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Vertex-Edge Pseudo-Visibility Graphs:
Characterization and Recognition

Joseph O’Rourke
Ileana Streinu*

Abstract

We extend the notion of polygon visibility graphs to
pseudo-polygons defined on generalized configurations
of points. We consider both vertex-to-vertex, as well
as vertex-to-edge visibility in pseudo-polygons.

We study the characterization and recognition prob-

lems for vertex-edge pseudo-visibility graphs. Given
a bipartite graph G satisfying three simple proper-
ties, which can all be checked in polynomial time, we
show that we can define a generalized configuration of
points and a pseudo-polygon on it, so that its vertex-
edge pseudo-visibility graph is G. This provides a
full characterization of vertex-edge pseudo-visibility
graphs and a polynomial-time algorithm for the deci-
sion problem. It also implies that the decision problem
for vertex visibility graphs of pseudo-polygons is in NP
{as opposed to the same problem with straight-edge
visibility, which is only known to be in PSPACE).

1 introduction

Characterizing visibility graphs has remained an elu-
sive problem {O’R93]. Ghosh [Gho88, Gho87] pro-
posed a set of necessary conditions as a starting point.
Everett [Eve90] proved their insufficiency and pro-
posed new conditions. She also placed the recognition
problem in PSPACE by reducing it to the existen-
tial theory of the reals. Abello and Kumar [AK95]
expanded the set of conditions and first related the
problem with oriented matroid theory. Their con-
ditions, plus realizability (stretchability) of a certain
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oriented matroid associated with the graph, would al-
low a characterization of visibility graphs. But real-
izability of oriented matroids is a very strong condi-
tion. It has been shown by Mnév [Mné91] (see also
Shor [Sho91)) that it is as hard as the existential the-
ory of the reals, for which so far only exponential algo-
rithms are known. In this context the problem seems
too hard to attack.

In this paper we deal with the characterization
and recognition problems for a class of polygon visibil-
ity graphs, the ve-graphs introduced in [0S97]. Else-
where we deal with the reconstruction (drawing) prob-
lem [Str96a].

Our approach introduces two innovations. First,
instead of the usual vertex-vertex visibility graph (v-
graph), we study the vertezr-edge visibility graph (ve-
graph) Gvg of a polygon. We introduced this con-
cept in a previous paper [0S97]. There we showed
that this combinatorial structure contains more geo-
metric information than the vertex visibility graph for
straightline polygons. Second, we generalize the no-
tion of straightline visibility to visibility along pseu-
dolines. Here we reinterpret and clarify some of the
results of Abello and Kumar [AK95], as well as taking
them a step farther. We mix our two ideas by starting
with the ve-graph of a pseudo-polygon, and showing
that such graphs can be characterized by three simple
properties recognizable in polynomial time. It follows
that recognition of vertex visibility graphs for pseudo-
polygons is in NP. In a companion paper [Str96b], it is
shown that the class of straightline ve-graphs is prop-
erly contained in the class of pseudoline ve-graphs,
and similarly for v-graphs. In particular it follows
that Abello and Kumar’s oriented matroids may not
be stretchable, and thus their characterization fails to
completely capture straightline v-graphs. Similarly,
our characterization of pseudo ve and v-graphs would
be incomplete if taken to their straightline counter-
parts.

By stating the problem in the pseudo-visibility con-
text, we isolate the combinatorial (oriented matroid)
structure of the problem from the stretchability issue,
in a manner similar to [AK95). Focus on ve-graphs
rather than v-graphs, and explicit focus on pseudo-



visibility, result in a simpler set of conditions than
have been obtained previously. The relative simplic-
ity of these conditions has led, as just mentioned, to
the first examples of non-stretchable visibility graphs
[Stro6b].

The paper has two main sections. In Section 2,
we start with a pseudo-polygon and its ve-graph, and
derive its properties. These properties are all rela-
tively unsurprising, direct generalizations of those es-
tablished for straight-line ve-graphs in [0897]). The
definition of vertex-edge visibility in the pseudoline
context is, however, not completely straightforward.
In order to concentrate on the more novel characteri-
zation, we do not include proofs in Section 2; see [0S96,
0597]. In Section 3, we start from abstract properties
of the graph and construct a pseudo-polygon that re-
alizes it. This involves the construction of an acyclic
uniform rank-3 oriented matroid. We establish that
the matriod has the claimed properties using Knuth
CC-system axioms [Knu92]. Other systems of axioms
(such as co-circuits) have been considered in previous
versions of this paper, but they led to a much more
involved case analysis.

2 Pseudo-Visibility in Pseudo-Polygons

Generalized Configurations of Points

Our generalization of straightline visibility to pseudo-
visibility depends the the notion of a “generalized con-
figurations of points” introduced by Goodman and
Pollack {GP84].' Recall that an arrangement of pseu-
dolines L is a collection of simple curves, each of which
separates the plane, such that each pair of lines of £
meet in exactly one point, where they cross.

