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Topological Sweep in Degenerate Cases
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! Department of Electrical Engineering and Computer Science, Tufts University,
Medford, MA 02155. *** {erafalin, dls}Qeecs.tufts.edu
2 Department of Computer Science, Smith College, Northampton, MA 01063. '
streinu@cs.smith.edu

Abstract. Topological sweep can contribute to efficient implementa-
tions of various algorithms for data analysis. Real data, however, has
degeneracies. The modification of the topological sweep algorithm pre-
sented here handles degenerate cases such as parallel or multiply concur-
rent lines without requiring numerical perturbations to achieve general
position. Our method maintains the O(n?) and O(n) time and space com-
plexities of the original algorithm, and is robust and easy to implement.
We present experimental results.

1 Introduction

Dealing with degenerate data is a notoriously untreated problem one has to face
when implementing Computational Geometry algorithms. Most of the theoreti-
cal developments have avoided the special cases or proposed too general solutions
that may produce other side-effects. One of the few papers that actively deals
with degenerate cases is Burnikel et al. [2]. The authors argue forcefully that
perturbation is not always effective in practice and that it is simpler (in terms
of programming effort) and more efficient (in terms of running time) to deal
directly with degenerate inputs. Their paper presents two implementations for
solving basic problems in computational geometry. Note that the running time
of their implementation can be sensitive to the amount of degeneracy.

The work in this paper is motivated by the practical need to have a robust
implementation of topological sweep to be used within implementations of sev-
eral geometric algorithms for computing statistical measures of data depth, both
those already coded (e.g. [9]) and those currently in development. The implemen-
tation is general enough to be used in place of any topological sweep subroutine
in existing code.

The topological sweep method of Edelsbrunner and Guibas [5] is one of the
classical algorithms in Computational Geometry. It sweeps an arrangement of n
planar lines in O(n?) time and O(n) space with a topological line and is a critical
ingredient in several space and time efficient algorithms (e.g. [12], [6], [9], [7]).
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The technique has been adapted for specific applications (e.g. [10]) and has a
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useful variant ([1]). The algorithm and its variations have been implemented by
several groups (e.g. [11], [9]...).

Computational Geometry libraries such as LEDA and CGAL offer imple-
mentations of related but slightly less efficient line sweep algorithms. To the
best of our knowledge, no robust code dealing with all degeneracies is currently
available.

In contrast, the method proposed here is simple to compute and does not
require special preprocessing. The modified algorithm was coded and the code
was verified on different types and sizes of data sets. The code was incorporated

in an implementation of an algorithm for statistical data analysis.

2 The Topological Sweep Algorithm [5]

Let H be a arrangement of n lines in the plane. Vertical line sweep could report
all intersection pairs sorted in order of x-coordinate in @(n?logn) time and
O(n) space (e.g. [3], [4]). If one only needs to report the intersection points of
the lines according to a partial order related to the levels in the arrangement,
greater efficiency is possible. To report all the intersection points of the lines,
in quadratic time and linear space, we use a topological line (cut) that sweeps
the arrangement. A topological line is a monotonic line in y-direction, which
intersects each of the n lines in the arrangement exactly once. The cut is specified
by the sequence of edges, one per line, each intersected by the topological line. A
sweep is implemented by starting with the leftmost cut which includes all semi-
infinite edges ending at -oo, and pushing it to the right until it becomes the
rightmost cut, in a series of elementary steps. An elementary step is performed
when the topological line sweeps past a vertex of the arrangement. To keep
the sweep line a topological line we can only sweep past a vertex which is the
intersection point of two consecutive edges in the current cut (a ready vertex).
See Fig. 1 for an example of an arrangement of 7 lines and a topological cut.

2.1 Data Structures
The algorithm uses the following data structures:

— E[l:n] is the array of line equations. E[i] = (a;, b;) if the i*" line of the
arrangement sorted by slope a; is y = a;x + b;. This array is static.

— HTUJ[1:n] is an array representing the upper horizon tree. HTU[i] is a pair
(M\i, pi) of indices indicating the current lines that delimit the segment of I;
in the upper horizon tree to the left and the right respectively. If the segment
is the leftmost on [; then \; = —1. If it is the right most then p; = 0.

— HTL[1:n] represents the lower horizon tree and is defined similarly.

— Tis a set of integers represented as a stack that correspond to points that
are currently ready to be processed. If 7 is in T then ¢; and ¢;4; (the i*" and
it" + 1 lines of the cut) share a common right endpoint and represent a legal
next move for the topological line.
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Thecut line

Fig. 1. An arrangement of 7 lines and a cut defined by its edges. The cut edges are
marked as bold lines

— M[1:n] is an array holding the current sequence of indices from E[i] that
form the lines mq, msy..m,, of the cut.

