 4 is 3 and right-down of line 3 is 4 we have a match. Wecontinue to look for an existing matching sequence with line 3. Our MATCHdata structure indicates a matching sequence starting with line 3 and endingwith line 2 (consisting of just one pair where right-down of line 2 is 3 and right-up of line 3 is 2) which we expand to a matching sequence starting at line 4 andending with line 2: MATCH [4] and MATCH [2] are both the pair (2; 4). Notethat we do not bother to update MATCH [3]. The right-up delimiter of 2 is nullso we do not need to check for additional matches above. But the right-down of



line 4 is still unmatched as right-down of 4 is 5 and right-up of line 5 is null.The matching sequence remains incomplete.
1 The Cut
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Fig. 3. Example of a degenerate case Line i �i rup;i rdown;i1 4 null 52 1 null 33 1 2 44 1 3 55 -1 1 null5 Performance AnalysisLemma 1. The set of edges along any cut that contain the same intersectionpoint as their right endpoint form at most one connected component.Proof. Assume the edges that contain p as their right endpoint form more thanone connected component (Fig. 4). Let the edges be p1; p2; ::: and the associatedlines be lp1 ; lp2 ; :::. Since there is more than one connected component there existat least one line lk between pi and pi+1 that contains p but whose current cutedge ck does not have p as a right endpoint. Assume the right end-point q ofck is delimited by a line l. If the slope of l is smaller (resp. larger) than thatof lk, then l intersects li (resp. li+1) at a point r between points p and q. Sincepoint q has not yet been processed, point r is not yet ready and has not beenprocessed, and therefore the edge pi (resp. pi+1) cannot yet be part of the cut.Contradiction. utLemma 2. The total cost of updating HTU (HTL) through all the elementarysteps is O(n2). See original paper [5].Lemma 3. The total cost of comparing adjacent edges (computing the readypoints) through all the elementary steps is O(n2)
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Fig. 4. Proof of Lemma 1Proof. Each edge, c, that terminates at an intersection can generate at most 3comparison tests. First a matching test is performed with the edges above andbelow. If a matching edge m is found, the MATCH [m] will also be tested. Ac-cording to Lemma 1 at most one of the edges that delimits c above and below canhave a MATCH, otherwise more than one connected component exists. There-fore at most 3 tests will be generated. There is no need to perform additionaltests since if another match exists it should have been found earlier, when theedges that form it were investigated. The total number of edges that enter allthe intersections is n2 and therefore the total complexity is at most O(n2). utLemma 4. The time complexity of the algorithm is O(n2).Proof. Initialization of all data structures takes linear time after O(n logn) timeto sort the lines by slope. Each elementary step takes an amortized constanttime, as shown in Lemmas 2 and 3. There are O(n2) elementary steps. The totaltime complexity is therefore O(n2). ut6 DiscussionTo ensure the correctness of the method, we verify that rounding errors do notproduce irrecoverable mistakes.One test compares slopes to compute whether two lines are parallel. Theanswer (parallel or not) will be as good as the data set provided: no round-o�errors occur since there is no computation involved.Other tests compare computed values of x or y coordinate to check if apoint / intersection of the arrangement is above or closer than another point /intersection and return one of true, false or equal. These computations involvemultiplications of at most two values. When the input values are oats, usingdouble precision to compare the computed values ensures that only errors thatreturn an equal answer instead of true or false can occur. No answer can havethe opposite value to the real value (e.g. true instead of false or true=false



instead of equal). When receiving an answer that is equal instead of not-equal,three or more lines of the arrangement will be treated as passing through thesame point although they do not. E�ectively a triangular face is contracted toa point but otherwise there is no change in the topological structure of thearrangement.7 Experimental Results7.1 Analysis MethodOur experiments checked the behavior of the code in simple and in degeneratecases. We created sets of lines by generating n random numbers representing theslopes of the lines and n random numbers representing the y-intercept of thelines. We paired the numbers to receive a representation of an arrangement of nlines.At the end of a correct sweep all the right delimiters must be1. If a mistakeoccurs the new topology will not allow the sweep to continue until the rightmostpoint and will stop too early, not reaching 1. Hence, a check that all the rightdelimiters are 1 is made to verify that the sweep was performed correctly.To generate parallel lines we chose m numbers out of the n slopes generatedabove and m numbers out of the n y-intercepts generated above. We pairedthese at random where m is 5 percent of n, and used the n+m pairs as our dataset. This ensured that at least m pairs have the same slopes and are thereforeparallel or coincident.To generate multiple concurrent lines we computed the n2 intersection pointsof the original arrangement we generated. We than randomly chose n points outof the n2 intersections and used their dual lines as our data set. The dual line ofpoint (a, b) is the line y = ax+ b. If more than two points are on the same linetheir dual lines share a common point and we get a degenerate case of multipleconcurrent lines. By selecting n intersection points from the n2 intersections ofthe original set and taking their dual, the probability of choosing more than onepoint on the same line, hence creating an intersection of multiple lines in thedual, is relatively high.7.2 ResultsOur code is written in C++, does not use any geometric libraries for computa-tions, but uses GEOMVIEW for visualization of the output. The code is builtmodularly and can be easily modi�ed. It is located at:http://www.eecs.tufts.edu/r/geometry/sweep.It was tested on a Sun Microsystems Ultra 250 SPARC processor, 400 MHz,and was compiled using the GNU C++ compiler. We ran our code on 10 di�erentdata sets of each size and type that were generated as described above. Theaverage results are presented in Fig. 5.The implementation is not assumed to perform better than other topologicalsweep implementations in terms of running time. Instead it treats cases that



