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Vertex-Edge Pseudo-Visibility Graphs:
Characterization and Recognition

Joseph O’Rourke

Ileana Streinu”

Abstract

We extend the notion of polygon visibility graphs to
pseud~polygons defined on genemlized conjigumtions
Of points. We consider both vertex-to-vertex, as well
as vertex-to-edge visibility in pseudo-polygons.

We study the characterization and recognition prob-
lems for vertex-edge pseudo-visibility graphs. Given
a bipart.ite graph G satisfying three simple proper-
ties, which can all be checked in polynomial time, we
show that we can define a generalized configuration of
points and a pseudo-polygon on it, so that its vertex-
edge pseudo-visibility graph is G. This provides a
full characterization of vertex-edge pseudo-visibility
graphs and a polynomial-time algorithm for the deci-
sion problem. It alsoimplies that the decision problem
for vertex visibilitygraphs of pseud~polygons is in NP
(as opposed to the same problem with straight-edge
visibility, which is only known to be in PSPACE).

1 Introduction

Characterizing visibility graphs has remained an elu-
sive problem [0’R93]. Ghosh [Gho88, Gho97] pro
posed a set of necessary conditions as a starting point.
Everett ~ve90] proved their insufficiency and pro-
posed new conditions. She also placed the recognition
problem in PSPACE by reducing it to the existen-
tial theory of the reals. Abello and Kumar [AK95]
expanded the set of conditions and first related the
problem with oriented matroid theory. Their con-
ditions, plus realizability (stretchability) of a certain
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oriented matroid associated with the graph, would al-
low a characterization of visibility graphs. But real-
izabilityy of oriented matroids is a very strong condi-
tion. It has been shown by Mn6v ~e91] (see also
Shor [Sho91]) that it is as hard as the existential the-
ory of the reals, for which so far only exponential algo-
rithms are known. In this context the problem seems
too hard to attack.

In this paper we deal with the characterization
and recognition problems for a class of polygon visibil-
ity graphs, the ve-graphs introduced in [0 S97]. Else-
where we deal with the reconstruction (drawing) prob-
lem [Str96a].

Our approach introduces two innovations. First,
instead of the usual vertex-vertex visibility graph (v-
graph), we study the uertez-edge visibility gmph (ve-
graph) GVE of a polygon. We introduced this con-
cept in a previous paper [0 S97]. There we showed
that this combinatorial structure contains more geo-
metric information than the vertex visibility graph for
straightline polygons. Second, we generalize the no-
tion of straightline visibility to visibility along pseu-
dolines. Here we reinterpret and clarify some of the
results of Abello and Kumar [AK95], as well as taking
them a step farther. We mix our two ideas by starting
with the ve-graph of a pseudo-polygon, and showing
that such graphs can be characterized by three simple
properties recognizable in polynomial time. It follows
that recognition of vertex visibility graphs for pseudo-
polygons is in NP. In a companion paper [Str96b], it is
shown that the class of straightline ve-graphs is prop-
erly contained in the class of pseudoline ve-graphs,
and similarly for v-graphs. In particular it follows
that Abello and Kumar’s oriented matroids may not
be stretchable, and thus their characterization fails to
completely capture straightline v-graphs. Similarly,
our characterization of pseudo ve and v-graphs would
be incomplete if taken to their straightline cotmter-
parts,

By stating the problem in the pseud-visibility con-
text, we isolate the combinatorial (oriented matroid)
stmcture of the problem from the stretchabilityy issue,
in a manner similar to [AK95]. Focus on ve-graphs
rather than v-graphs, and explicit focus on pseud~
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visibility, result in a simpler set of conditions than
have been obtained previously. The relative simplic-
ity of these conditions has led, as just mentioned, to

the first examples of non-stretchable visibility graphs
[Str96b].

The paper has two main sections. In Section 2,
we start with a pseudmpolygon and its ve-graph, and
derive its properties. These properties are all rela-
tively unsurprising, direct generalizations of those es-
tablished for straight-line ve-graphs in [0 S97]. The
definition of vertex-edge visibility in the pseudoline
context is, however, not completely straightforward.
In order to concentrate on the more novel characteri-
zation, we do not include proofs in Section 2; see [0S96,
0S97]. In Section 3, we start from abstract properties
of the graph and construct a pseudo-polygon that re-
alizes it. This involves the construction of an acyclic
uniform rank-3 oriented matroid. We establish that
the matriod has the claimed properties using Knuth
CC-system axioms ~nu92]. Other systems of axioms
(such as co-circuits) have been considered in previous
versions of this paper, but they led to a much more
involved case analysis.

2 Pseudo-Visibility in Pseudo- Polygons

Generalized Configurations of Pointa

Our generalization of straightline visibility to pseudo-
visibility depends the the notion of a “generalized con-
figurations of points” introduced by Goodman and
Pollaek [GP84].1 Recall that an arrangement of pseu-
dolines Z is a collection of simple curves, each of which
separates the plane, such that each pair of lines of .C
meet in exactly one point, where they cross.

Definition 2.1 Let V = {uo, VI, ..., wn-1} be a set
of points in the Euclidean plane Etz, and let L be an
arrangement of (~) pseudolines such that every pair o.f
points v; and vj lie on exactly one pseudoline lij E L,
and each pseudoline in L contains exactly two points of
V. Then the pair (V, L) is a generalized configuration
of points in general po9ition.