— NJ[1:n] is a list of pairs of indices indicating the lines delimiting each edge of
the cut, one from the left and the other from the right.

2.2 Horizon Trees and the Construction of the Cut

The upper (respectively lower) horizon tree of the cut is constructed by extending
the cut edges to the right. When two edges intersect only the one of higher
(respectively lower) slope continues to the right (see Fig. 2 for an example of
upper and lower horizon trees). The upper (lower) horizon tree is initially created
by inserting the lines in decreasing (increasing) order of slope into the structure.
To insert line /41 we begin at its endpoint on the left boundary. We walk
in counterclockwise order around the bay formed by the previous lines to find
the intersection point of I 11 with an edge. Given the lower and upper horizon
trees, the right endpoint of the cut is identified by the leftmost of the two right
delimiters of HTU[i] and HTLJi].

Time Complexity Each elementary step and the accompanying updates to
the upper and lower horizon trees, the cut arrays, and the ready stack take
amortized constant time. There are at most n? elementary steps and therefore
the total time complexity is O(n?). The original paper [5] contains a detailed
analysis.

2.3 Dealing with degeneracies

The original paper proposes dealing with degenerate cases such as parallel lines
or multiple concurrent lines by using a primitive procedure to treat two parallel



Fig. 2. Upper and Lower Horizon Trees

Table 1. Upper and Lower Horizon Trees

Upper Horizon tree Lower Horizon tree
Line Left delimiter Right delimiter Left delimiter Right delimiter
1 -00 4 -00 o0
2 4 5 4 1
3 5 6 5 2
4 2 6 2 1
5 3 6 3 2
6 -00 7 -00 3
7 -00 oo -00 3
lines as non-parallel and three concurrent lines as non-concurrent ([5], [4]).

This original method generates zero length edges and vertices at infinity and
then performs topological sweep on an arrangement in general position that is
e different from the original arrangement. The original method demands the
computation of the power series expansion (in the perturbation parameter €) of
the value of a determinant until the first non-zero term is encountered (see also
Gomez et al [8]). Edelsbrunner and Guibas also propose to detect degeneracies
in configurations in O(n?) time and O(n) space by checking for edges of length
7€ro.

3 The Modified Algorithm

3.1 Data Structures

The modified algorithm uses many of the same data structures as in the original
algorithm: E[] holds the line equations; M]], the order of the lines along the
cut; HTL[] and HT'U[], the horizon trees. The cut data structure N[] and the
entries in the ready stack I, however, each have an additional field. N[i] is now
a triplet (Ai, Tup,i, Tdown,i) Of indices. If the right endpoint of NTi] is generated
by its intersection with a line from above (resp. from below), then 7, ; (resp.
T'down,i) 18 the index of that line; otherwise ryp; (resp. Taown,i) is null. At least



one is non-null, but both may be in instances where the right endpoint of the
cut edge is the intersection point of three or more lines. The left delimiter \; can
be any line that intersects the current edge at its left endpoint. Given the lower
and upper horizon trees, these delimiters are computed in constant time.

Each entry in the augmented stack I of ready vertices is now a pair of integers
(i, k) where the segments of the lines m;, m;y1... m;yy (the it" until (i + k)"
edges of the cut) share a common right endpoint and represent a legal next
move. These modifications do not change the asymptotic space complexity of
the algorithm.

One new data structure is needed. M AT'C' H[i] is a pair of indices pointing to
the uppermost and lowermost cut edges that currently share the same right end
point as line l;. M AT CH[i] is initialized at the beginning of the algorithm and
reset to the pair (i, i) every time [; participates in an elementary step, meaning
that the match to line [; is trivially line [; itself. M ATCH is updated at the
conclusion of each elementary step to detect new alignment of right end points.
The fact that the edges along the cut sharing the same right endpoint form at
most one connected component of adjacent edges (see Lemma 1 below) allows
us to update only two boundary edges (top and bottom of the edges found so
far) and ignore the intervening entries.

3.2 Computing Ready Vertices

Define a matching pair as a pair of consecutive lines /;,1; in the cut where 7y, ;
is j and rgown,; is ¢. When at most two lines participate in an intersection, a
matching pair implies a ready verter. For the more general case, we define a
matching sequence of consecutive lines [;, ..., I; in the cut where every adjacent
pair of lines forms a matching pair. A ready vertex is generated by a complete
matching sequence where the bottom line is /; and the top line is /; and in which
Tdown,i and Ty ; are both null.

After each update to the cut, we test whether two newly adjacent lines form a
matching pair. If so, this new pair either augments a matching sequence already
represented in M ATCH]] or initializes a new one. Updating M ATCH|| and
checking whether the matching sequence is not complete takes constant time
(see Lemma 3 below).