other implementations were slow or unable to handle. Our package creates datathat is used for display purposes. If display is not needed the computation canbe streamlined further.
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Fig. 5. Measured execution times (in seconds) for di�erent set types8 Future Research8.1 Guided Topological SweepGuided topological sweep is a topological sweep that maintains additional ordercriteria without penalizing performance. For example, it is possible to guaranteethat whenever a vertex is swept, the edges that are k lines below it and klines above it are aligned with it without changing asymptotic complexity. Thismethod is used for LMS regression in O(n2) time (see [6]). We plan to expandour algorithm to enable this type of sweep.8.2 Topological Sweep in Higher DimensionsMost statistical (and other) data sets are multi-dimensional. There are some the-oretical algorithms for high dimensions but few of them have been implemented.We are working to expand our implementation to higher dimensions and use thisas a sub-procedure for high-dimensional applications.8.3 ApplicationsDegenerate data sets that include more than one point with the same x-coordinateor concurrent points form a large part of the available (and interesting to inves-tigate) sets. An earlier implementation of the depth contours algorithm ([9]) has



been reused and expanded. By calling the new topological sweep procedure itcan now handle degenerate data sets.9 ConclusionWe present an e�cient application of the topological sweep algorithm that usesextended data structures instead of numerical methods to deal with degeneratecase. The new data structures use less than 1.5 times as much space as theoriginal data structures.References[1] Te. Asano, Leonidas J. Guibas, and T. Tokuyama. Walking on an arrangementtopologically. Internat. J. Comput. Geom. Appl., 4:123{151, 1994.[2] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. On degeneracy in geo-metric computations. In Daniel D. Sleator, editor, Proceedings of the 5th AnnualACM-SIAM Symposium on Discrete Algorithms, pages 16{23, Arlington, VA, Jan-uary 1994. ACM Press.[3] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf.Computational Geometry Algorithms and Applications. Springer-Verlag, BerlinHeidelberg, 1997.[4] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCSMonographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, WestGermany, 1987.[5] H. Edelsbrunner and Leonidas J. Guibas. Topologically sweeping an arrangement.J. Comput. Syst. Sci., 38:165{194, 1989. Corrigendum in 42 (1991), 249{251.[6] H. Edelsbrunner and D. L. Souvaine. Computing median-of-squares regressionlines and guided topological sweep. J. Amer. Statist. Assoc., 85:115{119, 1990.[7] J. Gil, W. Steiger, and A. Wigderson. Geometric medians. Discrete Mathematics,108:37{51, 1992.[8] F. Gomez, S. Ramaswami, and G. Toussaint. On removing non-degeneracy as-sumptions in computational geometry. In Algorithms and Complexity (Proc.CIAC' 97), volume 1203 of Lecture Notes Comput. Sci., pages 86{99. Springer-Verlag, 1997.[9] K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellares, D. Souvaine, I. Streinu, andA. Struyf. Fast implementation of depth contours using topological sweep. InProceedings of the Twelfth ACM-SIAM Symposium on Discrete Algorithms, pages690{699, Washington, DC, January 2001.[10] M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes viapseudo-triangulations. Discrete Comput. Geom., 16:419{453, December 1996.[11] H. Rosenberger. Order k Voronoi diagrams of sites with additive weights in theplane. M.Sc. thesis, Dept. Comput. Sci., Univ. Illinois, Urbana, IL, 1988. ReportUIUCDCS-R-88-1431.[12] Emo Welzl. Constructing the visibility graph for n line segments in O(n2) time.Inform. Process. Lett., 20:167{171, 1985.
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