The phrase “in general position” indicates that no
three points of V lie on one line of 1.

Pseudo-Polygon

Two points u and b on a pseudoline 1 E C determine a
unique (closed) segment ab consisting of those points
on 1that lie between the two points. For 0 S i S n – 1,
let e; = ~ivi+l be the segment determined by ui and
Vi+l on li,i+l .2

Definition 2.2 The segments ei = vivi+l form a pseudo-
polygon ifl

1Their definition is for the projective plane, and in-
cludes a special line lm. We use the Euclidian plane.

2All index arithmetic is mod n throughout the paper.

1.

2.

The intersection of each pair of segments adja-
cent in the cyclic ordering is the single point
shared between them: ei n ei+l = vi+l, for all
j=(), l,. ... l-l.

Nonadjacent segments do not intersect: ei rle; =.,
O, forallj#i+l.

See Fig. la for an example. Throughout we let P
denote a pseud~polygon, with V its vertices labeled
v = (vo, vl, ....l-l ) in counterclockwise (CCW)order,
and .?3its set of edges similarly labeled. Note edges
are closed segments. We use the term exterior to des-
ignate points of the plane strictly exterior to P (and
so not on its boundary).

//

ii

V3

,----
, \
: ;
: :

V1 *

Vo V2

0)

Figure 1: (a) A pseudo-polygon (not every intersection
between pseudolines is shown); IVI = 5, Itl = 10. (b)
vo cannot see uz.

Vertex-vertex Pseudo-Vkibility

Pseud&visibilit y is determined by the underlying ar-
rangement ~: lines-of-sight are along pseudolines k
L.

Definition 2.3 Verter vi sees vertez ~j (vi H vj) ifl
either ui = uj, or they lie on a line lij G L and the
segment uivj is nowhere exterior toP.

Note that our definition of pseud~visibility is de-
pendent upon L: it does not make sense to ask if two
points of V see one another without providing the un-
derlying arrangement .C. Dependence upon L means
there is not complete freedom to assign which vertex
sees which. For example, in Fig. lb, wo could not be
arranged to see vz, because the pseudoline 10Z would
have to intersect 10I (and 112) twice, violating the def-
inition of a pseudoline arrangement.

Definition 2.4 The vertex pseud~visibility graph Gv(P)
of a polygon is a labeled gmph with node set V, and an
arc between two vertices ifl they can see one another
(according to Def. 2.S).
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We will often abbreviate Gv(P) to Gv. Note that GV
is Harniltonian: the arcs corresponding to the polygon
boundary form a Hamiltonian circuit (VO,. ... V.-I).
And also note that since GV is labeled by V, which
we assumed was labeled in a ccw boundary traver-
sal order, the Hamiltonian circuit is provided by the
labeling of the graph.

Vertex-edge Pseudo-Visibility

We need to detine when a vertex sees an edge. In [0 S97],
we defined u to see e in a straightline context if v sees
an open interval of e. Here we extend this notion to
the pseudo-visibility context without adding any new
points and pseudolinea to the generalized contignra-
tion, to keep the definitions purely combinatorial. We
start with the notion of a “witness.” Let r; C lij be
the ray along lij starting at and including vj, directed
away from (and therefore excluding) ~j.

Definition 2.5 Vertez vj ia 4 witness for the vertez-
edge pair (Vi, e) ifl either

1. vi is an endpoint of e, and vj is also (here we
permit Vj = Vi); or

~. vi is not an endpoint of e, and

(a) vi seesVj; and

(b) the ray r; intersects e at a point p,

(c) either vj = p, or the segment vjp is nowhere
ezten’or.

We will refer to the line Iij in the above definition as
the witness line,

(n

a‘j
vi . . . . . . . . . . . . .

‘j

(a) (b)

Figure 2: (a) vi sees e; (b) ui does not see ej although
Vj is a witness.

Definition 2.6 Vertez v sees edge e (v ~ e) ifl there
are at least two witnesses v, and VI for (v, e).

We call V. the right witness and w the Iejt witness if
their ccw ordering is (v,, e, w). Thus w is to the right
from the viewpoint of v, and VI to the left. Note that
an endpoint of an edge sees that edge, because then
both endpoints are witnesses.

The intent of this definition is illustrated in Fig. 2a:
vi sees an open interval of e. The reason we demand
two witnesses is that one witness does not suffice, as
is clear from Fig. 2b.

Lemma 2.7 Under the geneml position assumption,
if VI sees e, there are exsctly two witnesses for (Vi, e).

Definition 2.8 The vertex-edge pseudo-visibility graph
(ve-gmph) GVE of a polygon is a labeled bipartite gmph
with node node set V U E, and an arc between v E V
and e E E iff v can see e (acconfing to Dej. .2.5).

Ve-graph Properties

Our aim now is to obtain characterizing properties
of GVE. The key property concerns how a gap in
W.’sview of the polygon’s boundary can occur: it can
only occur in one of the two ways illustrated in Fig. 3.
We first state this condition using both v-v and v-
e visibility, and later (Theorem 2.13) remove the v-v
information.