3.3 Parallel Lines and Identical Lines

Parallel lines create an intersection point at infinity. Their intersection point
is not treated differently than that of any other line. Identical lines are lines
that have the same slope and y-intercept. We currently treat identical lines
together as a single line, under the assumption that the application that calls
topological sweep will note and handle the impact of duplicate lines. For example,
our application code, that computes depth contours based on the levels of the
arrangement, handles this phenomenon (see [9]).



3.4 Additional Changes to the Algorithm

Tests called ‘above’ and ‘closer’ are used when the data structures are con-
structed and updated. Each comparison has three possible outcomes (instead of
two): TRUE, FALSE and EQUAL. The EQUAL state is not part of the original
algorithm since it is only generated in degenerate cases. (see 6). To deal with
parallel lines, special test cases were added, that check if the lines in question
are parallel or not. The tests are peformed during the initialization phase of the
algorithm

Each update step may involve two or more updates, depending on the size of
the intersection. The different data structures demand different update strate-
gies. One update method is to replace each of the lines from i to j in a matching
sequence. Lines are paired from the outermost lines to the innermost (i to j, i+1
to j — 1, etc). This procedure is used to update the left delimiters of the cut and
the upper and lower horizon trees and to update the order of the lines along the
cut (M). Another method of updating is by computing the updated lines one by
one. This method is used to update the right delimiters of the horizon trees and
the cut. The horizon trees must be processed consecutively, otherwise the cut
will not be updated correctly.

4 Example of a Degenerate Case

For the arrangement of 5 lines depicted in Fig. 3, the information in Table 4,
describing the current cut, is computed from the upper and lower horizon trees.
For each line I;, the right delimiter of the lower horizon tree initially becomes 7 ;
and the right delimiter of the upper horizon tree initially becomes 74y i. In the
next step each pair of delimiters is compared to see which implied intersection
point is closer: the delimiters for line 1 are oo and 5, therefore only 5 remains
and the right-up delimiter of line 1 becomes null. Line 2 and 5 are similar to
line 1 since one horizon tree delimiter is oo and it becomes null. The delimiters
of lines 3 and 4 intersect in the same point and hence both remain.

In the matching procedure we only look for matches for the edges that were
created after processing the last ready point (the intersection between lines 1
and 4). We start by looking for a match for line 1. Since right-down of line
1 is 5 and right-up of line 5 is 1, we have a matching pair. Since both the
other delimiters of lines 1 and 5 are null, we will have a complete matching
sequence and must update the stack I with the pair (4,1). We now consider line
4. Since right-up of line 4 is 3 and right-down of line 3 is 4 we have a match. We
continue to look for an existing matching sequence with line 3. Our M ATCH
data structure indicates a matching sequence starting with line 3 and ending
with line 2 (consisting of just one pair where right-down of line 2 is 3 and right-
up of line 3 is 2) which we expand to a matching sequence starting at line 4 and
ending with line 2: MATCH[4] and M ATCH|2] are both the pair (2,4). Note
that we do not bother to update M ATCH 3]. The right-up delimiter of 2 is null
so we do not need to check for additional matches above. But the right-down of



line 4 is still unmatched as right-down of 4 is 5 and right-up of line 5 is null.
The matching sequence remains incomplete.

1 The Cut

Line i Aj rup,i 'down.i

1 4 null 5
Fig. 3. Example of a degenerate case 2 1 null 3
3 1 2 4
4 1 3 5
5 -o0 1 null

5 Performance Analysis

Lemma 1. The set of edges along any cut that contain the same intersection
point as their right endpoint form at most one connected component.

Proof. Assume the edges that contain p as their right endpoint form more than
one connected component (Fig. 4). Let the edges be p1,ps, ... and the associated
lines be l,,,, lp,, .... Since there is more than one connected component there exist
at least one line I between p; and p;y; that contains p but whose current cut
edge ¢ does not have p as a right endpoint. Assume the right end-point g of
¢y is delimited by a line [. If the slope of [ is smaller (resp. larger) than that
of Iy, then [ intersects I; (resp. l;+1) at a point r between points p and ¢. Since
point ¢ has not yet been processed, point r is not yet ready and has not been
processed, and therefore the edge p; (resp. pi+1) cannot yet be part of the cut.
Contradiction. O

Lemma 2. The total cost of updating HTU (HTL) through all the elementary
steps is O(n?). See original paper [5].

Lemma 3. The total cost of comparing adjacent edges (computing the ready
points) through all the elementary steps is O(n?)



Fig. 4. Proof of Lemma 1

Proof. Each edge, ¢, that terminates at an intersection can generate at most 3
comparison tests. First a matching test is performed with the edges above and
below. If a matching edge m is found, the M AT C H[m] will also be tested. Ac-
cording to Lemma 1 at most one of the edges that delimits ¢ above and below can
have a MATCH, otherwise more than one connected component exists. There-
fore at most 3 tests will be generated. There is no need to perform additional
tests since if another match exists it should have been found earlier, when the
edges that form it were investigated. The total number of edges that enter all
the intersections is n? and therefore the total complexity is at most O(n?). O

Lemma 4. The time complezity of the algorithm is O(n?).

