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ABSTRACT

High Performance Computing (HPC) is the ability to process data
and perform complex calculations at extremely high speeds. Current
HPC platforms can achieve calculations on the order of quadrillions
of calculations per second, with quintillions on the horizon. The
past three decades witnessed a vast increase in the use of HPC
across different scientific, engineering, and business communities
on problems such as sequencing the genome, predicting climate
changes, designing modern aerodynamics, or establishing customer
preferences. Although HPC has been well incorporated into science
curricula such as bioinformatics, the same cannot be said for most
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computing programs. Computing educators are only now beginning
to recognize the need for HPC Education (HPCEd).

Building on earlier work, this working group explored how
HPCEd can make inroads into computing education, focusing on
the undergraduate level. This paper presents the background of
HPC and HPCEd, identifies several of the needed core HPC compe-
tencies for students, identifies the support needed by educators for
HPCEd, and explores the symbiosis between HPCEd and comput-
ing education in contemporary areas such as artificial intelligence
and data science, as well as how HPCEd can be applied to benefit
diverse non-computing domains such as atmospheric science, bio-
logical sciences and critical infrastructure protection. Finally, the
report makes several recommendations to improve and facilitate
HPC education in the future.
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1 INTRODUCTION

High Performance Computing (HPC) provides the ability to pro-
cess data and perform complex calculations at quadrillions of cal-
culations per second, orders of magnitude faster than ordinary
high-speed computers [92]. HPC can be performed on dedicated
supercomputers typically containing thousands of compute-nodes
working together to complete one or more tasks in parallel. Quite
recently, these were "virtual supercomputers” comprising many
inexpensive commodity computers configured in parallel or dis-
tributed settings. For instance, the Hadoop ecosystem [10] is an
open-source archetype that can be operated at low-cost to provide
on-demand processing of big datasets that cannot fit on a single
machine. Although Hadoop-based systems were considered HPC,
Apache Spark [11] is now becoming popular as it provides improved
HPC, showing that what is considered HPC is time-dependent.

HPC promises to revolutionize not just computing, but also ev-
ery field of human endeavor [103]. As Gray noted [62], scientific
discovery has moved from the empirical and theoretical paradigms
through computational modeling/simulation to the fourth para-
digm of data-intensive exploration, for which HPC is the keystone.
Only HPC strategies [76] make it possible to have modern climate
prediction, healthcare, structural designs, aerodynamic designs,
management of natural resources, arts and entertainment, and so-
cial interaction, just to name a few.

Despite these dramatic impacts of HPC, computing educators
are only now beginning to recognize the need for HPC Education
(HPCEd). Moreover, even for educators working in this field, HPCEd
has presented a variety of challenges as detailed in this report. This
working group examines the background in this space, identifies
HPC competencies, discusses the support needed for HPCEd, inves-
tigates how HPCEd can impact computing education, and makes
recommendations for the future.

To set the stage for the report, the working group considers
several definitions for HPC. Inside HPC defines it as: "the prac-
tice of aggregating computing power in a way that delivers much
higher performance than one could get out of a typical desktop
computer or workstation to solve large problems in science, engi-
neering, or business." [68]. The European Commission defines it as:
"thousands of processors working in parallel to analyse billions of
pieces of data in real time, performing calculations thousands of
times faster than a normal computer" [47]. Another definition is
“the use of parallel processing for running advanced, large-scale
application programs efficiently, reliably and very quickly on su-
percomputer systems” [109], which usually function at teraflops, or
even petaflops, where a flop is a floating point operation per second.

Although HPC is sometimes viewed to be the same as supercom-
puting, this working group views supercomputing as a subset of
high performance computing. Specifically, the group treats HPC
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as the platform technology concerned with programming for per-
formance, where performance takes the broad meaning of speed
(reducing time to solution), energy efficiency (doing more with less
power), upscaling (handling larger problems such as simulating a
wing and then a full plane, or a cell and then an organ) or high
throughput (the ability to handle large volumes of data in near
real-time, as required in the financial services industry, telecoms or
satellite imagery) [69].

HPC is important in contemporary computing in diverse ways.
One estimate shows that the HPC market is projected to be worth
$44 billion in 2023 [67]. One supercomputer installed in Illinois,
USA in 2013 costing $208 million [37] had a $1.08 billion direct
impact on the Illinois economy and created nearly 6,000 full-time
jobs [66]. Apart from this and other immediate economic factors,
HPC is vital to the sustainability, growth and competitiveness of
many industrial sectors including pharmaceuticals, energy, manu-
facturing, and many others. The 2020 Top500 list which tracks the
500 fastest computers on Earth found that 58% of machines were lo-
cated in industry followed by 20% in research, 11% in academia, 7%
in government and the rest in other sectors. HPC is also essential to
energy, national laboratories, and defense, and impacts the lives of
billions of people daily in ways they often do not realize. Dozens of
the world’s fastest computers are used in weather forecasting [118]
and household names such as Disney use a cluster of computers
to create animation [119]. Many of the fastest computers on earth
have contributed towards efforts to fight the current COVID-19
pandemic [9, 86, 98].

More specifically, HPC is essential for today’s "hot" computing
areas such as Artificial Intelligence (AI), Cyberanalytics (CA), Data
Science and Engineering (DSE) [102], and the Internet of Things
(IoT). The symbiosis between Al and HPC is demonstrated by the
HPC community’s support for the anticipated Al revolution and the
concomitant expectations that Al will drive improvements in HPC
hardware and algorithms [48]. Baz [14] makes a strong case, with
examples, for HPC in IoT while Perrin et al. [100] make a similar
case for HPC in data analytics. In fact, one could argue legitimately
that deep learning would not be feasible without the availability of
different HPC frameworks [110]. The use of HPC and Al for Cyber-
analytics has also become commonplace [82]. It is worth noting that
these application areas, coupled with hardware advances such as
GPUs and other accelerators, have driven HPC from homogeneous
towards heterogeneous platforms. This is important as it has been
shown that algorithms for homogeneous platforms are not always
optimal on heterogeneous ones [15], opening up promising new
advances.

Given HPC’s importance, HPCEd is needed from undergraduate
through to post-graduate levels, from computing to non-computing
disciplines. However, there are many barriers inhibiting the adop-
tion and integration of HPC into computing education. For instance,
almost all HPC platforms and/or applications require an under-
standing of parallelism, an inherently difficult concept to grasp.
Currently, a fairly substantial portion of HPC education seems ad
hoc, and requires a more structured approach. HPCEd also requires
appropriate infrastructures to support student learning, and guid-
ance to faculty on how to incorporate HPC into their curricula.
Finally, new approaches are needed to advance the education of
interdisciplinary specialists [76].
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This paper addresses these and other questions related to HPC ed-
ucation, building on earlier work [75, 76]. The next section discusses
the needed background in HPC and HPCEd. Section 3 presents sev-
eral of the core HPC competencies students should attain, and
Section 4 explores the support needed by educators for HPCEd. Sec-
tion 5 explores the symbiosis between HPCEd and computing edu-
cation in hot areas such as Artificial Intelligence and Data Science,
while Section 6 examines how HPCEd can benefit non-computing
domains such as atmospheric science, biological sciences and criti-
cal infrastructure protection. We make a few recommendations in
Section 7 that we hope will move HPCEd forward.

2 BACKGROUND

Modern scientific development depends on large-scale data pro-
cessing and supercomputers, enabling the future growth of compu-
tational science [62]. Supercomputers are widely used in scientific
and engineering applications such as weather forecasting, climate
research, oil and gas exploration, and physical simulations [76], all
of which require HPC. This section provides the history of HPC,
contrasts HPC with parallel and distributed computing (PDC), dis-
cusses efforts in HPCEd, and examines challenges and opportunities
in HPCEd.

2.1 A High-Level History of HPC

Using the working definition of HPC as the aggregation of comput-
ing power to yield much higher performance than can be extracted
from a typical desktop system to solve large problems [68], we take
a quick look at the historical developments in this space.

Introduced in 1954, the IBM 704 was “designed for higher speeds
and larger capacities required by problems of increasing complex-
ity and size which confront business, industry, government and
science” [34]. Along with the IBM 704 arrived the earliest genera-
tions of Fortran [42], whose current generation remains a popular
language for HPC programming [108]. The IBM 704 could be said
to have been designed precisely for HPC.

In 1963, Seymour Cray and Control Data Corporation (CDC)
replaced vacuum tubes with transistors to create the CDC 6600, the
world’s first actual supercomputer [65]. Cray is often viewed as the
"Father of Supercomputing”. CDC 6600 could handle 9 megaflops of
processing power and was cooled by Freon. From the 1970s through
the 1990s, vector processors dominated the HPC field by operating
and processing large amounts of data simultaneously. Two notable
examples are the Cray-1 and Cray-2 vector computers.

The early 1960s also led to the increased use of parallel com-
puting with the advent of the first true multiprocessor system:
the D825 [8, 45], arriving well after the IBM 704. Parallel systems
were intimately intertwined with the support of HPC, as we now
understand the term. Since the 1990s, massive parallel processors
(MPP) became the norm. Examples of these machines include the
Cray-T3D, the ASCI Red, the Earth Simulator, and the Blue Gene/L.
MPP machines comprised a large number of connected computer
nodes using customized high-speed interconnection networks. Such
tightly coupled MPP structures became problematic due to propri-
etary hardware, proprietary software, and vendors going out of
business [116]. Soon clusters replaced these MPP structures, as they
provided open source software, as well as commodity off-the-shelf

53

ITICSE-WGR 20, June 17-18, 2020, Trondheim, Norway

—high performance computing

parallel and distributed computing

;;;;;;

Figure 1: HPC versus PDC: Worldwide Google Trends

hardware. The Roadrunner became the first petaflops supercom-
puter, and the Tianhe-1 quickly followed as the first petaflops su-
percomputer with a CPU-GPU heterogeneous architecture [128].
Today’s fastest supercomputer is Fugaku with a capability of 415.5
petaflops [120]. The next-generation exascale supercomputers deal
with several system research challenges, including energy, effi-
ciency, interconnect technology, memory technology, scalable sys-
tem software, exascale algorithms, and resilience [80]. An exascale
computer is one which has a performance of one or more exaflops.
An exaflop is a thousand petaflops or a quintillion (10'®) double
precision floating point operations per second. The first exascale
system is predicted to debut around 2022 [121].