We use the following notation to specify parts of
the polygon boundary: P[i, j] is the closed subset
of the polygon boundary ccw from v: to vj. P(i, j]
excludes vi; P[i, j) excludes vj; ad P(i, j) excludes
both.

A B

Figure 3: Two cases for vk seeing ei followed by ej.

Lemma 2.9 If vk sees non-adjacent edges ei and ej
and no edge between, vk c P~ + 1, i], then ezactly one
of Case A or B holds (see Fig. 9):

Case A

1. Vk sees vi+l but not vj; and

2. vi+l is the right-witness for (vk, ej); and

.9. vi+l sees ej btd vj does not see ei.

Case B

1. vk sees vj but not vi+l; and

9. vj is the left-witness for (vk, ei); and

9. vj sees e: but vi+l does not see ej
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The structure established by the preceding lemma
is beat captured by the notion of “pockets”:

Definition 2.10 It vi sees ej and U. and w are the
right and left witnesses respectively (cf. Fig. 4), then
P[i, r) and P(l, il are the right and ieft near pockets
of (vi, ej), and P(r, j~ and P~ + 1, 1) are the right and
left far pockets of (Vi, ej), respectively.

4“

vi
Vj

F@re 4: Definition of near and far pockets.

Note that: vi is in both near pockets; ej is not part
of either far pocket, and the witnesses are not in any
of the four pockets. If either witness is an endpoint of
ej, th~ the corresponding pocket is empty.

Lemma 2.11 It ui sees ej and v, and WIare the right
and left witnesses respectively, then

1. No vertex in the right near pocket sees an edge
in the right tar pocket.

2. No vertez in the right far pocket sees an edge in
the right near pocket.

Symmetric claims hold for the left pockets.

Lemma 2.11 leads immediately to Lemma 2.12,
which conveys the same import in more graph-theoretic
terms.

Lemma 2.12 If vi sees ej and V. and VI are the right
and left witnesses respectively, then V, is an articula-
tion paint of the subgmph of Gviz induced by P[i, j],
and symmetn”cally, V1 is an articulation point of the
subgmph induced by P~ + 1, il.

We may rIow state our characterization of v~graphs
by discarding from some of the previous lemmas all
but vertex-edge vtilbility information.

Theorem 2.13 U GVE is the vertez-edge visibility
gmph of a pseudo-polygon P, then it satisfies these
two properties:

1. If ?Ih sees non-adjacent edges ei and ej and no
edge between, Vk E P~ + 1, i], then ezactly one
of these holds:

A. (Ui+l,ej) E GVE, or

B. (t)j, ei) G GVE.

2. In the two cases aboue, additionally:

A. Ui+l is an articulation point of the subgmph
Of GVE induced by P[k, j~.

B. Uj is an articulation point of the subgraph of
GVE induced by P~ + 1, k].

We will prove in Section 3 that these properties lx+
sically provide a complete characterization of vertex-
edge visibility graphs.

Informatim in the Vestex-Edge Viiblhy Graph

We have established the key low-level properties of
GVE in Theorem 2.13, but they give little insight into
higher-level properties of the graph. To carry out the
proof of Theorem 3.2 in the next section, we will need
to derive from the lower-level concepts a number of
additional combinatorial concepts, analogs of the g-
metric notions of convexity of polygon vertices, partial
local sequences, and shortest paths trees. These have
been shown to be derivable from GVE in the straight-
line case in [0 S97], and the generalization to pseudo-
visibility is along similar lines. We will omit most
of the details here and give just the definitions that
are needed to understand the abstract counterparts
introduced later in the proof of the main theorem.
See [0S96] for detaila.

Given a set of Doints in the rdane. rotate a dkected
line ‘&ound each ~oint and re~ord the ordered list of
the other points as they are encountered by the ro-
tating line. In addition, assign a sign to each point:
positive if it is encountered by the forward ray from
the center of rotation, negative if by the backward
ray. The infinite sequence thus obtained is called the
i-sequence for the vertex. It is periodic, fully charac-
terized by one half-period. The half-period is a signed
permutation of all the vertices clifTerentfrom the point
of rotation, CY1crz. o. an-l. A circular rotation of this
permutation, with a change of the sign of the element
sent from the beginning to the end of the permutation,
also characterizes the same i-sequence.

As au example, consider the points in Fig. 5, ig-
noring (temporarily) the polygon boundary, and imag-
ining a full complement of fully-ext ended pseudolines.
The i-sequences of the points could be as follows, where
negative points are indicated with a bsm

V(I: 214385
VI : 2~34
V2 : 341506
US: 506412
V4 : 50%12
Us : 602143
ve : 214305

The wllection of i-sequences for all the points in
the set is a version of what Goodman and Pollack
[GP84] called a cluster of stars (see also [Str96a]).
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Figure 5: A pseudo-polygon used to illustrate i-
sequences.

Fkom an i-sequence, one can read off chirotope infor-
mation, i.e., whether a triple i, j, k makes a right or left
turn at j. Using a different terminology (vortex-free
tournam ents, pr*CC and CC-systems), Knuth ~nu92]
has given a system of axioms equivalent to uniform
acyclic oriented matroids of rank 3. Knuth’s CC-
systems can be interpreted as characterizing the i-
sequences of generalized configurations of points. We
will make use of his results in the proof of our main
theorem.