Proof. Initialization of all data structures takes linear time after O(nlogn) time
to sort the lines by slope. Each elementary step takes an amortized constant
time, as shown in Lemmas 2 and 3. There are O(n?) elementary steps. The total
time complexity is therefore O(n?). O

6 Discussion

To ensure the correctness of the method, we verify that rounding errors do not
produce irrecoverable mistakes.

One test compares slopes to compute whether two lines are parallel. The
answer (parallel or not) will be as good as the data set provided: no round-off
errors occur since there is no computation involved.

Other tests compare computed values of z or y coordinate to check if a
point / intersection of the arrangement is above or closer than another point /
intersection and return one of true, false or equal. These computations involve
multiplications of at most two values. When the input values are floats, using
double precision to compare the computed values ensures that only errors that
return an equal answer instead of true or false can occur. No answer can have
the opposite value to the real value (e.g. true instead of false or true/false



instead of equal). When receiving an answer that is equal instead of not-equal,
three or more lines of the arrangement will be treated as passing through the
same point, although they do not. Effectively a triangular face is contracted to
a point but otherwise there is no change in the topological structure of the
arrangement.

7 Experimental Results

7.1 Analysis Method

Our experiments checked the behavior of the code in simple and in degenerate
cases. We created sets of lines by generating n random numbers representing the
slopes of the lines and n random numbers representing the y-intercept of the
lines. We paired the numbers to receive a representation of an arrangement of n
lines.

At the end of a correct sweep all the right delimiters must be oc. If a mistake
occurs the new topology will not allow the sweep to continue until the rightmost
point and will stop too early, not reaching oc. Hence, a check that all the right
delimiters are oo is made to verify that the sweep was performed correctly.

To generate parallel lines we chose m numbers out of the n slopes generated
above and m numbers out of the n y-intercepts generated above. We paired
these at random where m is 5 percent of n, and used the n +m pairs as our data
set. This ensured that at least m pairs have the same slopes and are therefore
parallel or coincident.

To generate multiple concurrent lines we computed the n? intersection points
of the original arrangement we generated. We than randomly chose n points out
of the n? intersections and used their dual lines as our data set. The dual line of
point (a, b) is the line y = ax + b. If more than two points are on the same line
their dual lines share a common point and we get a degenerate case of multiple
concurrent lines. By selecting n intersection points from the n? intersections of
the original set and taking their dual, the probability of choosing more than one
point on the same line, hence creating an intersection of multiple lines in the
dual, is relatively high.

7.2 Results

Our code is written in C++, does not use any geometric libraries for computa-

tions, but uses GEOMVIEW for visualization of the output. The code is built

modularly and can be easily modified. It is located at:
http://www.eecs.tufts.edu/r/geometry /sweep.

It was tested on a Sun Microsystems Ultra 250 SPARC processor, 400 MHz,
and was compiled using the GNU C++ compiler. We ran our code on 10 different
data sets of each size and type that were generated as described above. The
average results are presented in Fig. 5.

The implementation is not assumed to perform better than other topological
sweep implementations in terms of running time. Instead it treats cases that



other implementations were slow or unable to handle. Our package creates data
that is used for display purposes. If display is not needed the computation can
be streamlined further.
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Fig. 5. Measured execution times (in seconds) for different set types

8 Future Research

8.1 Guided Topological Sweep

Guided topological sweep is a topological sweep that maintains additional order
criteria without penalizing performance. For example, it is possible to guarantee
that whenever a vertex is swept, the edges that are k lines below it and k
lines above it are aligned with it without changing asymptotic complexity. This
method is used for LMS regression in O(n?) time (see [6]). We plan to expand
our algorithm to enable this type of sweep.

8.2 Topological Sweep in Higher Dimensions

Most statistical (and other) data sets are multi-dimensional. There are some the-
oretical algorithms for high dimensions but few of them have been implemented.
We are working to expand our implementation to higher dimensions and use this
as a sub-procedure for high-dimensional applications.

8.3 Applications

Degenerate data sets that include more than one point with the same x-coordinate
or concurrent points form a large part of the available (and interesting to inves-
tigate) sets. An earlier implementation of the depth contours algorithm ([9]) has



been reused and expanded. By calling the new topological sweep procedure it
can now handle degenerate data sets.

9

Conclusion

We present an efficient application of the topological sweep algorithm that uses
extended data structures instead of numerical methods to deal with degenerate
case. The new data structures use less than 1.5 times as much space as the
original data structures.
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