Distributed systems came into vogue in the 1970s, with the for-
malization of early networking protocols and client-server comput-
ing. The research into distributed computing theory and systems
gained momentum in the 1980s, leading to distributed computing
protocols, the Internet and the world-wide web in the 1990s, and
cloud computing in the 21st century. Among other benefits, dis-
tributed systems offered yet another platform for realizing HPC.
For example, the Google File System [52] and Hadoop [10] provided
avenues to scale-up and scale-out the performance of a variety of
applications.

The 21st century has been dominated by the fact that perfor-
mance increases have hit a “power wall”: increasing transistor and
component density have resulted in heat dissipation, and there-
fore energy consumption, being the critical factor inhibiting perfor-
mance advances in extreme-scale high performance computing [95].
This, coupled with other factors, have resulted in the proliferation
of alternative architectures such as ARM, and heterogeneous archi-
tectures where general-purpose cores are augmented by specialized
accelerators that offer superior performance per watt [43, 103].
Since 2013 the Green500 list, tracking the most power efficient
supercomputers on Earth, has complimented the Top500 list [58].

2.2 Contrasting HPC and PDC

The combination of Parallel and Distributed Computing (PDC)
represents one platform for achieving HPC. In fact, PDC has been
so successful in achieving high performance that the two terms are
often conflated. Viewed at the trends level in terms of worldwide
Google search trends, as shown in Figure 1, it is fairly clear that
the public at large views HPC as the broader concept as compared
with PDC. In this subsection, we attempt to contrast PDC and
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Example:
Android
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Coding

Figure 2: Claim: HPC overlaps with but is not PDC

HPC to provide a foundation for the discussion of needed HPC
competencies in Section 3.

We briefly define three core PDC concepts to facilitate our discus-
sion; additional details about PDC can be found in several sources
including the CDER PDC Curriculum [25].

(1) Concurrency. This term represents conceptual separation of
a program’s instructions into subsets of instructions (usu-
ally referred to as tasks) that may theoretically be executed
simultaneously. While concurrency is a prerequisite for par-
allelism, concurrency does not require a physically parallel
computing system. In other words, a program may execute
its concurrent tasks on a single-core processor. Note that
concurrency is not always used to improve performance.
For instance, operating systems employ concurrency to give
the appearance of simultaneous execution. Here we only
consider concurrency when used to improve performance.
For concurrency to deliver a performance improvement, an
appropriate hardware environment, e.g. multicore or multi-
processor system, providing parallelism must be available.
Concurrency is a property of the software.

Parallelism. While concurrency allows a program’s instruc-
tions to be decomposed into conceptually or logically sepa-
rated tasks, parallelism is the actual execution of those tasks
literally at the same time. Thus, parallelism implies a phys-
ically parallel computing system with multiple processing
elements. Parallelism allows us to speed up the completion
of programs composed by many concurrent tasks, or to ex-
ecute multiple programs at the same time. Parallelism is a
property of the hardware.

Distribution. While parallelism refers to the temporal execu-
tion of a program’s set of tasks, distributed computing refers
to the spatial execution of those tasks—namely on physically
distinct computing nodes separated by a network. A defin-
ing characteristic of distributed computing is the lack of a
global clock, where the tasks execute “in their own world”.
Note that distributed computing is concurrent, but might
not necessarily be parallel.

Figure 2 illustrates the relationship between the fields of HPC
and PDC, providing one example to differentiate between the three
subsets shown in the Venn diagram. We think of Quantum Com-
puting as being primarily HPC-only, as issues of PDC is hidden
away from the programmer and the user. Similarly, few people
would think having multiple cores in a mobile phone leads to HPC,

@

®)
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though it indubitably leads to PDC. In the intersection, cluster com-
puting is both PDC and provides HPC. That is, while the fields
have significant overlap, they are nonetheless different from each
other. Due to this overlap, delineating between the two is not easy
unless dealing with rather extreme cases. For example, running a
large-scale simulation on a TOP500 supercomputer is obviously
HPC, despite having many PDC concepts at work. On the other
hand, operating system time-slicing on a multicore phone is clearly
not HPC.

The goal of HPC typically is to massively reduce the wall-clock
execution times of applications, programs, simulations, and such.
However, there are cases where time reduction might not be the pri-
mary goal. For instance, some problems have memory requirements
so large that they can only be tackled with HPC resources. In these
situations, the primary motivation would be to select a platform
that is capable of fully running the application regardless of speed,
and thus the reduction of execution time becomes a secondary goal.

In this light, HPC refers to systems that are orders of magnitude
more powerful than standard systems, e.g., mainstream desktops
and mobile devices. Such HPC platforms can execute problems
in minutes or days that would take standard computers months,
years, or even longer. When considering computing history, this
definition of HPC is a somewhat “moving target” in the context of
PDC.

Is it possible to imagine an HPC world without PDC? Our work-
ing definition of HPC does not prohibit this possibility. For example,
if some future (non-PDC) technology were to surpass typical com-
puters in computing potential, HPC would effectively be possible
without PDC. Quantum Computing, which promises computing
power that is exponentially faster than any system today [94, 115],
may be one such technology.

The working group acknowledges that modern-day HPC incor-
porates the broader application of concurrent, parallel, and dis-
tributed computing, where these approaches are used to improve
the performance of achieving the lowest possible wall-clock execu-
tion time with the available resources. For the foreseeable future,
PDC is an immediate precursor that enables this modern-day HPC.
An important characteristic of HPC is that at any given time, it
focuses on a single problem or a related set of simulations.

PDC represents the manner in which concurrency, the concep-
tual decomposition of the program, may occur in the form of a
parallel or distributed program. Often a program is both parallel
and distributed. Thus, a developer is able to achieve PDC on a

HPCEd

Education about HPC, including
non-PDC approaches

Education about PDC,
including for performance

Figure 3: Claim: Effective HPCEd covers all of PDCEd
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standard mainstream system such as a multicore mobile phone or
laptop, which is not necessarily HPC. Recall that HPC has a signifi-
cantly more ambitious and purposeful objective: to achieve high
performance improvement at a scale not possible on standard main-
stream multicore systems. The difficulty in distinguishing between
the two arises because modern-day HPC relies on PDC to achieve
its goal, while at the same time PDC implies higher performance,
which is the purpose of HPC.

2.3 Incorporating HPC into Computing
Curricula

Over the past three decades, HPC has been increasingly used across
the scientific, engineering, and business communities. However,
the gap between HPC usage and HPCEd continues to increase
because few computing students are educated in HPC competencies.
Figure 3 illustrates the relationship of HPCEd in comparison to PDC
Education (PDCEd), acknowledging that students need to at least
learn PDC to learn HPC as there are elements of HPC that go beyond
PDC. The HPCEd demands are additional to those of PDCEd, so it
is imperative that HPCEd gear up to meet the contemporary needs
of computing and engineering students.

Incorporating HPC early into the undergraduate curriculum has
been under exploration since the 1990s, when Johnson et al. [72]
proposed teaching parallel computing to first-year students by inte-
grating parallel computation into a data structures course. Similar
efforts include Lathrop [75, 76] and an ITiCSE 2010 working group
report [22], which addressed questions such as what aspects of
parallelism students should learn; how these concepts and prac-
tices could be incorporated into the computing curriculum; what
resources might be needed; and what systemic obstacles exist to pre-
vent adoption. HPC has been well-incorporated into many bioinfor-
matics and computational biology curricula [99], but not uniformly
or adequately integrated into computing programs as yet.

Some universities and many supercomputing centers worldwide
promote broad involvement by offering some HPC curricula at
undergraduate or graduate levels; for details, refer to Table 3 in
Section 4. There has also been steady progress in the creation of
educational materials and with the formation of a community of
educators that can aid future efforts. In particular, the Curriculum
Development and Education Resources (CDER) center [25] pro-
vides a detailed curriculum and parallel computing undergraduate
courses [101].

The National University of Defense Technology (NUDT) in China
has developed the Tianhe-2A system (ranking No.5 in the June 2020
TOP500 list), and also developed HPC undergraduate and graduate
curricula [28-30], which promote broad involvement in parallel
computing and supercomputing, even for non-computing and non-
engineering majors [27]. One of the most important features of
these HPC courses in NUDT is that students need to log in to the
Tianhe-2A supercomputer system remotely to complete parallel
programming assignments and debugging. Students are encouraged
to use as many computing nodes as possible. The operation and
practice on the actual supercomputer system is very helpful for
students to understand some HPC problems, especially those HPC
problems that are only exposed in relatively large-scale computing
environments. The related academic research in supercomputing
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provides additional support for a robust curriculum leading to new
possibilities for students worldwide.

Governmental and industrial alliances have also helped shape
the HPC landscape. For instance, the European Technology Plat-
form for High Performance Computing (ETP4HPC) is developing
a strong ecosystem of technologies to drive the creation of lead-
ing edge HPC systems up to the exascale level [46]. The alliance
has representation from over 15 different industrial partners, in-
cluding IBM, Intel, and ARM. Not only does the initiative include
research challenges, but it also covers training and education activ-
ities needed to create an appropriate professional skill set through
the collaboration of the academic, scientific, and industrial commu-
nities. A notable challenge cited in the initiative however was that
“The spectrum of deep knowledge and expertise required to develop
competitive HPC infrastructures is extremely broad and goes far
beyond traditional computer science” [46]. Needed competencies
range from programming, processors, memory, and interconnection
networks to cooling systems, heat reuse, and management systems.
On another front, the Partnership for Advanced Computing in Eu-
rope (PRACE) [97] also includes a strong outreach program to help
shape HPC education, and access to its supercomputing facilities.

Around 2005, a number of institutions called for the production of
a workforce with expertise in computational science [96, 104, 112].
In response, there have been efforts at the undergraduate level
to incorporate computational science into the curriculum. In the
United States, the National Computational Science Institute [91]
provided workshops for undergraduate faculty focused on intro-
ducing modeling and simulation in the undergraduate curriculum.
That effort resulted in the introduction of computational science
in many science disciplines [117]. Gordon, Carey, and Vakalis [56]
formulated a set of undergraduate minor programs in computa-
tional science and produced a set of model competencies for such
programs [64]. Since then, a significant number of undergraduate
majors, minors, and concentrations in computational science have
been created. Gordon and Cahill provide a recent survey of those
programs and their challenges [57]. However, the slow dissemi-
nation of this program information to other institutions has not
resulted in HPC integration into most undergraduate curricula.