Rotating a directed pseudoline around a vertex in a
polygon and recording in a circular (signed) sequence
only the visible vertices induces a partial i-sequence.
The partial i-sequences of a polygon are uniquely de-
termined by the ve-graph, and can be easily computed
from it as soon as the convexity properties of the ver-
tices of the polygon are determined. For example, for
the vertices of Fig. 5, the partial i-sequences for each
vertex are as follows:

Uo: 1465
w : 2~34
V2 : 341
ua : 412
V4 : 50%2
v, : 6014
V6: 05

The edges of the v-graph meeting at a common
vertex may form convex or reflex angles. This infor-
mation is uniquely determined horn the ve-graph via
computing an extended relation of visibility between
vertices of the polygon and edges of the v-graph.

For any two distinct vertices of a simple polygon,
there exists a unique shortest path between them. For
a fixed sowce vertex vi, the set of shortest paths from
vi to all other vertices induces a shortest-path tree (SP
tree) rooted at vi. The tree is ordered: there is a
natural ordering between the subtrees rooted at each
vertex, as given by the ccw traversal of the boundary
of the polygon. Each internal node of a sptree is a
reflex vertex and a turn is associated with it: left or

right, according to how the shortest paths from the
root through that vertex turn there.

Next we define two canonical circular orderings of
vertices around each vertex of a polygon. These order-
ings will be used in the proof of the Theorem 3.2. The
intuition behind them is that for every pseud~polygon
there exists another pseudo-polygon in a normal form
having the same ve-graph. We will introduce a con-
cept of i-sequences for a pseudc-polygon: the normal
form has the property that the polygon i-sequences
are identical to the i-sequences of the underlying gen-
eralized configuration of points. The existence of the
normal form will be a consequence of the Theorem 3.2.

We define a total ordering on all the internal ver-
tices of the sptree rooted at vi (and hence on all the
shortest paths from the root to those vertices). If
vj and Vk are two children of the same node, with
vi, vj, Wkoccuring in this order in a ccw traversal of
the boundary of the polygon, then all the vertices in
the tree rooted at vj are listed be~oreall the vertices in
the tree rooted at vk. K Vj is a right (left) turn, then
vertex Vj itself is listed afier (before) all the children
in the subtree rooted at vj. For example, in Fig. 5,
the sp-tree rooted at 1 makes a left turn at vertex O.
The tree rooted at 6 makes a right turn at O, a left
turn at 4, and a right turn at 1. The total order of
the vertices of the polygon in the figure derived this
way is as follows:

VIJ: 214356
VI : 234506
V2 : 341506
ua : 506412
V4: 506123
v5 : 621043
Vu: 214305

Lastly, combining the total order of the shortest
paths (vertices) around each vertex with the partial
i-sequence information, one can define a canonical cir-
cular order of signed vertices around each vertex vi of
the polygon, as follows. If the vertex vi is convex, the
ordering is the same as the one induced by the sptree.
If it is reflex, take the signed permutation representing
its partial i-sequence. Each vertex in this permutation
is a child of the root (Ui) in the sptree for the cur-
rent vertex. Crest e a new signed permutation from
the partial i-sequence by replacing each vertex with
the ordered list of the vertices in the subtree rooted
at vj, with the same sign as the root vj. For example,
consider vi = w in Fig. 5, a reflex vertex whose par-
tial i-sequence is V4 : 50~12. We replace Vj = vo (O in
the sequence) with 06, resulting in w : 5~-12.

This canonical circular ordering will be called the
polygon i-sequence for vertex Vi in P; it is in gen-
eral different from the i-sequence for vertex ui in the
cent ext of the point configuration of the vertices of
the polygon. Note, for example, that the polygon
i-sequence for V4 just obtained is different from the
i-sequence of V4 in the point configuration (50~612),
because 6 was encountered before ~ when spinning
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about U4in the configuration, but all of O’s children are
sorted along with O without regard to where blocked
lines of visibility (e.g., 143)might encounter them. The
normal form mentioned previously forces, in this case,
ve to lie left rather than right of 143.

3 Abstract ve-graphs

We will work with bipartite graphs GVE defined on
two circularly ordered lists V = (uo, ..., un-1 ) of uer-
tices and E = (eo . . . . . en-l) of edges. Most of our ter-
minology and notation carries over from the geometric
setting, but we repeat here to emphasize that in the
abstract setting, all definitions must be combinato-
rial. Two edges ei and ej are adjacent if ~ = i + 1 or
i = j+ 1; vertex vi is adjacent tothe edges ei-1 ~d ei;
and edge ei is adjacent to its “endpoints” vi and vi-l.
The polygon boundary between vertices vi and uj is
defined M a list P[i, j] = (~i, ei, ui+l, . . .,ej-l, uj). AS
before, P[i, j) and P(i, j] exclude “endpoint” vertices.
We use Vi ~ ej as alternate notation for (Vi,ej ) E
GVE: vi sees ej. l?or a vertex vk c P~ + 1,~, two
edges ei and ej are called consecutive from vk if ok
sees ei and ej but does not see any et E P[i, j].