Definition 2.1 Let V = {ug,v1,...,vn-1} be a set
of points in the Euclidean plane R?, and let L be an
arrangement of ('2') pseudolines such that every pair of
points v; and v; lie on ezactly one pseudolinel;; € L,
and each pseudoline in L contains exactly two points of
V. Then the pair (V, L) is a generalized configuation
of points in general position.

The phrase “in general position” indicates that no
three points of V lie on one line of £.

Psendo-Polygon

Two points a and b on a pseudoline ! € L determine a
unique {closed) segment ab consisting of those points
on ! that lie between the two points. For 0 <i < n-1,
let e; = viviy1 be the segment determined by v; and
vig1 on liip1.2

Definition 2.2 The segmentse; = vivi41 form a pseudo-

polygon iff:

1 Their definition is for the projective plane, and in-
cludes a special line lo,. We use the Euclidian plane.
2 All index arithmetic is mod n throughout the paper.
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1. The intersection of each pair of segments adja-
cent in the cyclic ordering is the single point
shared between them: e; Neiy1 = viy1, for all
1=0,1,...,n—1.

2. Nonadjacent segments do not intersect: e;Nej; =
@, forallj #i+1.

See Fig. la for an example. Throughout we let P
denote a pseudo-polygon, with V its vertices labeled
V = (vo, v1, ..., Un—1) in counterclockwise (ccw) order,
and F its set of edges similarly labeled. Note edges
are closed segments. We use the term exterior to des-
ignate points of the plane strictly exterior to P (and
so not on its boundary).

V4 V3
o)
vi
vy Yo v2
®

(@)

Figure 1: (a) A pseudo-polygon (not every intersection
between pseudolines is shown); |V| = 5, |£| = 10. (b)

ve cannot see v3.

Vertex-vertex Pseudo-Visibility

Pseudo-visibility is determined by the underlying ar-
rangement £: lines-of-sight are along pseudolines in
L.

Definition 2.3 Vertez v; sees vertez vj (vi & v;) iff
either v; = v;, or they lie on a line l;; € L and the
segment v;vj is nowhere exterior to P.

Note that our definition of pseudo-visibility is de-
pendent upon £: it does not make sense to ask if two
points of V see one another without providing the un-
derlying arrangement £. Dependence upon £ means
there is not complete freedom to assign which vertex
sees which. For example, in Fig. 1b, ve could not be
arranged to see va, because the pseudoline lpz would
have to intersect lo; (and li2) twice, violating the def-
inition of a pseudoline arrangement.

Definition 2.4 The vertex pseudo-visibility graph Gv(P)

of a polygon is a labeled graph with node set V', and an
arc between two vertices iff they can see one another

(according to Def. 2.8).



We will often abbreviate Gy (P) to Gy. Note that Gv
is Hamiltonian: the arcs corresponding to the polygon
boundary form a Hamiltonian circuit (vo,...,vn—1).
And also note that since Gv is labeled by V', which
we assumed was labeled in a ccw boundary traver-
sal order, the Hamiltonian circuit is provided by the

labeling of the graph.

Vertex-edge Pseudo-Visibility

We need to define when a vertex sees an edge. In [0S97],
we defined v to see € in a straightline context if v sees
an open interval of e. Here we extend this notion to
the pseudo-visibility context without adding any new
points and pseudolines to the generalized configura-
tion, to keep the definitions purely combinatorial. We
start with the notion of a “witness.” Let r; C [l;; be
the ray along l;; starting at and including v;, directed
away from (and therefore excluding) v;.

Definition 2.5 Verter v; is a wituess for the vertez-
edge pair (v;,e) iff either

1. v; i3 an endpoint of e, and v; is also (here we
permit v; = v;); or

2. v; 13 not an endpoint of e, and
{a) v; sees v;; and
(b) the ray r; intersects e at a point p,

(c) either v; = p, or the segment v;p 1s nowhere
ezterior.

We will refer to the line /;; in the above definition as
the witness line.

viP

(@) (b)

Figure 2: {a) v; sees e; (b) v; does not see e; although
v; is a witness.

Definition 2.6 Vertez v sees edge e (v — e) iff there
are at least two wilnesses v, and v; for (v,e).

We call v, the right witness and v; the left witness if
their ccw ordering is (v,, e, ;). Thus v, is to the right
from the viewpoint of v, and v to the left. Note that
an endpoint of an edge sees that edge, because then
both endpoints are witnesses.
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The intent of this definition is illustrated in Fig. 2a:
v; sees an open interval of e. The reason we demand
two witnesses is that one witness does not suffice, as
is clear from Fig. 2b.

Lemma 2.7 Under the general position assumption,
if v; sees e, there are exactly two witnesses for (v;,e).

Definition 2.8 The vertex-edge pseudo-visibility graph
(ve-graph) GvE of a polygon is a labeled bipartite graph
with node node set VU E, and an arc between v € V
and ¢ € E iff v can see e (according to Def. £.5).

Ve-graph Properties

Our aim now is to obtain characterizing properties
of Gvg. The key property concerns how a gap in
vi’s view of the polygon’s boundary can occur: it can
only occur in one of the two ways illustrated in Fig. 3.
We first state this condition using both v-v and v-
e visibility, and later (Theorem 2.13) remove the v-v
information.