2.4 HPCEd Challenges and Opportunities

Despite the initiatives listed in the previous section, the HPC exper-
tise gap still exists [114] and HPCEd still faces multiple challenges.
Few educators have the knowledge and skills to teach HPC, leading
to limited educational opportunities for students [90]. In addition,
HPC is applied in a large number of disciplines, making it more
difficult for computing students to understand the different do-
mains [90].

For a computing department that wants to adopt HPC course-
work, just getting started poses serious difficulties [89]. More specif-
ically, launching an HPC application is not a simple matter of creat-
ing a "hello world" program, as these applications contain multiple
components that require different handling [130]. Therefore, HPC
is obviously harder for domain experts who are not computing
knowledgeable, requiring a serious learning curve [93].
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Reflecting on the growing importance of parallel computing in
undergraduate curricula, the CS2013 (the ACM/IEEE joint com-
puter science) curricula report stated: “Previous curricular volumes
had parallelism topics distributed across disparate Knowledge Ar-
eas (KAs) as electives. Given the increased importance of PDC, it
seemed crucial to identify essential concepts in this area and to
promote those topics to the core” [3, p. 29]. As a result, CS2013
introduced a new knowledge area in parallel and distributed com-
puting [20]. Similarly, the CE2016 (the ACM/IEEE joint computer
engineering) curricula report included several knowledge units
in its recommendations such as “multi/many-core architectures,
distributed system architectures, system architectural design and
evaluation, and concurrent hardware and software design” [4].

The working group identified three major challenges in HPCEd
that limit widespread adoption of HPC concepts in computing
and engineering curricula. These can be characterized as W-H-
W, stands for What to teach (Curricula), How to teach (Practical
Environments), and Who teaches (Faculty) and learns (Students).
We discuss each of these in the following subsections.

2.4.1 What To Teach? HPC plays an important role in a wide range
of application fields, some within its own CS discipline, such as
artificial intelligence and the Internet of things, and others across
disciplines such as data science and bioinformatics. The diversity of
domains makes teaching HPC difficult [90]. Experts in one domain
lack necessary expertise in other HPC domains [76], which will
greatly limit students’ competency and versatility in the broader
HPC field. Breaking the barriers between these various knowledge
fields is crucial to produce multi-skilled talented graduates who
can span multiple application fields. But developing and carrying
out a uniform HPC curricular system is not feasible; we would not
expect to build a complete HPC curricula across all possible fields.
Competency-based learning can bridge the gap among different
fields and is an effective way to mitigate this problem.

Increasing interdisciplinary knowledge and application ability
is a very important educational goal but is difficult to achieve in
the typical crowded computing curricula. In fact, most computing
majors do not have enough cross-domain knowledge, which limits
their development in the HPC field [61].

Interdisciplinary area for non-computing majors. Computational
science creates advanced models that require a mixture of knowl-
edge of mathematics, computing, and domain science and engineer-
ing expertise.

Many of the curriculum changes have occurred at the graduate
level where the students have the appropriate disciplinary back-
ground to understand the systems being modeled and the challenge
of advancing research in their own disciplines. It is not uncom-
mon for graduate students to learn important skills and techniques
through less formal means, such as workshops and training ses-
sions provided by HPC research centers. Several graduate interdis-
ciplinary programs in computational science have emerged in the
physical sciences, materials science, atmospheric science, biological
sciences, and earth science. Although somewhat unique, each pro-
gram generally provides advanced work in the research challenges
within the discipline, along with courses on the application of HPC
to those challenges.
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Scaling the number of students and programs that offer HPC
expertise to undergraduate STEM students may require integra-
tion of the materials throughout the curriculum. The impetus for
such an integration will require the expansion of the number of
faculty using HPC in their research, extra training for additional
faculty, and institutional recognition of the importance of those
competencies to their graduates.

2.4.2 How To Teach? Ideally, universities would provide students
with an immersive practical experience with real problems in large-
scale system designs, software development, or HPC application
optimization. Currently, the practice environment cannot satisfy
such educational demands.

Lack of educational tools. Unlike the broader software engineer-
ing field, development effort estimations are much less established
for the HPC community [126]. A long-standing concern in the
HPC field is the ever-growing gap between hardware complexities
and tools available to support developers, effectively resulting in
a productivity bottleneck [79, 113]. Many of the issues surround-
ing the tools are general problems for the wider HPC community,
particularly those that pertain to developer productivity: tools do
not scale well, tools differ across platforms, and effective tools can
sometimes lag behind the hardware by years [124]. More relevant
to HPC education are additional problems imposed by tools that
are difficult to learn and usually expensive for universities [124].

The broader computing education research community has long
recognized the importance of tools for helping students learn pro-
gramming [55]. In the space of introductory programming efforts,
tools have been the dominant focus of researchers looking to sup-
port teaching and learning [16, 81]. Not only does this paper high-
light the large number of purpose-built educational tools, but also
includes numerous reviews dedicated purely to tools supporting
learning [35, 107]. Educators continue to develop tools supporting
introductory programming [81], but the same cannot be said for
tools appropriate for the more difficult topic of HPC.

Limited practice environments. Unlike multicore parallelization,
HPC presents unique problems of large-scale parallel systems such
as scalability, parallel efficiency, heterogeneous computing, parallel
storage systems and energy efficiency. HPC education should repro-
duce these unique problems; however, the current practice environ-
ment does not provide an immersive experience. Besides, effective
practical exercises from real application cases are also essential for
an immersive practical environment. Most of the real application
cases cannot be directly used for teaching content because they
tend to be too complex for student understanding. Students must
be able to decompose real-world complex problems into smaller
detailed forms so that they can understand how HPC can be applied.

2.4.3 Who Teaches and Who Learns? HPC remains a challenge for
both computing students and instructors.

Student recruitment for HPC courses is a major problem in this
field [76]. Students need to be convinced that the HPC field is impor-
tant enough to justify taking on extra credit hours in their already
challenging programs. As a result, most computing graduates do
not have sufficient knowledge of parallel computer architecture ele-
ments such as an HPC interconnection network, different execution
models for various architectural types (distributed, shared memory,
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and SIMD), common parallel algorithms, and high-performance
analysis.

With regard to faculty, teaching loads are a concern. Typically,
the expertise to teach HPC courses has been limited to one or a
few faculty who must also maintain their teaching assignments for
their departmental major courses or, in the case of research faculty,
their grant work and overall research agenda. Because of the rapid
development of HPC technologies and the limited availability of
up-to-date textbook materials, the average faculty member lacks
the vision and HPC knowledge to teach at the undergraduate level,
but more will be able to do so if course materials are provided and
readily available for use in an average lab.

Although academic HPC researchers have rich HPC engineering
experience, they often focus on their own research or focus on
graduate students, as they know the importance of producing many-
faceted HPC talented graduates. Currently, these researchers are
an untapped resource for undergraduate STEM education in HPC.
How can institutions persuade such researchers to be involved
in HPC course development, that is, developing course content
design, in-class teaching, laboratory instruction, and thus reduce
the burdens of other faculty?

3 HPC COMPETENCIES

Most computing curricular reports have described a discipline
through knowledge areas, knowledge units, and learning outcomes,
but do not generally provide guidance pertaining to skills or human
behavior, especially as reflected in workplace environments. Re-
cently, the Association for Computing Machinery (ACM) published
two recommendations surrounding competencies in computing cur-
ricula [13, 50]. The recommendations, which included definitions
of competency related to information technology and information
systems, evolved independently, but their approaches are rather
similar. Extending such efforts by creating competencies that incor-
porate the wide range of HPC related knowledge and skills across
a variety of disciplines may serve as a critical guide to curriculum
development. In this section, we look at HPC curricula using the
competencies perspective.

3.1 Competency Areas

Competency areas relating to HPC have been developed as part
of a number of endeavors, mainly from the computational science
community, the ACM/IEEE computing education curriculum docu-
ments, and as an effort of government and industrial alliances.

3.1.1  The computational science community. The National Science
Foundation (NSF) has supported grants to scientists and engineers
focusing on the integration of computational and modeling skills
into the curriculum. In addition, HPC centers funded by national
and international agencies, national laboratories, and universities
have provided training and education programs. As modeling and
simulation have become an integral part of research in science and
engineering, there has been a growing need to educate students
about the concepts and tools required to create, implement, and
validate models.

A number of projects have focused on the creation of educa-
tional modules to be used in classrooms and workshops [91]. A
model, multi-institutional, interdisciplinary group of faculty have
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developed a set of competencies for undergraduate students in
science and engineering [56]. Subsequently, those competencies
were updated as a part of the education program for the XSEDE
project [127]. The competencies are divided into seven major cate-
gories:
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(
(
4
(
(
(

Modeling and simulation

Programming and algorithms

Differential equations and discrete dynamical systems
Numerical methods

5) Optimization

6) Parallel computing

7) Scientific visualization

T DD = —

This mix of mathematics, computing principles, and domain sci-
ence skills is intended to guide the development of undergraduate
curricula. A number of institutions have used the competencies
while building their programs, giving different subsets of the com-
petencies greater or lesser importance depending on the particular
field of study. The expectation is that all students will require mod-
eling and simulation competencies and basic programming and
mathematics knowledge, while those that go on to more advanced
courses might require optimization and parallel computing skills
to use HPC in their modeling efforts. Existing minor programs in
computational science generally follow these major areas and also
include experience with using science and engineering code on
HPC systems to address domain level modeling challenges. For
example, these challenges might include the use of computational
chemistry code to model molecules or bioinformatics code for ge-
nomic analysis.

The introductory parallel computing competencies proposed
for STEM (non-computing) majors include four major areas. With
a grasp of these basic concepts, students will better understand
the operating environments and underlying principles of scientific
computing code that runs on HPC systems. These competencies de-
scribed below were developed from the CS2013 [3] and CE2016 [4]
curricula:

ST1. Demonstrating knowledge of parallel programming concepts
and their relationships to different computer architectures.
Using parallel computing concepts to create parallel programs
using MPI and OpenMP communications for a range of differ-
ent problems.

Demonstrating knowledge of scalability and speed-up metrics
for parallel programs.

Applying performance tools and profiling programs and using
parallel libraries in parallel programs.

ST2.

STs3.

ST4.