Definition 3.1 ArI abstract ve-graph is a bipartite
graph GVE on sets of vertices V and edges E, both
circuiarig labeled as above, with IVI = I-El ~ 3, sat-
isfying the two properties of Theorem 2.13, plus the
additional condition that each vertex sees its adjacent
edges: Vi, vi + ei and vi + ei-1 .

Our main goal is to prove that this definition cap-
tures ve-graphs of pseudo-polygons:

Theorem 3.2 (Main Theorem) If GVE is an ab-
stract ve-gmph, then there exists a genemlized config-
umtion of points @O, ..., p~-1 } and a pseudo-polygon
specified by this orden’ng of the vertices, whose ve-
graph is the same as GVE.

The plan of the proof is as follows. Our ultimate
goal is to prove the configuration of points exists by
constmcting a corresponding uniform rank-3 acyclic
oriented matroid. This requires specifying the orie-
ntationof all triples of points. We use shortest paths to
define these signed triples. With these in hand, we will
need to prove the collection of triples do constitute the
appropriatee type of matroid. We use Knuth’s “coun-
terclockwise” CC-axioms for this purpose. Several of
his axioms can be established from the properties of
i-sequences; the remaining we prove directly.

Note that we start only with a definition of v-e
visibility. From here we will detine a notion of v-v
visibility, as well as abstract counterparts of convex
and reflex vertices. uockets. shortest Daths. shortest-
path trees, and i-se&ences~ At this ~oint we will be
ready to define the triples and construct the matroid.
Most of the definitions through shortest paths mimic
in the abstract setting those in [0S97] for straight-line
polygons. The additional factor here is that we have
to prove that the definitions are consistent and lead

to objects satisfying the properties one would expect
from them.

We define v-v visibility according to which of Case
A and B holds in the defining properties from Theorem
2.13: in Case A, we define vk + Vi+l, and in case B,
we define Vk+ vj, just as in Lemma 2.9. Kj = i+l,
we define Vk + Vi+l. Moreover, if case A holds, we
say that vi+l is a right articulation point for P[k, i + 1)
(the near) and P(i+l,j] (the far) right pockets. If case
B holds, vj is the left articulation point for P(j, k] (the
near) and P[i + 1, j) (the far) left pockets. In either
case, the pockets and articulation points are relative
to visibility from Vk (or to the tfiple Vk,ei, ej).

Lemma 3.3 Vi, vi seesat least one other edge ej dif-
ferent from ei-1 and ei.

Lemma 3.4 Vi, exactly one of the following two cases
holds:

A. vi-l ~ ei and vi+l + ei-1 , or

In the first case we say vi is conveq and in the second
reflez.s
Proofi Assume this is not true. Then either Vi-1 +
ei but vi+l ~ ei-1 or vi-l # ei but vi+l + ei-1.
Assume the tkst case holds (the other can be treated
similarly). Then, taking vi+ 1 to play the role of vk in
property 1 from Theorem 2.13, we know that vi+l +
ei by Def. 3.1. Because vi+l # ei-l, there must be
an edge ej, j G P[i + 2,i — 1), such that vi+l sees
ej ~d ei consecutively (such an edge must exist, by
Lemma 3.3). See Fig. 6. Moreover, Case B of Theo-
rem 2.13 must hold. Then ei-1 lies in the far pocket
for the triplet vi+l, ej, ei. But then, by property 2,
it cannot be the case that vi-l, which is in the far
pocket, sees ei, which is in the near pocket. This con-
traction establishes the lemma. •1

Figure 6: Lemma 3.4: vi+l + ei ~d vi+l + ej ~d
Vi+l sees no edge between.

The next lemma shows that the articulation point
properties of the ve-~aph carry through to v-v visi-
bility.

sRecall our general position assumption removes worry
about the intermediatecase.

124



Lemma 3.5 No vertez in a near pocket can see any
uertex in the corresponding far pocket and vice-versa.

The next step is to show the v-v visibility is sym-
metric:

Lemma 3.6 If vi ~ vj then vj + vi.

This lemma guarantees that the v-graph associated
to an abstract ve-graph is indeed an undirected graph,
and is the base case for the inductive proof of the more
general property of symmetry of paths between pairs
of vertices vi and vj (Lemma 3.15).

As an aside, note that some of the properties that
we prove can be found as axioms in [AK95] (e.g., path
symmetry is their “Necessary Condition 2“ ): it is in-
deed surprising that our simple conditions are enough
to imply these high level properties. The property in
the following lemma is one of their defining axioms.

Lemma 3.7 If vh + vi and vh ~ vj consecutively,
then vi + vj.

Fkom the ve-graph we can also define an extended
relation of visibilit y between vertices and v-graph edges,
as well as an abstract angle (convex or reflex) be-
tween two v-edges with a common endpoint. We say
that vertex Vk sees visibility edge vivj if Vh + el and
i c P(k, 1], vj c P[l + 1, k). We detine the abstract
angle Lv; vhvj between two adjacent v-edges vkvi and
VkVj ss being convex if Vi + VkVj and Vj -) VkVi, re-
tlex if none of these two conditions holds. Then we can
construct the abstract partial i-sequence for a vertex
Vh using the foliowing algorithm.