We use the following notation to specify parts of
the polygon boundary: Pli,j] is the closed subset
of the polygon boundary cew from v; to v;. P(i, ]
excludes v;; P[i,j) excludes v;; and P(i,j) excludes
both.

Figure 3: Two cases for v; seeing e; followed by e;.

Lemma 2.9 If vy sees non-adjacent edges e; and e;
and no edge between, vi € P[j+1,i], then ezactly one
of Case A or B holds (see Fig. 3):

Case A
1. vp sees vi4y but not v;; and

2. vit1 18 the right-witness for (v, e;); and
3. vi+1 sees e; but v; does not see e;.

1. vg sees v; but not viy,; and
2. vj is the left-witness for (vi,e;); and

3. v; sees e; but viyy does not see e;



The structure established by the preceding lemma
is best captured by the notion of “pockets”:

Definition 2.10 If v; sees e; and v, and v; are the
right and left witnesses respectively (cf. Fig. 4}, then
Pli,r) and P(1,1] are the right and left near pockets
of (vi,e;), and P(r, j] and P[j+1,1) are the right and
left far pockets of (vi,e;), respectively.

Figure 4: Definition of near and far pockets.

Note that: v; is in both near pockets; ¢; is not part
of either far pocket, and the witnesses are not in any
of the four pockets. If either witness is an endpoint of
ej, then the corresponding pocket is empty.

Lemma 2.11 Ifv; seese; and v, and v are the right
and left witnesses respectively, then

1. No vertez in the right near pocket sees an edge
tn the right far pocket.

2. No vertez in the right far pocket sees an edge in
the right near pocket.

Symmetric claims hold for the left pockets.

Lemma 2.11 leads immediately to Lemma 2.12,
which conveys the same import in more graph-theoretic
terms.

Lemma 2.12 Ifv; seese; and v, and v; are the right
and left witnesses respectively, then v, is an articula-
tion point of the subgraph of Gvg induced by Pli, j],
and symmetrically, v; is an articulation point of the
subgraph induced by P{j + 1,1].

We may now state our characterization of ve-graphs
by discarding from some of the previous lemmas all
but vertex-edge visibility information.

Theorem 2.13 If Gvg is the vertez-edge visibility
graph of a pseudo-polygon P, then it satisfies these
two properties:

1. If vi sees non-adjacent edges e; and e; and no
edge between, vy € P[j + 1,1}, then ezactly one
of these holds:
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A. (vi41,¢e;) € Gvg, or
B. (vj,ei) € Gve.

2. In the two cases above, additionally:

A. viy; is an articulation point of the subgraph
of Gve induced by P[k, 3]

B. vj is an articulation point of the subgraph of
Gve induced by P[j +1,k].

We will prove in Section 3 that these properties ba-
sically provide a complete characterization of vertex-
edge visibility graphs.

information in the Vertex-Edge Visiblity Graph

We have established the key low-level properties of
Gyvg in Theorem 2.13, but they give little insight into
higher-level properties of the graph. To carry out the
proof of Theorem 3.2 in the next section, we will need
to derive from the lower-level concepts a number of
additional combinatorial concepts, analogs of the geo-
metric notions of convexity of polygon vertices, partial
local sequences, and shortest paths trees. These have
been shown to be derivable from Gv g in the straight-
line case in [0S97], and the generalization to pseudo-
visibility is along similar lines. We will omit most
of the details here and give just the definitions that
are needed to understand the abstract counterparts
introduced later in the proof of the main theorem.
See [0S96] for details.

Given a set of points in the plane, rotate a directed
line around each point and record the ordered list of
the other points as they are encountered by the ro-
tating line. In addition, assign a sign to each point:
positive if it is encountered by the forward ray from
the center of rotation, negative if by the backward
ray. The infinite sequence thus obtained is called the
i-sequence for the vertex. It is periodic, fully charac-
terized by one half-period. The half-period is a signed
permutation of all the vertices different from the point
of rotation, a1z -an—1. A circular rotation of this
permutation, with a change of the sign of the element
sent from the beginning to the end of the permutation,
also characterizes the same i-sequence.

As an example, consider the points in Fig. 5, ig-
noring (temporarily) the polygon boundary, and imag-
ining a full complement of fully-extended pseudolines.
The i-sequences of the points could be as follows, where
negative points are indicated with a bar:

vo : 214365
vy . 250634
vy @ 341506
vs : 506412
vy : 503612
vs : 602143
ve : 214305

The collection of i-sequences for all the points in
the set is a version of what Goodman and Pollack
[GP84] called a cluster of stars (see also [Str96a]).



Figure 5: A pseudo-polygon used to illustrate i-

sequences.

From an i-sequence, one can read off chirotope infor-

mation, i.e., whether a triple 3, j, k makes a right or left

turn at j. Using a different terminology (vortex-free

tournaments, pre-CC and CC-systems), Knuth [Knu92]
has given a system of axioms equivalent to uniform

acyclic oriented matroids of rank 3. Knuth's CC-

systems can be interpreted as characterizing the i-

sequences of generalized configurations of points. We

will make use of his results in the proof of our main

theorem.