3.1.2 The ACM/IEEE Curricula. Updated periodically, these doc-
uments recognize that computing professionals must have skills
related to the design and use of large-scale parallel and distributed
computing systems, multicore and many-core systems, and their re-
lated programming and algorithmic requirements. The HPC-related
skills embedded in the computer science curriculum document
(CS2013) [3] are similar in many respects to the competencies con-
structed by the HPC community. The knowledge and skills listed
in the document reflect a greater depth of understanding and HPC
skills for computing students than those that were discussed for
STEM majors. However, a number of the skills are listed as elective
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or as “Core-Tier 2” requirements, meaning that every program will
cover 75-80% of these requirements, but may omit the rest as appro-
priate to that program. The CS2013 curriculum document includes
seven major topics related to parallel and distributed computing:

CSC1. Introduction to modeling and simulation
CSC2. Multiprocessing and computer architectures
CSC3. Parallelism fundamentals

CSC4. Parallel decomposition

CSC5. Parallel algorithms, analysis, and programming
CSCé. Parallel architecture

CSC7. Parallel performance

Multiple HPC-related skills appear in the computer engineering
document CE2016 [4]. However, there are further skills not listed in
CE2016 that are also relevant to HPC. The skill sets in the report can
be grouped into three major categories: a) performing algorithmic
analysis of parallel algorithms, b) understanding parallelism from
an architectural perspective, and c) understanding parallelism from
a systems perspective, namely that of distributed systems. The
relevant skills are:

CED1. Analyze the parallelism inherent in a simple sequential

algorithm.

Explain why communication and coordination are critical

to ensure correctness.

Calculate the speedup attainable in theory and explain fac-

tors limiting attainable speedup.

Explain limitations to scalability.

Discuss parallel algorithm structure and give examples.

Ilustrate ways to manage algorithmic execution in multiple

threads.

Select appropriate methods for measuring the performance

of multithreaded algorithms.

Explain the impact of granularity and levels of parallelism

in distributed systems, including threads, thread-level par-

allelism and multithreading.

Describe how the client-server model works in a decentral-

ized fashion.

Articulate current programming techniques, models, frame-

works, and languages for distributed, parallel processing.

CED11. Describe how programs are partitioned for execution on
multi-/many-core processors.

CED2.
CED3.
CED4.
CED5.
CED6.
CED7.

CEDS.

CED9.

CED10.

Table 1 shows the relationships between these three perspectives.

Table 1: Relationships between perspectives of HPC skills

STEM Major Skills CS 2013 [3] CE 2016 [4]

ST1 Knowledge of PP and esez CED2

Architect CSC3,4 CED5

rentecture CSC6 CED8,9,10

ST2 Use concepts to create CED1
CSC4 CED6

parallel programs CSCs CEDI11

ST3 Knowledge of scalability CED3
CSC7 CED4

and speed-up osCs CED7

ST4 Applying performance CSC7 —

tools and profiling
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3.2 New Competency Model

The CC2020 project consists of a fifty-member task force repre-
senting twenty countries and six continents. The project seeks to
summarize the current state of curricular guidelines for undergrad-
uate academic programs in computing [13], to guide a transition
from knowledge-based learning to competency-based learning, and
to set pathways for the future of computing education.

The CC2020 project specifies competency composed of three
dimensions (knowledge, skills, dispositions) observed within the
performance of a task. This construct leads to the following defini-
tion.

Competency = [Knowledge + Skills + Dispositions] in Task

Taken from the CC2020 draft report, Figure 4 illustrates a com-
petency structure of knowledge, skills, and dispositions that are
observable in the accomplishment of a task where the task pre-
scribes purpose within a work context [125].

Knowledge is the “know-what” dimension of competency as a
factual understanding. An element of knowledge designates a core
concept essential to a competency. Table A.3 identifies 36 knowl-
edge elements for computing organized into six categories as they
appear in the CC2020 report. The knowledge categories include
humans and organizations, systems modeling, software systems
architecture, software development, software fundamentals, and
hardware.

Skills refer to the capability and strategy for applying knowledge
to actively accomplish a task. Hence, skills express the application
of knowledge and are the “know-how” dimension of competency.
Table A.2 describes six skill levels as they appear in the CC2020
report. The skills include remembering, understanding, applying,
analyzing, evaluating, and creating.

Dispositions frame the “know-why” dimension of competency
and prescribe a requisite character or quality in task performance.
Dispositions shape the discernment of skillful engagement of “know-
what” and “know-how.” They encompass socio-emotional skills,
behaviors, and attitudes that characterize the inclination to carry
out tasks. The set of dispositions is an essential characteristic of a
well-structured competency, and it has an intricate involvement in
statements related to workplace or academic activities. Table A.4
describes 11 dispositions as they appear in the CC2020 report. The
dispositions related to meta-cognitive awareness include being
proactive, self-directed, passionate, purpose-driven, professional,
responsible, adaptable, collaborative, responsive, meticulous, and
inventive. They also include how we work with others to achieve
common goal or solution.

Knowledge

"

Dispositions

Task

*role

+goal

*objectives

*constraints

Competency

Figure 4: Competency Model (from CC2020 Report [13])
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Task is the construct that frames the skilled application of knowl-
edge and makes dispositions concrete. A task provides the setting
to manifest dispositions, where individuals moderate their choices,
actions, and effort necessary to pursue and succeed in an efficient
and effective manner.

Two curricula reports have already used this new perspective to
describe their scope:

e The Information Technology IT2017 Report diverged
from the knowledge areas, knowledge units, and learning
outcomes approach. This report [50] adopted competency-
based learning, particularly since almost all graduates en-
ter the industry or government workplace. It created the
canonical triad that Competency = Knowledge + Skills +
Dispositions taken in context. The CC2020 definition men-
tioned earlier uses a similar approach of knowledge, skills,
and dispositions used in the IT2017 report. This canonical
model of competency avoided the knowledge lens and uses
competency as the centerpiece of learning for information
technology.

e Master of Science for Information Systems MSIS2016
Report: Similar to the IT report, the MSIS2016 report [122]
identified a set of graduate competencies. In this context, the
term “competency” refers to a graduate’s ability to use knowl-
edge, skills, and attitudes to perform specified tasks success-
fully. The report represented competency as “a dynamic
combination of cognitive and meta-cognitive skills, demon-
stration of knowledge and understanding, interpersonal, in-
tellectual and practical skills, and ethical values” [78]. The
MSIS2016 report specified competency areas as the highest-
level categorization that included competency categories,
and these categories specify the actual competencies.

3.3

As we have seen, the field of HPC is complex. From the perspective
of HPC system composition, it involves computing subsystems, in-
terconnection network subsystems, storage subsystems, and other
components; from the perspective of multi-layer structure (bottom
to top), it involves high performance processor design, architecture
design, system software, resource management systems, parallel
algorithm design, and cross-domain parallel application develop-
ment. From the perspective of HPC application fields, it involves
broad areas such as computational fluid dynamics and bio-medicine,
as well as meteorological and ocean forecasting. This breadth and
complexity increases the difficulty of including necessary elements
in both computing and non-computing education.

Because of a lack of relevant HPC knowledge, non-computing
majors usually struggle to understand concepts such as scalability,
concurrency, parallel I/O, and reliability. Students tend to have a
low level of understanding, focusing instead on optimizing HPC
applications. Non-computing majors can better understand chal-
lenging HPC notions by connecting their domain concepts with
the corresponding HPC concepts.

Competency-based HPCEd, in contrast to knowledge-based ap-
proaches, focuses on cultivating students’ ability to comprehen-
sively apply knowledge and skills in multiple fields as well as to
communicate with other professionals. For example, a reduction

Defining Competencies for HPC
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in communication overhead can encompass the perspectives of
interconnection network design, MPI interface design, and com-
munication method selection. This ability to apply comprehensive,
multi-faceted knowledge can be transferred to students through
concrete examples in the teaching process.

At the same time, HPCEd needs to provide students with a pow-
erful and real experimental environment, so that students can im-
merse themselves in the experimental setting. Optimizing HPC
applications is a complex and iterative process, and due to its in-
terdisciplinary link, requires students, instructors, and researchers
to communicate in depth, accentuating the need for dispositions
within human settings.

3.3.1 HPC Competency Structure. Generating a list of HPC com-
petencies follows the same structure as previously mentioned for
regular computing areas. Skills, dispositions, and tasks remain the
same; the only component that changes is knowledge. Therefore,
we will refer to the most recent knowledge areas developed by the
Computing Curriculum Development and Educational Resources
(CDER) center at Georgia State University [25]. Table 2 provides
a summary of these knowledge elements related to HPC. The ele-
ments reflect the experience of the authors and those attributed to
the CDER project.

Based on the knowledge elements found in Table 2, the authors
have created a list of basic HPC sample competencies for both com-
puting and non-computing, and STEM curricula. We focused on a
sample of basic parallel and distributed computing skills for both
non-computing and computing majors. The key competencies are
associated with understanding parallel processing concepts (such as
processes, threads, and contention), some basic parallel computing
algorithms, the measurement and affecting factors of scalability
and “speed-up”, and the use of tools that support parallel program-
ming development and profiling. For computing majors, those same
competencies are also required, but these students should also have
a greater depth of knowledge and experience with a wider array of
parallel algorithms, the key features of different parallel computing
architectures, common concurrency problems, and parallel design
patterns [84].

3.3.2 Sample Basic Competencies. The following sample compe-
tencies apply to both non-computing and computing majors.

e Collaborate with colleagues and present a project to create
a parallel program that addresses a critical question in a
subject domain. In this example, the skills relate to parallel
programming, the knowledge is related to the domain being
modeled, and the disposition is collaboration with colleagues.

e Develop a framework for a commercial organization to com-
pute the speed-up associated with converting a serial to a
parallel program and its potential benefits toward improving
the efficiency of an HPC system.

e Compare performance metrics between desktop applications
and HPC-supported applications for a government agency.

e Exploit factors that mainly affect the scalability of a parallel
program or client’s HPC application, from both the architec-
ture and the parallel algorithm perspectives.

e Develop a framework for a commercial enterprise to learn
various commands or operations in a large-scale parallel
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Table 2: HPC Knowledge Elements

Performance and Models and Programming Middleware Architecture
Evaluation Applications Tools
Scalability Model abstraction Problem decomposition | Job scheduling Shared memory
Speed-up Model verification Multi-threading Load balancing Distributed memory
Fault tolerance Model validation Parallel algorithms Parallel I/O Heterogeneous
Performance Domain application Concurrency issues Network throughput architectures
monitoring Data management Multicore / Many core
Vector processing Interconnect
Message passing Pipelining

computing system associated with using resource assign-
ment strategies to achieve better job scheduling.