Algorithm 1 (Construction of the partial i-sequence
for Vertex Vk from ConVex/reflex angle information)

Start with vertez Uh+l in a list.
Record in the list the consecutive vertices vi for

which f VJ+lVhVi is convex. Let v~ be the !ast such
vertex. If we have not yet reached Uk-1 (i. e., m # k –
1), continue withthe rest of the vertices vj for which
the angle ~~k+l UhUj) :s reflez. For each such vertez
vj, determine a pair (vi,, vi, ) of previously listed con-
secutive vertices, Vi, E P[k + 1, m), viz E P(;l, ~],

so that vj does not see vii and sees viz consecutive to
Uh. Thenj if two consecutive vertices vjl and vj2 E

P(m, k – 1] lie between the same pair of consecutive
vertices vil, viz, list them in the same order in the par-
tial i-sequence, between vil and viz. Ail the vertices vi
with Uh+lvhvi convez are listed as positive, the others
as negative, in the signed partial i-sequence.

Some simple lemmas gurmmtee that the above def-
inition is consistent and the algorithm is correct.

The next result may seem rather trivial, although
the proof is not.

Lemma 3.8 There ezists at least one conoez vertex.

We have defined pockets and articulation points
earlier. The following lemma shows that pockets em-
bed nicely: this is the main tool used to define abstract
shortest paths and sp trees.

Lemma 3.9 (Subpocket embedding)
Let Ui + Vk with Vk a right articulation point for

visibility from vi. Let em be the next edge visible from
vi after vk and let vj be in the far pocket P(k, m].
Assume that vh + vj and let vj be in a far pocket P’
from ?Jh. Then P’ C P(k, m]. A similar embedding
property holds when Vh is a left articulation point.

For example, in Fig. 5, consider t’= 6, k = O, m =
4,=d~=3:Vi=V6+Vk=Vo,Vk =VofiVj=V~,
and vj = us E P(O, 4]. Then P’ = P[3, 4) C P(O, 4].

We need here some terminology which will help
in formulating and proving symmetry properties for
pockets and shortest paths. If Vj is in the right far
pocket P(k, m] from vi and in the right far pocket
P(p, s] from vh we will say that the embedding pat-
tern of the far pocket containing vj invisible from vi
is of type Rll, with first articulation point w of type
R and second articulation point VP of type R. Simi-
larly we define type RL, LR, LL embedding patterns
and articulation points, according to whether the tint
pocket is right and the second left, etc. The following
lemma shows that there is a symmetry in the embed-
ding patterns seen from the two en~points. In_what
follows we will also use the notation R = L and L = 1?.
The following corollary is a direct consequence of the
proof of Lemma 3.9.

Corollary 3.10 (Pocket symmetry) If vi # vj and
the embedding pattern of the far pockets from vi to vj

is AB (A, B E {L, R}) with articulation points Uh of
type A and VPof type B in this order, then the embed-
ding pattern of the pockets from vj to vi is reversed,
BA, with articulation points VP of type ~ and Uh of

t~pe ~ in this order.

The previous lemmas allow us to correctly define
the pocket embedding tree rooted at a vertex vi. This
is a tree with a fixed ordering on the children of each
internal node and with a sign (corresponding to a
right/left turn) associated to each node other than
the root. The tree hss exactly n nodes. Each node is
labelled with a signed vertex of V, and the set of ver-
tices in a subtree correspond to the set of vertices in a
subpocket with articulation point given by the vertex
labelling the root of the subtree. Moreover, the sign
of the root of the subtree is right/left, corresponding
to whether it is a left or right articulation point for
visibility from its parent.

The pocket embedding tree is defined recursively
as follows. Its root is the vertex vi and its children cor-
respond to the far pockets from vi in the order induced
by the circular order of V. Each node is labelled by
the corresponding articulation point and signed by its
right/left type. Lemma 3.9 ensures that once we get
into a pocket we can continue subdividing the pockets
by looking at the far subpockets of invisibilityy from the
root of the subtree, restricted only to the vertices in
the current pocket (subtree). This in turn guarantees
that this process generates a tree.

The labels of the paths from the root vi to the
other nodes of this tree correspond intuitively (i.e., in
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the case of a polygon) to the shortest paths from L; to
all the other vertices of the polygon. This motivates
our using the terminology do rtest paths for them in
the combinatorial setting of abstract ve-graphs. Let
W;and uj be two vertices of GVE. we will defie the
abstract shortest pathfrom Vi tO Wj, 8p(Wi,Vj) m ~
ordered list of vertices starting with u; and ending
with uj. In what follows, concat denotes the function
that concatenates two lists and reverse the function
that reverses an ordered list.

The following definition is just a rigorous formal-
ization of this concept.

sp(vi, Uj) is constructed recursively as follows.
if vi + uj then Sp(Ui, vj) = (vi, Uj)
eke Sp(vi, Uj) = (Ui) concat gp(u~, tfj), where Wkis

the articulation point of the far pocket from ui con-
taining Vj.