Rotating a directed pseudoline around a vertexin a
polygon and recording in a circular (signed) sequence
only the visible vertices induces a partial i-sequence.
The partial i-sequences of a polygon are uniquely de-
termined by the ve-graph, and can be easily computed
from it as soon as the convexity properties of the ver-
tices of the polygon are determined. For example, for
the vertices of Fig. 5, the partial i-sequences for each
vertex are as follows:

vo : 1465
vy : 25034
va 1 341
vy : 412
va : 50312
vs : 6014
ve : 05

The edges of the v-graph meeting at a common
vertex may form convex or reflex angles. This infor-
mation is uniquely determined from the ve-graph via
computing an extended relation of visibility between
vertices of the polygon and edges of the v-graph.

For any two distinct vertices of a simple polygon,
there exists a unique shortest path between them. For
a fixed source vertex v;, the set of shortest paths from
v; to all other vertices induces a shortest-path tree (sp-
tree) rooted at v;. The tree is ordered: there is a
natural ordering between the subtrees rooted at each
vertex, as given by the ccw traversal of the boundary
of the polygon. Each internal node of a sp-tree is a
reflex vertex and a turn is associated with it: left or
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right, according to how the shortest paths from the
root through that vertex turn there.

Next we define two canonical circular orderings of
vertices around each vertex of a polygon. These order-
ings will be used in the proof of the Theorem 3.2. The
intuition behind them is that for every pseudo-polygon
there exists another pseudo-polygon in a normal form
having the same ve-graph. We will introduce a con-
cept of i-sequences for a pseudo-polygon: the normal
form has the property that the polygon i-sequences
are identical to the i-sequences of the underlying gen-
eralized configuration of points. The existence of the
normal form will be a consequence of the Theorem 3.2.

We define a total ordering on all the internal ver-
tices of the sp-tree rooted at v; (and hence on all the
shortest paths from the root to those vertices). If
v; and v, are two children of the same node, with
vi,vj, v occuring in this order in a ccw traversal of
the boundary of the polygon, then all the vertices in
the tree rooted at v; are listed before all the vertices in
the tree rooted at vs. If vj is a right (left) turn, then
vertex v;j itself is listed after (before) all the children
in the subtree rooted at v;. For example, in Fig. 5,
the sp-tree rooted at 1 makes a left turn at vertex 0.
The tree rooted at 6 makes a right turn at 0, a left
turn at 4, and a right turn at 1. The total order of
the vertices of the polygon in the figure derived this
way is as follows:

vo : 214356
vy ;. 234506
ve : 341506
vs : 506412
vy ¢ 506123
vs : 621043
ve : 214305

Lastly, combining the total order of the shortest
paths (vertices) around each vertex with the partial
i-sequence information, one can define a canonical cir-
cular order of signed vertices around each vertex v; of
the polygon, as follows. If the vertex v; is convex, the
ordering is the same as the one induced by the sp-tree.
If it is reflex, take the signed permutation representing
its partial i-sequence. Each vertex in this permutation
is a child of the root (v;) in the sp-tree for the cur-
rent vertex. Create a new signed permutation from
the partial i-sequence by replacing each vertex with
the ordered list of the vertices in the subtree rooted
at vj, with the same sign as the root v;. For example,
consider v; = v4 in Fig. 5, a reflex vertex whose par-
tial i-sequence is v4 : 50312. We replace v; = vo (0 in
the sequence) with 06, resulting in vy : 506312.

This canonical circular ordering will be called the
polygon i-sequence for vertex v; in P; it is in gen-
eral different from the i-sequence for vertex v; in the
context of the point configuration of the vertices of
the polygon. Note, for example, that the polygon
i-sequence for vy just obtained is different from the
i-sequence of v, in the point configuration (503612),
because 6 was encountered before 3 when spinning



about v4 in the configuration, but all of 0’s children are
sorted along with 0 without regard to where blocked
lines of visibility (e.g., lss) might encounter them. The
normal form mentioned previously forces, in this case,
ve to lie left rather than right of lgs.

3 Abstract ve-graphs

We will work with bipartite graphs Gvg defined on
two circularly ordered lists V = (vo,...,Un-1) of ver-
ticesand E = (eq,. .., en—1) of edges. Most of our ter-
minology and notation carries over from the geometric
setting, but we repeat here to emphasize that in the
abstract setting, all definitions must be combinato-
rial. Two edges e; and e; are adjacentif j =t+1 or
1 = j+1; vertex v; is adjacent to the edges e;_; and e;;
and edge ¢; is adjacent to its “endpoints” v; and vi—1.
The polygon boundary between vertices v; and v; is
defined as a bist P[i, j] = (vi,€i, Vit1,...,€j-1,9;). As
before, P[t, 7) and P(4, j] exclude “endpoint” vertices.
We use v; — €; as alternate notation for (vi,e;) €
Gveg: vi sees ej. For a vertex vx € P[j + 1,1}, two
edges e; and e; are called consecutive from vy if vg
sees e; and e; but does not see any e; € P[i, j].