These examples focus on the HPC knowledge (as listed in Table 2)
skills, and dispositions relating to parallel computing. The skills are
reflected in the action words "compare”, "develop”, or "create". The
phrases such as "commercial organization,' "government agency”,
"client, and "commercial enterprise" are the implied dispositions

that require human attributes to achieve a successful task.

3.3.3  Sample Competencies for Computing and STEM Majors. The
following sample competencies are intended for computing and
STEM majors.

e Design, implement, and assure the correctness of a high per-
formance system using knowledge of thread implementation,
synchronization, prioritization, and communication as well
as a contemporary programming language for deployment
in an environment that may occasionally require real-time
performance. In this example, the skill includes the ability
to design, implement and assure. The knowledge pertains
to the implementation, of synchronization of threads, their
prioritization, and communication, while the disposition ap-
plies to the context of the environment that requires the
real-time performance.

o Analyze and compare different network topologies including
but not limited to semantics, scalability, and other limitations
for designing and building large-scale computing systems in
organizations that undertake scientific research.

e Collaborate with colleagues and researchers on a project
creating a parallel program that solves a problem with high
efficiency by comprehensively using parallel architecture,
HPC interconnection network, and parallel compilation tech-
nology, resource scheduling.

e Develop a framework for a commercial entity to calculate
the parallel efficiency associated with converting a serial
to a parallel program on homogeneous and heterogeneous
architectures (such as CPU-GPU, CPU-accelerator) and the
potential challenges of developing faster next-generation
HPC systems.

Each program seeking to integrate HPC into their curriculum
can use this approach to define the full range of basic, intermediate,
and advanced HPC competencies that they find relevant to their
curriculum. Such efforts should begin with the selection of the
knowledge and skills that are important to their discipline and
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program. The knowledge and skills can then be combined with one
or more dispositions to define the HPC competencies that should
be integrated into the program. In turn, those competencies can be
used to insert the appropriate modules into existing courses or to
develop new courses that will achieve curricular goals.

4 SUPPORTING HPCED

As described in Section 2.4, a major challenge for faculty who are
not conversant with HPC but are interested in including HPC in
the average computing class is locating instructional resources
ready for classroom use. In this section, we provide information
and links to educational and infrastructure resources that cover
HPC competencies.

4.1 Educational Resources

Although a range of resources have been developed for teaching
HPC and PDC concepts (textbooks, reading materials, slides, syllabi,
lab assignments, etc.), the community needs more instructional
resources at different levels and covering different applications.
More importantly, there is also a need for systemic categorization,
cataloging, and evaluations of the existing resources with respect
to quality, maturity, completeness, usability, and adoptability.

Brown [22] organized educational resources into three major
categories: for classroom instruction, providing access to hardware
platforms for hands-on HPC/PDC exercises, and software tools, li-
braries and games for aiding the instruction of HPC/PDC. Following
Brown, we categorize the available resources into two categories:
educational and infrastructure. We focus on resources that are avail-
able free of charge and are appropriate for undergraduate teaching,
since course offerings are few and major gaps in faculty knowledge
exist at this level.

Instructional resources help faculty to teach HPC/PDC concepts
and students to learn those concepts. Lesson plans, handouts, lab
modules, and games fall under this category. Table 3 provides a list
of online resources along with a brief description and their weblink
for easy access. Several universities worldwide also publicly share
their course details and assignments on their websites.

4.2 Infrastructure Resources for HPCEd

Teaching parallel and high performance computing requires some
hardware or software infrastructure; at minimum a multicore sys-
tem and some parallel software is needed. This section describes
different ways to meet hardware and software requirements.
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Table 3: HPCEd Instructional Resources.

Name Program/Institution Name Resource Description and Web Link
AWS Amazon Web Services Online learning modules on cloud computing and virtual cloud lab for students and
Educate faculty. https://aws.amazon.com/education/awseducate
BWPEP Blue Waters Petascale Education Program Materials to support the teaching and use of parallel and high-performance scientific
computing in undergraduate and graduate classrooms and workshops.
http://shodor.org/petascale
CDER Center for Parallel and Distributed Com- | PDC core curricula, an early adopters program, and a book project on Topics in
puting Curriculum Development and Edu- | Parallel and Distributed Computing Enhancing the Undergraduate Curriculum.
cational Resources https://tcpp.cs.gsu.edu/curriculum/?q=node/21183
CSERD Computational Science Education Curriculum materials and workshops for faculty funded by the National Science
Reference Desk foundation (plus internship and fellowship for students) http://shodor.org/cserd
CSinParallel | CSinParallel is supported by a grant from | A searchable database of undergraduate teaching modules and links to platform
NSF-TUES setup, libraries, and packages for teaching parallel computing.
https://csinparallel.org/index.html
HPCU High Performance Computing Virtual organization that shares educational and training materials for computa-
University tional modeling and digital humanities and social sciences.
http://www.hpcuniversity.org
iPDC Integrating Parallel and Distributed Comput- | Lesson plans for plugged and unplugged activities to teach PDC.
ing Modules https://www.csc.tntech.edu/pdcincs/index.php/ipdc-modules
NICS National Institute for Computational Science | Education, Outreach and Training (EOT) program provides collaboration opportu-
nities and resources for institutions and training events for students.
https://www.nics.tennessee.edu/eot/hpc-training
OSCER University of Oklahoma’s Supercomputing | Provides a workshops’s serie titled "Supercomputing in Plain English" with 11
Center for Education & Research recorded videoconference presentations. http://www.oscer.ou.edu/education.php
SIGHPC Special Interest Group on High Educational and training resources for HPC, Computational Science Systems (gen-
Performance Computing eral and domain specific), system professionals, and pre-university (K-12) practi-
tioners. https://sighpceducation.acm.org/resources.html
Table 4: HPCEd Hardware Resources.
Name Program/Institution Name Resource Description and Web Link
AREN Alabama Research and Education Network | Access is free to all educators throughout the state of Alabama.
https://www.asc.edu
Chameleon | NSF-funded testbed for Computer Science | Available to Computer Science researchers and students. Deeply-reconfigurable,
experimentation with capabilities for networking, distributed and cluster computing, and security.
https://www.chameleoncloud.org/
CDER Center for Parallel and Distributed CDER cluster freely available for faculty and students.
Computing Curriculum Development Offers heterogeneous clusters maintained at Georgia State University.
and Educational Resources https://tcpp.cs.gsu.edu/curriculum/?q=node/21615
DiaGrid Distributed research computing grid Provides free web-based access to high performance and high throughput computing
to users. https://diagrid.org
JetStream JetStream is led by the Indiana University | It provides high performance computing resources to education communities.
Pervasive Technology Institute (PTI) https://jetstream-cloud.org
XSEDE Extreme Science and Engineering Educational portal that allocates storage, and cloud facilities to educators on request.
Discovery Environment These resources include computing and visualizations.
https://www.xsede.org/web/xup/allocations/education
4.2.1 Hardware. The overwhelming majority of modern devices, orthogonal concern is the availability of programmable graphics

including smart phones, include multiple processing cores. There-
fore, beginners can use standard resources such as laptops, desktop
PCs, and general purpose lab computers.

Additionally, a variety of local smaller scale options exist, such
as low power dedicated boards like the Raspberry Pi or Arduino. An
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processing units (GPUs) for use in HPC.

These general purpose resources alone are often not enough
to teach HPC/PDC effectively to its full extent. Dedicated hard-
ware resources such as HPC clusters, high end servers, or other
such platforms are needed to replicate the conditions of HPC work-
ing environments and implement large projects. These hardware
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resources also include parallel TaaS provided by cloud providers
such as Amazon AWS, Google Cloud, Microsoft Azure, etc. The
advantage of cloud resources is that they are globally available and
require minimal maintenance but they can be costly, especially for
large or long running classes. However, they are reasonable tools
for short duration courses such as workshops and tutorials.

Another option, available on some campuses, is a local cluster,
often bought via hardware investment through an academic unit
and incurring ongoing maintenance and access fees. This model
has several benefits including consistent usage and performance,
and gives students an opportunity to use and access modern su-
percomputers. However, limited access is the primary drawback.
Larger consortiums exist for institutions lacking their own hard-
ware infrastructure. National research organizations, such as NSF,
also make time available for students and researchers. See Table 4
for a list of free hardware resources for educators.

4.2.2 Software. In addition to hardware resources, a mix of soft-
ware infrastructure is required to support basic parallel education.

Parallelism exists or can be supported in a variety of modern
languages from Java to Python. Java supports a native threading
abstraction as well as several libraries which can be used for dis-
tributed computing, e.g., MPI support. Python also supports a vari-
ety of high performance libraries, both at the shared and distributed
memory levels. Julia is another useful parallel programming lan-
guage that support the three main features for concurrent and
parallel programming: asynchronous tasks, multi-threading, and
distributed computing [73].

For performance oriented work, the Message Passing Interface
(MPI) is commonly used to write code distributed across multiple
computer nodes. One of MPI’s strengths is its relative simplicity as
a C and Fortran library with a simple send/receive model. It is tuned
for performance on a wide range of modern machines. However,
it forces the programmer to reason directly about the hardware
they are using. For advanced projects other distributed alternatives
exist, such as Charm++ or Chapel, but these are less widely used in
production scale applications.

In addition to, alongside, or instead of these options, students can
also use languages which only parallelize their code on a single sys-
tem. The most common, OpenMP, is often taught (and programmed)
alongside MPL. OpenMP is a lightweight compiler-based tool which
is used to annotate loops by the programmer, which in turn generate
parallel code via a supporting compiler. started is lower as OpenMP
is not a separate library. This class of languages also includes GPU
programming languages such as CUDA and OpenCL/OpenACC,
which are more specialized.

Students will also require a standard set of development tools
including an editor and compiler (with support for the above li-
braries). Also helpful would be a package manager (HomeBrew,
MacPorts, Cygwin) or for HPC applications, Spack [51].

Performance-oriented lessons would also benefit from the use
of profiling tools, which could range from OS tools such as gprof
to specialized parallel profilers that exist as part of the language or
library. Finally, beyond rudimentary debugging, a parallel debugger
such as Alline DDT makes debugging possible for complicated code.
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4.3 Overview of Educational Papers

Although there are no journals specifically directed towards educa-
tional research in HPC and PDC, some journals have special issues
on these topics and others publish education research in these ar-
eas. Table 5 lists two special issues that we classify as ‘dedicated’
to HPC/PDC research as well as a ‘general’ computing education
research journal, JCSC, which has practitioner reports of HPC edu-
cation. The HPCEd coverage is stronger in HPC-related conferences
that have a workshop or a sub-topic on education.