The shortest paths contain more information that
just the simple ordered list of vertices from a source
to a destination. They also capture the left or right
turnson the path, at articulation points along the way.
First let us fix some notation for this. If Sp(vi, oj ) =
(V; ,w,..., Uj) ~d Wkis a right (left) articulation point
for Uj, then we say that the shortest path Sp(vi, Uj )
makes a right (left) turn at vh. From Uh on, the
left/right turns are defined on the subsequent sub-
paths towards vj. We will denote by ~sp(vi, vj ), the
signed shortest path from vi to vj, to be a signed list
obtained from Sp(vi, vj ) and attaching the appropr-
iate signs to its vertices (+ for right turn, – for left
turn). The following lemma shows that the signs are
already determined by the shortest path.

Lemma 3.11 The right/left turns on a shortest path
are determined by the indices of the articulation points.
More precisely, if Vk is a right arttcuiation point from
u; to the far pocket containing vj, then all the vertices
vj, in the far pocket have indices j’ > k (circularly,
i.e. v; ● P(k, i)). If it is a left articulation point, all
the vertices vj~ in the far pocket have indices j’ < k

(circularity, i.e. uji E P(i, k)).

Lemma 3.12 The signed list of vertices on a path
from the root vi in ,1 pocket tree rooted at u; to an
internal node Uj is equal to the ssp(ui, vj).

The following lemmas show that the shortest paths
glue together nicely. We note that these properties
were among the axioms in [AK95].

Lemma 3.13 If vk C $P(vi, vj) then ssp(~i, vk) is the
signed sublist of ssp(vi, vj) starting at vi and ending
at Vk.

Lemma 3.14 If Vh C .$p(Ui,Uj) then sp(vi, Vk) concat
.9P(Vh,Uj) = sp(uil uj).

Lemma 3.15 sp(vi, vj) = reverse ~p(vj, vi).

To summarize, up to this point we have defined for
every vertex vi of V a tree rooted at Vi and labelled
with all the vertices of V. There is an ordering of
the children of all internal nodes and a sign (turn)

associated with each internal node. The paths from
the root to any vertex define abstmct shortest paths
from the root to that vertex. Two shortest paths trees
are compatible in the sense of Lemma 3.13. We will
now define a circular ordering of the shortest paths
sp(vi, vj ) mound a vertex vi by combining the partial
i-sequences for ui with the shortest path tree rooted
at vi, exactly as described at the end of Section 2.

The last step is to define a predicate on any triple
of vertices of V and show that it satisfies Knuth’s CC-
system axioms. It has been shown by Knuth that
CC-systems are equivalent to uniform rank-3 acyclic
oriented matroids [Knu92, p. 40], and it is well known
(see e.g., ~LW+93]) that these in turn are equivalent
with Goodman and Pollack’s generalized configura-
tions of points (in general position).4

We will write i < j < k iff the indices i, j and k
occur in this order in V (as usual, indices are taken
mod n).

The predicate will be denoted as ijk. It is fu-st
defined for indices i < j < k then extended as usual
for other permutations of three points: odd number
of inversions change the sign, even number keep the
same sign (see Knuth’s axioms on next page). We say
that ijk holds iff in the i-sequence for vertex vi, the
vertices vj and Vhappear positively in this order in a
half-period. For example, the polygon i-sequence for
vi in Fig. 5 is VI :234506. Thus 5<6 occur in this
order in the sequence, and so 156 holds.

The following lemma matches the chirotope defi-
nition in [AK95].

Lemma 3.16 If i < j < k then ijk holds iff i, j,k do
not occur on a common abstmct shortest path. Equiv-
alently, ~ijk ifi i, j, k belong to the same shortest path.
Continuing with the same example, 156 holds because
1<5<6 and they do not occur on a shortest path;
and 1160 because 1 < 6 < 0 and they occur on the
shortest path (v1, vo, ve).
Proofi We first prove sufficiency. Let i < j < k and
ijk, and assume for contradiction that i, j, k are on
the same shortest path. Then either j E sp(i, k), in
which case j has to be a right turn and contradicts the
definition of the i-sequence for vertex i (k would occur
before j and not vice-versa); or i c sp(k, j) which
agaii implies that in the i-sequence for i, j is followed
by k, contradicting the hypothesis; or k c sp( j, i),
which again implies that k occurs after j in the i-
sequence for i, contradiction.

To prove the necessity, assume i, j, k are not on the
same shortest path. Then in the sp-tree rooted at i, j
and k are on different branches, and if those branches
originate at i, they do not form a reflex angle. The
definition of the i-sequences then guarantees that a
vertex of smaller index (j) is encountered in the i-
sequence before a vertex of higher index (k). ❑

Note that the conditions given by this lemma con-
stitute the definition in [AK95] for their oriented ma-
troid defined via chirotope axioms. We have found
that verifying these or any other equivalent oriented

4The modifier “uniform” indicates general position.
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matroid axioms involves a tedious case analysis, which
we circumvent via i-sequences and an appropriate in-
terpretation of Knuth’s CC-axioms [Knu92, p, 4]:

Axiom 1. (Cyclic symmetry): ijk +- jki.

Axiom 2. (Antisymmetry): ijk ~ ~ikj.

Axiom 3. (Nondegeneracy): ijk V ikj.

Axiom 4. (Inferiority): ijk A ikl A ilj + jkl.