Definition 3.1 An abstract ve-graph is a bipartite
graph Gvg on sets of vertices V and edges E, both
circularly labeled as above, with |V| = |E| > 3, sat-
isfying the two properties of Theorem 2.18, plus the
additional condition that each vertex sees its adjacent
edges: Vi, vi = ¢€; and vi = €i—y.

QOur main goal is to prove that this definition cap-
tures ve-graphs of pseudo-polygons:

Theorem 3.2 (Main Theorem) If Gvg is an ab-
stract ve-graph, then there exists a generalized config-
uration of points {po, -, pn-1} and a pseudo-polygon
specified by this ordering of the vertices, whose ve-
graph is the same as Gyg.

The plan of the proof is as follows. QOur ultimate
goal is to prove the configuration of points exists by
constructing a corresponding uniform rank-3 acyclic
oriented matroid. This requires specifying the orien-
tation of all triples of points. We use shortest paths to
define these signed triples. With these in hand, we will
need to prove the collection of triples do constitute the
appropriate type of matroid. We use Knuth’s “coun-
terclockwise” CC-axioms for this purpose. Several of
his axioms can be established from the properties of
i-sequences; the remaining we prove directly.

Note that we start only with a definition of v-e
visibility. From here we will define a notion of v-v
visibility, as well as abstract counterparts of convex
and reflex vertices, pockets, shortest paths, shortest-
path trees, and i-sequences. At this point we will be
ready to define the triples and construct the matroid.
Most of the definitions through shortest paths mimic
in the abstract setting those in [0S97] for straight-line
polygons. The additional factor here is that we have
to prove that the definitions are consistent and lead
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to objects satisfying the properties one would expect
from them.

We define v-v visibility according to which of Case
A and B holds in the defining properties from Theorem
2.13: in Case A, we define vi — vi41, and in case B,
we define vy — vj, just asin Lemma 2.9. If j =i +1,
we define vy — vi+1. Moreover, if case A holds, we
say that v;4+1 is a rightarticulation point for Plk,i+1)
(the near) and P(i+1, j] (the far) right pockets. If case
B holds, v; is the left articulation point for P(j, k] (the
near) and P[i + 1, 7) (the far) left pockets. In either
case, the pockets and articulation points are relative
to visibility from v (or to the triple vi, e, €;).

Lemma 8.3 Vi, v; sees at least one other edge e; dif-
ferent from e;_; ande;.

Lemma 3.4 Vi, ezactly one of the following two cases
holds:

A. vi_y = e andviyr —> €, or

B. vi-1 Ae andviyr Heioy.

In the first case we say v; is convez, and in the second
reflex.®

Proof: Assume this is not true. Then either vi_, —
ei but viyy # ei—y or vi_1 A e; but viy; = eis.
Assume the first case holds (the other can be treated
similarly). Then, taking vi}1 to play the role of vk in
property 1 from Theorem 2.13, we know that v;y; —
e; by Def. 3.1. Because vi41 / €i—1, there must be
an edge ¢;, j € P[i + 2,1 — 1), such that v;;; sees
e; and e; consecutively (such an edge must exist, by
Lemma 3.3). See Fig. 6. Moreover, Case B of Theo-
rem 2.13 must hold. Then e;_; lies in the far pocket
for the triplet vi41,ej,e;. But then, by property 2,
it cannot be the case that v;_;, which is in the far
pocket, sees e;, which is in the near pocket. This con-
traction establishes the lemma. (8]

Figure 6: Lemma 3.4: v;4; — e; and v;41 — e; and
vi41 sees no edge between.

The next lemma shows that the articulation point
properties of the ve-graph carry through to v-v visi-
bility.

3Recall our general position assumption removes worry
about the intermediate case.



Lemma 3.5 No vertex in a near pocket can see any
vertez in the corresponding far pocket and vice-versa.

The next step is to show the v-v visibility is sym-
metric:

Lemma 3.8 If v; 5 v; then v; > v;.

This lemma guarantees that the v-graph associated
to an abstract ve-graph is indeed an undirected graph,
and is the base case for the inductive proof of the more
general property of symmetry of paths between pairs
of vertices v; and v; (Lemma 3.15).

As an aside, note that some of the properties that
we prove can be found as axioms in {[AK95] (e.g., path
symmetry is their “Necessary Condition 2”): it is in-
deed surprising that our simple conditions are enough
to imply these high level properties. The property in
the following lemma is one of their defining axioms.

Lemma 3.7 If ux = v; and vi = v; consecutively,
then vi = v;.

From the ve-graph we can also define an extended
relation of visibility between vertices and v-graph edges,
as well as an abstract angle (convex or reflex) be-
tween two v-edges with a common endpoint. We say
that vertex uvx sees visibility edge viv; if vk — €; and
i € P(k,1], vj € P{l + 1,k). We define the abstract
angle Lv;vxv; between two adjacent v-edges vev; and
vkv; as being convez if v; — vrv; and v; — vy, Te-
flex if none of these two conditions holds. Then we can
construct the abstract partial i-sequence for a vertex
vi using the following algorithm.