Note that other journals such as The Journal of Supercomputing,
Supercomputing Frontiers and Innovations, and the IEEE Transac-
tions on Parallel and Distributed Systems publish technical research
work in HPC and PDC, and they are referred to for technical con-
tent. SIGCSE also has a list of journals and conferences that cover
computing education, which occasionally publish HPC/PDC related
research work.

4.3.1 Relevant Papers. To identify key HPCEd papers for this re-
view, we searched the ACM digital library for papers with "High
Performance Computing” in the abstract, either "teaching" or "learn-
ing" in the content, and that have been mapped to content area
CSS 2012- Computing Education. This search resulted in a list of
71 publications that were then checked for relevant examples and
approaches. These papers fall into three broad categories: hardware,
software, and pedagogical/logistical support.

Table 5: Where to find HPC Education Papers

Venue
JPDC
Special Issue

Description

Journal of Parallel and Distributed Computing Spe-
cial issue: Keeping up with Technology: Teaching
Parallel, Distributed and High Performance Com-
puting November 2019.

Transaction on Computer Education: special issue
on concurrent and parallel programming January
2013.

Conference proceedings for the regional confer-
ences sponsored by the Consortium for Computing

TOCE
Special issue

J. of Computing
Sciences in

Colleges Sciences in Colleges (CCSC).

EduHPC Workshop held in conjunction with the SC Confer-
ence (2018 onward).

EduHiPC Targeted towards educators in Asia (2018 onward).

EduPAR Targeted towards PDC pedagogy and curricula
(2011 onward).

Euro-EDUPAR Targeted towards educators in Europe (2015 on-

ward).

Due to time limitations we could not carry out a systematic
review. Instead, three authors read the list and identified a subset
of paper that best illustrates ideas and experiences integrating HPC
into the undergraduate curriculum. That subset has been listed in
Appendix B.3 for interested readers.

5 HPC OPPORTUNITIES IN COMPUTING

This section examines how incorporating HPC into a computing
curriculum can result in several benefits to contemporary comput-
ing education. In particular, HPC is now being used more intensively
by educators and researchers in artificial intelligence, data science
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and analysis, and internet of things among others. The list will
continue to expand as more educators and scientists are introduced
to the possibilities of using HPC, bringing their own unique un-
derstanding of how it can be used in their fields within computing.
Section 6 explores HPC opportunities in non-computing fields.

5.1 Low-fidelity HPC Integration

The interdisciplinary nature of HPC allows for numerous educa-
tional opportunities. Here, we provide examples of “low-fidelity”
HPC integration into otherwise non-HPC courses. The idea here is
likened to low-fidelity prototyping [106], where software designers
focus on depicting concepts without significant time and financial
investment in the development process. Such low-fidelity prototyp-
ing also requires little programming skill, allowing the implementor
to focus on fundamental design [106]. Thus, this approach provides
an opportunity for course designers with little HPC expertise to
inject fundamental HPC concepts—in the form of low-fidelity HPC
components—into non-HPC courses. By identifying examples of
such low-effort HPC integration, the way is paved for instructors
who are non-expert in HPC (or time-restricted) to gradually intro-
duce its elements into their courses.

5.1.1 HPC in courses. HPC—like any other fast-paced, advanced
and continuously evolving computing area—is rich with several
exploratory and research opportunities, which lends itself well
to meeting learning outcomes of broader Project-Based Learning
(PBL), such as capstone and research courses. PBL has been shown
not only to help students understand a subject area better, but also
to provide motivation [19]. PBL is common in engineering edu-
cation, allowing students to apply knowledge in a self-directed
manner [88]. For example, HPC project topics have been integrated
into a PDC, though not necessarily HPC, coursework for software
engineering and computer systems engineering students [53, 54]. In
this course, instructors teach the fundamentals of parallel comput-
ing and students can then self-learn and explore a wider variety of
topics not formally taught by the instructors; these topics could in-
clude HPC. Students subsequently relay core concepts they learned
in their individual projects through oral presentations in class.

5.1.2  Broader Efforts. Several efforts have sought to integrate par-
allel programming concepts into courses that are not necessarily
dedicated to HPC, giving rise to valuable lessons for other efforts
looking to build on these. Despite the serious challenges of teach-
ing parallelism to undergraduate students early in their course
progression, there are benefits in exposing students to such parallel
models early. By merely letting students acknowledge the existence
of parallelism, they become aware of parallelism and can apply
it in later courses should they need it. In addition, students are
typically thrilled to learn a real-world and relevant “hot topic” [59].
Even without practical opportunities, a breadth-first approach in
the form of paper discussions allows students to appreciate the
wide-ranging relevance of parallelism [105].

5.1.3  Educational Tools. Although few educational tools exist for
teaching “strictly HPC” content, several do exist for fundamental
concepts that are relevant to parallel computing. PDC Unplugged
provides a large collection of activities, categorized into various
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course and curricula views, to help instructors find relevant ma-
terial for their PDC courses [83]. Paralle]lAR uses an analogy to
visualize fundamental parallel scheduling policies, focusing on con-
cepts without requiring students to program [2]. Also recognizing
the importance of visualization, TSGL is a thread-safe graphics
library that helps instructors and students visualize the underlying
execution of their parallel programs [6]. Block-based programming
extensions are also starting to emerge, for both parallel program-
ming [49] and distributed programming [21].

5.2 Data Science

Data Science is an interdisciplinary area that applies methods and
algorithms to structured or unstructured data to extract information
and hopefully knowledge [77]. Discovering knowledge and patterns
in a complex dataset is a computationally intensive task. This is
especially the case when dealing with large-size data with many
attributes (possibly big data), or unstructured data with hidden
interconnectivity [41]. Consequently, HPC is needed to provide at
least part of the solution to the computational challenge of data
science.

5.2.1 HPC in courses. This pivotal need for HPC in Data Science
has led to the introduction of High Performance Data Analytics
(HPDA) as a new sub-discipline of data science by Pacific Northwest
National Laboratory in 2013 [24]. Researchers active in HPDA have
been exploring, evaluating, and demonstrating the application of
HPC technologies to data analytics challenges. On the educational
front, the ubiquity of HPC in data science applications means that
many data science programs include material on Hadoop, Mapre-
duce, Spark, NoSQL, and other concepts in their coursework. The
Park City report specifically mentions these topics in its curriculum
guidelines for undergraduate data science programs [40].

5.2.2  Broader Efforts. Many data science programs are situated
in computing-focused departments or colleges. Computing-heavy
curricula are more likely to present HPC concepts, while business
and statistics-oriented programs are not. Given the importance of
HPC in this field, this educational gap could be filled by the low
fidelity approach discussed earlier, with more advanced courses
available to the interested student.

5.2.3 Educational Tools. From the tools and education aspects,
HPC programming interfaces such as MPI, OpenMP, PGAS (Open-
SHMEM), Spark, Hadoop, and their software stacks are intensively
utilized in data science [10]. These parallel and distributed APIs
have generally met data scientists’ requirements in terms of high
computational performance, while Big Data frameworks such as
Spark have performed likewise in terms of high-level programming,
resiliency and I/O handling [12]. For less computing-intensive data
science programs, plug-and-play options that require little technical
intervention are needed to reach educational goals.

5.3 Artificial Intelligence

Artificial Intelligence is the science and engineering of making intel-
ligent machines, where the intelligence is the computational part of
achieving goals such as learning, search, optimization, and decision
support, among others [85]. Al algorithms have been around since
the late 1950s, many of which could not be efficiently implemented
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until the availability of sufficient computational capacity needed
to deal with high computational complexity. Hence, it comes as
no surprise that the AI community has increasingly used HPC in-
frastructures to achieve the vision of Al to build machines and
applications that help humans make better and more informed
complex decisions [129]. Note also the contribution of AI meth-
ods in providing solutions to different elements of HPC systems
such as load balancing, job scheduling, runtime prediction, and
optimization of resource utilization [70].

5.3.1 HPC in courses. Figure 5 illustrates the sharp increase in the
amount of computing usage in Al training algorithms since 2012,
which reflects the availability of more powerful HPC platforms to
run more complex algorithms [7]. The increasing computational
power has led to better Al search algorithms, which in turn has
led to the development of intelligent applications such as AlphaGo,
an Al search program and the first computer program to defeat
a Go world champion and in fact, the first program to defeat any
professional human Go player [31].

In general, Al search algorithms are classified among the most
computationally heavy algorithms. To understand how computa-
tionally demanding these algorithms are, we can consider the game
of chess. There are about 103! atoms in the universe, while the
lower bound of the game tree complexity of chess is 1012° (Shan-
non number [111]). Because of this level of complexity, it took until
1997 for Deep Blue to beat Garry Kasparov (chess world champion),
and until 2016 for AlphaGo to beat Lee Sedol, 18-time world cham-
pion [31]. These types of algorithms cannot be discussed in class
without teaching students their parallel implementations.

5.3.2  Broader Efforts. There are many popular use cases for Al in
HPC. Some of these Al-based applications are image recognition
and classification, trading strategies, predictive maintenance, object
identification and detection, patient data processing, image query,
geospatial feature detection, social media content management and
distribution, cyber defense and operation, unstructured content-
based bots, sensor data fusion and analysis, among others [74].
These applications for HPC and Al provide opportunities for HPC
concepts to be taught in targeted non-computing courses such as
economics and engineering.

5.3.3  Educational Tools. Al tools for computing courses are many,
from NLP programs like the Natural Language Toolkit (nltk) [18] to
deep learning’s TensorFlow [1] and Keras [32]. For non-computing
classes such as economics, business, or engineering, tools that do
not require extensive modification or setup are needed.

5.4 Other Computing Areas

There are several other areas of computing where HPCEd would
be useful.

For example, as the massive number of interconnected devices
capable of sensing and actuation—the Internet of Things (IoT)-
become increasingly commonplace, they provide tremendous op-
portunities for the creation of new services with tangible benefit to
society. However, the two-layered architectures of systems based
on cloud/IoT devices are failing to support real-time communi-
cation and data processing needs by these billions of devices to
meet quality of service expectations. Hence, as the drive to push
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processing more towards resource constrained fog/edge devices, a
larger need arises for developing and utilizing high performance
computing competencies. At the least, fog/edge devices will need
to contribute to computationally intensive data quality activities,
privacy preservation, mobility support, the preservation of network
semantics, and more importantly, probably making use of intensive
machine learning [17].