Mlom 5. (Transitivity): ijk A ijl A ijm A ikl A dm ~
ikm.

To finish the proof we need to verify that Knuth’s
axioms hold, that we can define a pseudo-polygon on
the corresponding generalized configuration of points
(i.e., edges do not cross), and then show that its ve-
graph is exactly the graph that we started with. First,
we notice that the five axioms of Knuth can be grouped
into three categories. Axioms 2, 3, and 5 are equiv-
alent to the existence of circular i-sequences for each
point of the system (this is a consequence the corro-
lary on [Knu92, p. 12]), which we have already estab-
lished. Axiom 1 requires that the signs of triples do
not change under circular permutations of the points,
which is a direct consequence of Lemma 3.16. This
leaves Axiom 4, the acyclicity condition, which en-
sures that the points can be realized as an affine gen-
eralized configurateion of points.

Lemma 3.17 Axiom 4 holds: ijk A ikl A ilj ~ jkl,
Proofi Let a, b, c and d be four arbitrary points oc-
curing in this order in V: a < b < c < d. Without loss
of generality we can assume that i = a. The symmetry
in Axiom 4 tells that we have only two cases to verify:
(l)j=b, k=c,l=d, or(2) j= blt=c, k=d,

Case 1. i < j < k <1. The premiss, interpreted
through Lemma 3.16, says that: i, j, k and i, k, 1 are
not on the same shortest path, and, using Axiom 2
(ilj ~ =ijl), that i, j, i are on the same shortest path.
The consequent says that j, k, 1 are not on the same
path. Assume for the sake of a contradiction that
j, k, 1 are on the same path. Three cases are possible:
j on sp(~, k) and is a right turn; k on sp(j, 1) and is a
right turrq or 1 on sp(k, j) and is a right turn. In the
first case (Fig. 7a), i is in the near right pocket from
i, and k in the far right pocket from 1, contradicting
the first premiss ijk. In the second case, we have to
use the premiss =ijl to get a contradiction. Either j
is on sp(i, /) (Fig. 7b), in which case it follows that
k is on sp(i, l), contradicting ikl; or i on sp(l, j), in
which case either ijk or iki have to be on the same
SP, contradicting the fit premisses; or, finally, 1 on
sp(( j, i). In this case we obtain a contradiction with
ikl. The third case may be treated similarly.

Case 2. i < j <1< k is treated similarly. ❑

This concludes the proof that the i-sequences de-
fied from the ve-graph satisfy the CC-system axioms
of Knuth, and hence they form an affine generalized
configuration of points in general position. We now
have to verify that the order of V induces a pseudo-
polygon.

(Pj k........---...........-
i ‘“ 1

@)

Figure 7: Lemma 3.17, i < j < j < 1, i,j,l on a
shortest path (a) j E sp(l, k); (b) k E sp(j, 1) and
j e sp(i.1).

Lemma 3.18 NO two edges vivi+l and Vjuj+l Of ~

cross.
Proofi Assume the contrary. Then (1) vj and Uj+l

are on separate sides of vivi+l, and (2) vi ad Wi+l are
on separate sides of t)jvj+l. There are two ways (I)
can happen: either t)i sees ej after ei, in which case
Vi+l + e?j, S0 Vi+l Vj Uj+l is a left turn, contradicting
(2); or Vi+, sees L?j, in which case a contradiction is
similarly derived. •1

We will denote by ~ the pseud~polygon obtained
this way from the generalized configuration of points
associated with Gv E.

Lemma s.19 The ue-gmph of ~ coincides with GVE.

This is true since the construction of the general-
ized configuration of points preserved all the vertex-
to-edge risibilities and invisibilities.

To conclude, let us notice that the conditions char-
acterizing abstract ve-graphs can be easily verified in
polynomial time. This proves the main result that the
recognition problem for v~graphs is in P. Also, as a
consequence of the relationship between ve-graphs and
v-graphs, if one is given a graph one can easily “guess”
a ve-graph and verify that it matches the given one
and satisfies the ve-graph properties. This places the
pseudo v-graph recognition problem in NP.

Finally we mention some open problems raised by
our work

●

●

Given a v-gmph GV, in polynomial time find a
ve-gmph GVE compatible with it (in the sense
that there is a pseudo-polygon P such that GV
and GVE are its pseudo-viability v- and ve-gmphs
respectively), or show none ezists. Such a polynomial-
time algorithm would place pseudo v-graph recog-
nition problem in P,

Chamcterize the realizable mnk-3 acyclic uni-
form oriented matroids produced by the construc-
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tion in Theorem 3.2. The class of oriented ma-
troids obtained from the construction in The-
orem 3.2 is a strict subclass of all the acyclic
uniform rank-3 oriented matroids. It has been
shown elsewhere [Str96b] that not all are stretch-
able (i.e., realizable with straight lines). How-
ever, this beeing such a restricted class, it might
be possible to characterize or recognize them
with an algorithm of a complexity smaller than
the known PSPACE. The alternative is to show
that they are as complex as pseudoline stretch-
ablity.

● Remove the genemlposition assumption. A more
detailed definition of ve-visibility is necessary to
deal with degeneracies. See [0S97] for a hint of
the complications.
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