Algorithm 1 (Construction of the partial i-sequence
for vertex vy from convex/reflex angle information)

Start with verter vgyy tn a list.

Record in the list the consecutive vertices v; for
which Luxqivrvi is convex. Let v be the last such
verter. If we have not yet reached vi_y (i.e., m # k—
1), continue with the rest of the vertices v; for which
the angle Lvgpiiviv;) is reflex. For each such vertez
v;, determine a pair (vi,,vi,) of previously listed con-
secutive vertices, v;; € Pk +1,m), vi, € P(iy,m],
so that v; does not sec vi, and sees v;, consecutive to
vk. Then, if two consecutive vertices v, and vj, €
P(m,k — 1} lie between the same pair of consecutive
vertices v;,, vi,, list them in the same order in the par-
tial i-sequence, between v;, and v;,. All the vertices v;
with vi41vkt; conver are listed as positive, the others
as negative, in the signed partial i-sequence.

Some simple lemmas guarantee that the above def-
inition is consistent and the algorithm is correct.

The next result may seem rather trivial, although
the proof is not.

Lemma 3.8 There exists at least one conver vertex.

We have defined pockets and articulation points
earlier. The following lemma shows that pockets em-
bed nicely: this is the main tool used to define abstract
shortest paths and sp-trees.
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Lemma 3.9 (Subpocket embedding)

Let v; = vx with vy a right articulation point for
visibility from v;. Let ey, be the next edge visible from
v; after vx and let v; be in the far pocket P(k,m].
Assume that vk 5 vj and let v; be in a far pocket P’
from vx. Then P' C P(k,m]. A similar embedding

property holds when vy i3 a left articulation point.

For example, in Fig. 5, consider t =6, k=0, m =
4,and j = 3: v; = vg = U = vy, Uk = Vg /> Uj = vy,
and v; = vs € P(0,4]. Then P’ = P[3,4) C P(0,4].

We need here some terminology which will help
in formulating and proving symmetry properties for
pockets and shortest paths. If v; is in the right far
pocket P(k,m] from v; and in the right far pocket
P(p, 3] from vix we will say that the embedding pat-
tern of the far pocket containing v; invisible from v;
is of type RR, with first articulation point vy of type
R and second articulation point v, of type R. Simi-
larly we define type RL, LR, LL embedding patterns
and articulation points, according to whether the first
pocket is right and the second left, etc. The following
lemma shows that there is a symmetry in the embed-
ding patterns seen from the two endpoints. In what
follows we will also use the notation R = Land L = R.
The following corrollary is a direct consequence of the
proof of Lemma 3.9.

Corollary 3.10 (Pocket symmetry) If vi /# v; and
the embedding pattern of the far pockets from v; to v;
is AB (A, B € {L, R}) with articulation points vi of
type A and vp of type B in this order, then the embed-
ding pattern of the pockets from vj to v; is reversed,
BA, with articulation points vy, of type B and vi of
type A in this order.

The previous lemmas allow us to correctly define
the pocket embedding tree rooted at a vertex v;. This
is a tree with a fixed ordering on the children of each
internal node and with a sign (corresponding to a
right/left turn) associated to each node other than
the root. The tree has exactly n nodes. Each node is
labelled with a signed vertex of V, and the set of ver-
tices in a subtree correspond to the set of vertices in a
subpocket with articulation point given by the vertex
labelling the root of the subtree. Moreover, the sign
of the root of the subtree is right/left, corresponding
to whether it is a left or right articulation point for
visibility from its parent.

The pocket embedding tree is defined recursively
as follows. Its root is the vertex v; and its children cor-
respond to the far pockets from v; in the order induced
by the circular order of V. Each node is labelled by
the corresponding articulation point and signed by its
right/left type. Lemma 3.9 ensures that once we get
into a pocket we can continue subdividing the pockets
by looking at the far subpockets of invisibility from the
root of the subtree, restricted only to the vertices in
the current pocket (subtree). This in turn guarantees
that this process generates a tree.

The labels of the paths from the root v; to the
other nodes of this tree correspond intuitively (i.e., in



the case of a polygon) to the shortest paths from v; to
all the other vertices of the polygon. This motivates
our using the terminology shortest paths for them in
the combinatorial setting of abstract ve-graphs. Let
vi and vu; be two vertices of Gve. We will define the
abstract shortest path from v; to vj, sp(vi,v;) as an
ordered list of vertices starting with v; and ending
with vj. In what follows, concat denotes the function
that concatenates two lists and reverse the function
that reverses an ordered list.

The following definition is just a rigorous formal-
ization of this concept.

sp(vi, uj) is constructed recursively as follows.

if v; — v; then sp(vi,vj) = (vi, v;)

else sp(vi,v;) = (vi) concat sp(vk, vj), where vy is
the articulation point of the far pocket from v; con-
taining v;.