Additionally, data quality activities alone may include the nor-
malization, filtering, and aggregation of data. Massive data will have
to be put in common formats, homogenized to preserve semantics,
and serialized for efficient transmission. Furthermore, filtration ac-
tivities will work on eliminating redundant or faulty data to relieve
subsequent layers from the burden of traffic and processing. Fi-
nally, data will probably be fused for more abstracted meanings. All
such activities could be relying on rather intensive algorithms that
possibly involve spatio-temporal analysis, statistical modeling, and
machine learning [17]. Such time-critical data must be processed
as fast as possible for further usage in IoT systems. Furthermore,
integration of IoT and HPC systems is needed to hide away resource
complexity related to context awareness, actuation, sensing, and
the involved heterogeneity of devices [38, 39].

Another example comes from the onset of the COVID-19 pan-
demic, as it has stimulated HPC application and research, from med-
ical forensics to social media behaviors and others. The COVID-19
High Performance Computing Consortium [36] engages industry
and academic members to provide research funding for projects
using machines that range from small computer clusters to large
supercomputers. Researchers have used 17 parameters on a super-
computer to analyze 63 million COVID-19 messages from 13 million
Twitter customers over a six-month period [60]; the goal here was
to determine a message’s degree of relevance to the pandemic, the
emotional level of an author, and the intensity of fear in the com-
munication. The authors then presented a statistical analysis of
their research.

HPCEd can build on these tools to educate the next generation
of computing professionals. A recent publication suggests the use
of the current COVID-19 as a pandemic supercomputing teaching
tool for reacting to and addressing future pandemics [63].

6 HPC OPPORTUNITIES IN OTHER DOMAINS

In Section 5, we explored the impact of HPCEd within Computing,
and we do the same in this section for other disciplines. Today,
HPC resources are a critical part of many science and engineering
programs and disciplines. These resources play an increasingly
important role in preparing students for many careers in both
industry and academic fields. As our ability to collect big data in
different disciplines increases, the need to be able to effectively
analyse the data also increases.

Modeling and simulation using HPC has become a critical part
of both research and applications across a wide range of disciplines.
This includes virtually every field in physical and biological sciences
and engineering as well as business, finance, and the social sciences.
The examples in this section illustrate that a combination of domain
and HPC computing knowledge is required in order to effectively
develop and apply those models.
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Two Distinct Eras of Compute Usage in Training AI Systems
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Figure 5: Two distinct eras of computational usage for AI [7].

6.1 Atmospheric Science

6.1.1 Domain Description. Atmospheric science research’s con-
tribution to understanding the earth’s atmosphere is crucial as
climate change and pollution continue to affect global weather pat-
terns. Models in atmospheric science divide the atmosphere into a
three-dimensional grid to calculate how matter and energy interact.
Mathematical equations represent the physics of matter and energy
transfer in each of the cells and pass the resulting quantities to
neighboring cells.

6.1.2  Where HPC helps. HPC is required to scale the models to
represent atmospheric dynamics at local, continental, or global
scales. Current models take advantage of multiple processors to
perform the calculations for each of the grid cells and then pass the
results for neighboring cells for each time period.

Knowledge of many of the HPC concepts summarized in Sec-
tion 3 is required to effectively run these models on HPC systems.
Those concepts include a basic understanding of parallel computing
principles, the algorithms that are used to make the calculations,
how the model will scale on HPC systems, and the management of
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large- scale input and output datasets. Deeper expertise in parallel
algorithms, parallel input-output, shared memory, and other HPC
knowledge elements is required for researchers seeking to improve
the scope, accuracy, and performance of models such as Weather
Research and Forecasting (WRF).

6.1.3 Example application. One example of such a model is the
WRF model developed through a collaborative partnership with
the National Center for Atmospheric Research [123]. Users of the
model must have knowledge of the underlying domain and the
mathematical representation of the physical processes being simu-
lated. In addition, they must understand the required underlying
data input structure and the impact of model parameter selection
on model accuracy and results. Thus, the combination of domain
and HPC knowledge is critical for atmospheric scientists to build
large-scale models on HPC systems.

6.2 Meteorology

6.2.1 Domain Description. Meteorology is a branch of atmospheric
science with a particular focus on weather forecasting. As global
warming contributes to severe and highly impacting weather around
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the globe, the need for more accurate simulation and prediction
of weather conditions emerges. To name one, forest fires have
been impacting millions of people in North American, European,
and Australian cities over the past couple of years. According to
Accuweather, the cost of forest fires in California alone in 2019
amounted to about US$80 billion [71].

6.2.2  Where HPC helps. The National Oceanic and Atmospheric
Administration (NOAA) published its 2015-2020 high performance
computing strategic plan and cites the need for major investment
needed in the domain of HPC. NOAA’s Warn on Forecast system is
expected to push exascale computing by 2023. Expanding the area
covered by a particular forecast significantly multiplies the neces-
sary computation power needed to achieve forecast accuracy [123].

6.2.3 Example application. Forest file pattern prediction is seen as
an extremely complex problem that involves notable uncertainty,
and must be delivered under the strictest real time constraints [23].
Since 2017, HPC’s ability to rapidly provide on-demand analysis of
massive data has been a critical part of fighting wildfires [87].

6.3 Critical Infrastructure Protection

6.3.1 Domain Description. Critical infrastructure refers to the sys-
tems and processes necessary to maintain a functioning society.
The US Department of Homeland Security identified sixteen critical
infrastructure sectors, including commercial facilities, finance, crit-
ical manufacturing, food and agriculture, dams, and transportation
systems [33].

6.3.2  Where HPC helps. Computing, and specifically HPC, under-
pins all sectors, providing the capability to rapidly analyze data
and develop realistic models. In the transportation sector, HPC has
been used to design complex discrete event simulation models to
analyze congestion and other issues in an urban environment [26].

6.3.3 Example application. Especially in the area of disaster man-
agement, the situational awareness necessary for coherent, swift
response to emergency events requires analytic capability at all
levels of government. For example, in the area of emergency ser-
vices, efficient response to disruptive events requires fusing data in
real time from multiple streaming sources, and analyzing existing
models, potential scenarios, and established emergency response
plans to recommend a course of action. The fused data provides
emergency managers with information needed to support rational
decision making in the face of uncertainty and stress.

6.4 Biological Sciences

6.4.1 Domain Description. Biological sciences range from molecu-
lar levels to generations-long view of the world through evolution
and pandemic tracking. Study of these sciences impacts fields such
as health care, ecology, wildlife management, and marine environ-
ments.

6.4.2 Where HPC helps. The partnership between biology and
computer science, and specifically high performance computing,
goes back decades, leading to crucial advances in both fields. HPC
is often referred to as the computational microscope [44] and is an
essential tool for practically all modern biologists.
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6.4.3 Example application. A particular subfield that is well suited
to leverage HPC platforms is molecular dynamics. Such applica-
tions are often computationally intensive and require a relatively
small amount of data. Additionally, they employ straightforward
physics, suitable to diverse HPC platforms such as GPUs, and utilize
algorithms that are reasonable to prototype, explain, test, and so on.
Other major users of high performance computing resources in the
biological sciences include genome assembly platforms. These appli-
cations primarily consist of long parallel pipelines, are throughput
oriented, and are able to leverage accelerators, e.g., FPGAs, and
cloud technologies. There are other diverse biological fields and
applications, from epidemic modeling to the statistics of phylogeny
generation in evolutionary fields.

7 RECOMMENDATIONS

The working group’s overarching goal was to explore the current
state of HPC Ed and recommend ways to improve HPCEd, based
on the issues that we explored in this paper. In short, our recom-
mendations stem from the earlier sections.

7.1 Building a Professional HPC Educator
Community

Attracting HPC researchers with good communication skills to
the HPC education community can greatly reduce the pressure on
instructors and allow the content of HPC education to be updated
as the state of the art progresses. HPC researchers can also benefit
from the HPC education community. For example, researchers can
decompose the latest scientific research questions and post them.
The questions can be followed by more students worldwide, and
solved; research topics can attract the attention of more outstanding
students all over the world, allowing their own research to expand in
new ways. In short, we need to use the HPC education community
to build a bridge between HPC researchers and students.

7.2 Developing an Understanding of HPC

Disagreements and misunderstandings of the ways PDC and HPC
fit together are common. There are many definitions and notations
in each field, especially as relates to what each domain entails, their
programming, tools, theoretical aspects, and supporting architec-
tures. It is imperative to build a common understanding in the
community about each domain, and probably a recommended set
of curricula for basic, intermediate, and advanced level studies in
each of those domains.

7.3 Building HPC Competencies

Educational programs are strongly encouraged to develop a set
of competencies needed for their programs to enable high perfor-
mance computing education. Recent efforts in the academic com-
munity have proposed competencies as a core set of knowledge,
skills, and dispositions that need to be attained. While many pro-
grams focus on the knowledge and skills alone, the dispositions
that prescribe a requisite character or quality in task performance
are very much lacking in the specification of academic programs.
Programs need to be alert to providing students with an experien-
tial environment for students to immerse themselves in a hands-on
setting.
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7.4 Building Infrastructures for HPC
Education

General purpose resources are not enough to teach either PDC or
HPC to the extent needed to achieve high competence in the areas.
Given that it is very difficult to replicate real HPC settings using
working environments available at most university campuses, stu-
dents and educators need easier access to modern infrastructure for
HPC learning and experimentation. This access could be provided
by raising awareness about the available infrastructures and how
to build them at low cost. One possible approach to accomplish low-
cost construction would be to use "Budget Beowulf Clusters" that
may not be truly HPC, but help students understand the concepts
of PDC [5].

7.5 Providing HPC Experiences in
Contemporary Computing

HPC spans multitudes of other fields, notably Al Data Science,
IoT, and Big Data. Domain knowledge is an important part of HPC
education so that students can gain practical experience on how
to make use of HPC in solving real life problems. Finally, we note
that not all aspects of HPC education can be provided formally in
the classroom, as there will always be a need for students to learn
on the job, such as an internship or co-op, to solve a new class of
problems that require HPC.
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A ELEMENTS FROM CC2020

The CC2020 draft report [13] specifies a better practice for listing the needed knowledge, skills, and dispositions to create needed curricular
competencies. It provides example high-level vocabulary for knowledge, skills, and competencies based on wisdom elicited from the
computing community, as shown in Tables A.1, A.2, A.3 and A.4. Most importantly, the dispositions present themselves as a breakthrough
contribution to the definition of needed competencies, and are very much related to activities in the workplace and academia.