The shortest paths contain more information that
just the simple ordered list of vertices from a source
to a destination. They also capture the left or right
turns on the path, at articulation points along the way.
First let us fix some notation for this. If sp(vi,v;) =
{vi, vk, -+, vj) and v is aright (left) articulation point
for v;, then we say that the shortest path sp(vi,v;)
makes a right (left) turn at vi. From vx on, the
left/right turns are defined on the subsequent sub-
paths towards v;. We will denote by sap(v;,v;), the
signed shortest path from v; to vj, to be a signed list
obtained from sp(vi, v;) and attaching the appropri-
ate signs to its vertices (+ for right turn, — for left
turn). The following lemma shows that the signs are
already determined by the shortest path.

Lemma 3.11 The right/left turns on a shortest path
are determined by the indices of the articulation points.
More precisely, if v ts a right articulation point from
v; to the far pocket containing vj, then all the vertices
vjs in the far pocket have indices 3' > k (circularly,
i.e. v5 € P(k,i)). If it is a left articulation point, all
the vertices vjc in the far pocket have indices J <k
(circularly, i.e. v;r € P(i,k)).

Lemma 3.12 The signed list of vertices on a path
from the root v; in a pocket tree rooted at v; to an
internal node vj is egual to the ssp(ui,v;).

The following lemmas show that the shortest paths
glue together nicely. We note that these properties
were among the axioms in [AK95].

Lemma 3.13 If v, € sp(vi, v;) then ssp(vi, vk) is the
signed sublist of ssp(vi, v;) starting at v; and ending
al vk.

Lemma 3.14 If vk € sp(vi, v;) then sp(v;, vi) concat
sp(vk, v;) = sp(vi, vj).
Lemma 3.15 sp(vi,vj) = reverse sp(vj, vi).

To summarize, up to this point we have defined for
every vertex v; of V a tree rooted at v; and labelled

with all the vertices of V. There is an ordering of
the children of all internal nodes and a sign (turn)
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associated with each internal node. The paths from
the root to any vertex define abstract shortest paths
from the root to that vertex. Two shortest paths trees
are compatible in the sense of Lemma 3.13. We will
now define a circular ardering of the shortest paths
sp(v;, v;) around a vertex v; by combining the partial
i-sequences for v; with the shortest path tree rooted
at v;, exactly as described at the end of Section 2.

The last step is to define a predicate on any triple
of vertices of V' and show that it satisfies Knuth’s CC-
system axioms. It has been shown by Knuth that
CC-systems are equivalent to uniform rank-3 acyclic
oriented matroids [Knu92, p. 40], and it is well known
(see e.g., [BLW*93]) that these in turn are equivalent
with Goodman and Pollack’s generalized configura-
tions of points (in general position).*

We will write i < j < k iff the indices i,j and &
occur in this order in V (as usual, indices are taken
mod n).

The predicate will be denoted as ijk. It is first
defined for indices ¢ < 7 < k then extended as usual
for other permutations of three points: odd number
of inversions change the sign, even number keep the
same sign (see Knuth's axioms on next page). We say
that ijk holds iff in the i-sequence for vertex v;, the
vertices v; and vy appear positively in this order in a
half-period. For example, the polygon i-sequence for
v; in Fig. 5 is vy : 234506. Thus 5 < 6 occur in this
order in the sequence, and so 156 holds.

The following lemma matches the chirotope defi-
nition in [AK95].

Lemma 3.16 [fi < j < k then ijk holds iff ¢, j,k do
not occur on a common abstract shortest path. Equiv-
alently, —igk iff i, 3,k belong to the same shortest path.
Continuing with the same example, 156 holds because
1 < 5 < 6 and they do not occur on a shortest path;
and —160 because 1 < 6 < 0 and they occur on the
shortest path (vy, vo, ve).

Proof: We first prove sufficiency. Let t < j < k and
ijk, and assume for contradiction that ¢, j,k are on
the same shortest path. Then either j € sp(i, k), in
which case j has to be a right turn and contradicts the
definition of the i-sequence for vertex i (k would occur
before j and not vice-versa); or i € sp(k,j) which
again implies that in the i-sequence for i, j is followed
by k, contradicting the hypothesis; or k € sp(j,1),
which again implies that k occurs after j in the i-
sequence for i, contradiction.

To prove the necessity, assume 4, j, k are not on the
same shortest path. Then in the sp-tree rooted at i, j
and k are on different branches, and if those branches
originate at 1, they do not form a reflex angle. The
definition of the t-sequences then guarantees that a
vertex of smaller index (j) is encountered in the i-
sequence before a vertex of higher index (k). o

Note that the conditions given by this lemma con-
stitute the definition in [AK95) for their oriented ma-
troid defined via chirotope axioms. We have found
that verifying these or any other equivalent oriented

4The modifier “uniform” indicates general position.



matroid axioms involves a tedious case analysis, which
we circumvent via i-sequences and an appropriate in-
terpretation of Knuth’s CC-axioms [Knu92, p. 4]:

Axiom 1. (Cyclic symmetry): ijk = jki.
Axiom 2. (Antisymmetry): ijk = —ikj.
Axiom 3. (Nondegeneracy): ijk V ikj.
Axiom 4. (Interiority): ijk A ikl Ailj = jkl.

Axiom 5. (Transitivity): ijkAijlAimAtklAlm =
tkm.

To finish the proof we need to verify that Knuth’s
axioms hold, that we can define a pseudo-polygon on
the corresponding generalized configuration of points
(i.e., edges do not cross), and then show that its ve-
graph is exactly the graph that we started with. First,
we notice that the five axioms of Knuth can be grouped
into three categories. Axioms 2, 3, and § are equiv-
alent to the existence of circular i-sequences for each
point of the system (this is a consequence the corro-
lary on [Knu92, p. 12]), which we have already estab-
lished. Axiom 1 requires that the signs of triples do
not change under circular permutations of the points,
which is a direct consequence of Lemma 3.16. This
leaves Axiom 4, the acyclicity condition, which en-
sures that the points can be realized as an affine gen-
eralized configuration of points.

Lemma 3.17 Aziom 4 holds: ijk A ikl Adly = jkl.
Proof: Let a,b,c and d be four arbitrary points oc-
curing in this order in V: a < b < ¢ < d. Without loss
of generality we can assume that 1 = a. The symmetry
in Axiom 4 tells that we have only two cases to verify:
() j=bk=cl=dor{(2)j=bl=ck=d

Case 1. i < j < k < l. The premiss, interpreted
through Lemma 3.16, says that: 1,7,k and i,k,l are
not on the same shortest path, and, using Axiom 2
(ilj = —ijl), that i, 7,1 are on the same shortest path.
The consequent says that j, k,! are not on the same
path. Assume for the sake of a contradiction that
J,k,1 are on the same path. Three cases are possible:
J on sp(l, k) and is a right turn; k on sp(j,1) and is a
right turn; or ! on sp(k, j) and is a right turn. In the
first case (Fig. 7a), i is in the near right pocket from
I, and k in the far right pocket from [, contradicting
the first premiss ijk. In the second case, we have to
use the premiss —ijl to get a contradiction. Either j
is on sp(1,1) (Fig. 7b), in which case it follows that
k is on sp(i,1), contradicting ikl; or ¢ on sp(l, 5), in
which case either tjk or tki have to be on the same
sp, contradicting the first premisses; or, finally, ! on
sp((J,1). In this case we obtain a contradiction with
skl. The third case may be treated similarly.

Case 2. 1 < j <! < k is treated similarly. |

This concludes the proof that the i-sequences de-
fined from the ve-graph satisfy the CC-system axioms
of Knuth, and hence they form an affine generalized
configuration of points in general position. We now
have to verify that the order of V induces a pseudo-

polygon.
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Figure 7: Lemma 3.17, i < j < j < I, {,5,l on a
shortest path: (a) j € sp(l,k); (b) k € sp(4,1) and
J € sp(i.d).

Lemma 3.18 No two edges v;viy1 and vjujy, of P
cross.
Proof: Assume the contrary. Then (1) v; and vj41
are on separate sides of v;v;41, and (2) v; and vy, are
on separate sides of vjvj;1. There are two ways (1)
can happen: either v; sees e; after e;, in which case
Vig1 = €5, SO Vi41V;jvi41 is a left turn, contradicting
(2); or viy4s sees ej, in which case a contradiction is
similarly derived. _ o
We will denote by P the pseudo-polygon obtained
this way from the generalized configuration of points
associated with Gvg.

Lemma 3.19 The ve-graph of P coincides with Gvg.

This is true since the construction of the general-
ized configuration of points preserved all the vertex-
to-edge visibilities and invisibilities.

To conclude, let us notice that the conditions char-
acterizing abstract ve-graphs can be easily verified in
polynomial time. This proves the main result that the
recognition problem for ve-graphs is in P. Also, as a
consequence of the relationship between ve-graphs and
v-graphs, if one is given a graph one can easily “guess”
a ve-graph and verify that it matches the given one
and satisfies the ve-graph properties. This places the
pseudo v-graph recognition problem in NP.

Finally we mention some open problems raised by
our work:

¢ Given a v-graph Gv, in polynomial time find a
ve-graph Gvg compatible with it (in the sense
that there is a pseudo-polygon P such that Gy
and Gvg are its pseudo-visbslity v- and ve-graphs

respectively), or show none erists. Such a polynomial-

time algorithm would place pseudo v-graph recog-
nition problem in P.

o Characterize the realizable rank-3 acyclic uni-
form oriented matroids produced by the construc-
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[Gho87}
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tion in Theorem 3.2. The class of oriented ma-
troids obtained from the construction in The-
orem 3.2 is a strict subclass of all the acyclic
uniform rank-3 oriented matroids. It has been
shown elsewhere {Str96b] that not all are stretch-
able (i.e., realizable with straight lines). How-
ever, this beeing such a restricted class, it might
be possible to characterize or recognize them
with an algorithm of a complexity smaller than
the known PSPACE. The alternative is to show
that they are as complex as pseudoline stretch-
ablity.

Remove the general position assumption. A more
detailed definition of ve-visibility is necessary to
deal with degeneracies. See {0597} for a hint of
the complications.
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