Table A.1: Sample Knowledge Elements from CC2020 [13]

Project Management

Platform Technologies
Parallel Computing

Software Development

Software Development
Systems Fundamentals

Humans and Systems Software Systems Software Software Hardware

Organizations Modeling Architecture Development Fundamentals

Social Issues Security Issues Virtual Systems Software Quality Graphics and Architecture and

User Experience Systems Analysis Embedded Systems Software Verification Visualization Organization

Security Policy Requirements Analysis | Integrated Systems Software Process Operating Systems Digital Design

IS Management Data Management Intelligent Systems Software Design Algorithms Circuits / Electronics

Enterprise Internet of Things Software Modeling Programming Signal Processing
Architecture Computer Networks Platform Development Languages

Security Technology

Table A.2: Sample Professional and Foundational Skills’ Elements from CC2020 [13]

Analytical and Critical Thinking Project and Task Organization and Planning

Collaboration and Teamwork Quality Assurance / Control
Ethical and Intercultural Perspectives Relationship Management
Mathematics and Statistics Research and Self-Starter/Learner
Multi-Task Prioritization and Management Time Management

Oral Communication and Presentation Written Communication

Problem Solving and Trouble Shooting

Table A.3: Sample Levels of Cognitive Skills’ Elements from CC2020 [13]

Remembering Understanding Applying Analyzing Evaluating Creating
Exhibit memory of pre- | Demonstrate under- | Solve problems to new | Examine and break in- | Present and defend | Compile information
viously learned mate- | standing of facts and | situations by applying | formation into parts | opinions by making | together in a different

rials by recalling facts,
terms, basic concepts

ideas by organizing,
comparing, translating,

acquired knowledge,
facts, techniques, and

by identifying motives

or causes; make in-

about
validity

judgements
information,

way by combining el-
ements in a new pat-

and answers interpreting, giving | rulesin a different way | ferences and find evi- | of ideas, or quality of | tern or proposing alter-
descriptions dence to support solu- | material native solutions
tions
Table A.4: Sample Disposition Elements from CC2020 [13]
Element Elaboration Element Elaboration
Proactive With initiative, self-starter, independent Adaptable: Flexible; agile, adjust in response to change
Self-directed Self-motivated, determination, independent Collaborative: Team player, willing to work with others
Passionate Conviction, strong commitment, compelling Responsive: Respectful; react quickly and positively
Purpose-driven Goal driven, achieve goals, business acumen Meticulous Attentive to detail; thoroughness, accurate
Professional Professionalism, discretion, ethical, astute Inventive: Exploratory. Look beyond simple solutions
Responsible Use judgement, discretion, act appropriately
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B HPC EDUCATION RESOURCES

This appendix includes three tables with relevant HPCEd resources for educators as follows:

o Table B.1 contains a list of upper undergraduate and postgraduate courses at different institutions worldwide.

e Table B.2 provides a list of textbooks useful for HPCEd.

e Table B.3 lists a sample set of papers that illustrate ideas and experiences integrating HPC into the undergraduate curriculum. The list
of papers is not meant to be exhaustive or complete, merely representative of different HPC approaches.

Table B.1: HPC University courses and other graduate modules

Institution

Description and web link

ANU, Australia

Australian National University offers a course on High Performance Scientific Computing
(COMP6464) that provides an introduction to High Performance Computing with an orienta-
tion towards applications in science and engineering.
https://programsandcourses.anu.edu.au/course/comp6464

Barcelona Supercomputing Centre

Offers a MSc in High Performance Computing.
https://www.bsc.es/education/graduate/master-programme

Ben-Gurion University

Introduction to parallel processing - undergraduate course materials licensed under a Creative
Commons http://tel-zur.net/teaching/bgu/pp/schedule.html

Carnegie Mellon University

Course 15-418/15-618 contains lectures and exercises on Parallel Computer Architecture and
Programming topics.
http://www.cs.cmu.edu/~418/

EPCC (formerly the Edinburgh Par-
allel Computing Centre)

offers HPC training as well as MSc and PhD programmes in HPC.
https://www.epcc.ed.ac.uk/education-training

Intel partnerships

Intel has partnered with a number of US universities to established parallel computing centers,
lecture material, and hands-on lab modules for undergraduate and graduate courses.

George Washington University: https://ipcc.seas.gwu.edu/lectures/
Georgia Tech University: https://www.cc.gatech.edu/~echow/ipcc/hpc-course/

University of Oregon: http://ipcc.cs.uoregon.edu/curriculum.html

Irish Centre for High-End Comput-
ing

Offers graduate modules on Scientific Programming Concepts and HPC & Parallel Programming
https://www.ichec.ie/about/activities/academic-user-support

NUDT, China

China’s National University of Defense Technology offers the HPC series of courses that provide
an introduction to high-performance computing, parallel programming methodology, and parallel
computing system for computing majors and non-computing majors.
https://www.educoder.net/hpc-course/

PRACE (Partnership for Advanced
Computing in Europe)

offers approximately 100 training events each year in collaboration with training centres in coop-
eration with 14 national HPC centres in Europe. They also run summer schools for students and
postdoctoral researchers and offer online training.

https://prace-ri.eu/training-support/training/

Trinity College, Dublin, Ireland

Offers an MSc in High Performance Computing.
https://www.tcd.ie/courses/postgraduate/az/course.php?id=DPTMA-HPCO-1F09
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Table B.2: A Selection of HPC Textbooks

Year | Textbook Description
1994 | Introduction to parallel computing,. Introduction to Parallel Computing is a complete end-to-end source of informa-
Kumar, Vipin, Ananth Grama, Anshul Gupta, | tion on parallel computing from introduction to architectures to programming
and George Karypis. Vol. 110. Redwood City, | paradigms to algorithms to programming standards.
CA: Benjamin/Cummings. It covers traditional Computer Science algorithms (sorting, graph and matrix
algorithms), scientific computing algorithms (FFT, sparse matrix computations,
N-body methods), and data intensive algorithms (search, dynamic program-
ming, data-mining).
https://www.oreilly.com/library/view/introduction-to-parallel/0201648652/
2009 | High performance heterogeneous com- | Thisbook provides an overview of the ongoing academic research, development,
puting. and uses of heterogeneous parallel and distributed computing in the context of
Dongarra, Jack, and Alexey L. Lastovetsky. | scientific computing. The book is organized in five distinct parts:
Vol. 78. John Wiley & Sons (1) Heterogeneous Platforms: Taxonomy, Typical Uses, and Programming
Issues
(2) Performance Models of Heterogeneous Platforms and Design of Hetero-
geneous Algorithms
(3) Performance: Implementation and Software
(4) Applications
(5) Future Trends
https://www.wiley.com/en-us/High+Performance+Heterogeneous+
Computing-p-9780470508190
2008 | Parallel computing on heterogeneous | Provides a detailed introduction to parallel computing on heterogenous clusters,
networks. including new parallel computing approaches that make better use of the
Lastovetsky, Alexey L. Vol. 24. John Wiley & | heterogeneous cluster architecture All concepts and algorithms are illustrated
Sons. with working programs that can be compiled and executed on any cluster
https://onlinelibrary.wiley.com/doi/book/10.1002/0471654167
2011 | An introduction to parallel program- | Pacheco uses a tutorial approach to show students how to develop effective
ming. 1st edition parallel programs with MPI, PThreads, and OpenMP. The first undergraduate
Pacheco, Peter. Elsevier. text to directly address compiling and running parallel programs on the new
multi-core and cluster architectures. User-friendly exercises teach students
how to compile, run and modify example programs.
https://www.elsevier.com/books/an-introduction-to-parallel-programming/
pacheco/978-0-12-374260-5
2013 | Introduction to High Performance Sci- | Free. https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html?source=techstories.
entific Computing. org
Eijkhout, Victor. Lulu.com
2014 | Programming on Parallel Machines; | Free. http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
GPU, Multicore, Clusters and More.
Matloff, Norm.
2017 | Parallel Programming in MPI and | Free. www.tacc.utexas.edu/~eijkhout/istc/istc.html
OpenMP. Ejjkhout, Victor. Lulu.com.
2017 | Elements of Parallel Computing Designed for introductory parallel computing courses , Elements of Parallel
Aubanel, Eric. Chapman and Hall/CRC. Computing presents the fundamental concepts of parallel computing not from
the point of view of hardware, but from a more abstract view of algorithmic
and implementation patterns.
The first five chapters present core concepts in parallel computing. The sec-
ond part presents three case studies that reinforce the concepts of the earlier
chapters. The content of the book is language neutral, using pseudocode that
represents common programming language models.
2020 | An introduction to parallel program-| The new edition includes coverage of accelerators via new content on GPU
ming. 2nd edition programming and heterogeneous programming.
Pacheco, Peter and Malensek, Matthew. Else- | https://www.elsevier.com/books/an-introduction-to-parallel-programming/
vier. pacheco/978-0-12-804605-0
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Table B.3: Papers of interest to introduce HPC at college at high school level

Year | Paper Description
2007 | Joseph Smith and Greg Wolffe. Introducing AP com- | Topic: Early introduction to high performance.
puter science students to high-performance computing. | K-12 / University partnership to co-develop a 3-week module on HPC
J. Comput. Sci. Coll. 23, 1 (October 2007), 70-76. that was presented to students in an Advanced Placement computer
science class.
2008 | Homma Farian, Kirk M. Anne, and Matthew | Topic: Hands-on cluster projects.
Haas.Teaching high-performance computing in the un- | This paper illustrate how to move from a theorical coverage of dis-
dergraduate college CS curriculum. J. Comput. Sci. Coll. | tributed systems to a hands-on course in which students are given the
23, 3 (January 2008), 135-142. opportunity to pull together various aspects of their Computer Science
education including Operating Systems, Graphics, Data Structures,
Data Communications, and Networking to explore the realm of HPC.
2012 | Andrew J. Pounds. The babyblas - an extended project | Topic: hands-on HPC by building a high-performance library.
for introducing undergraduates to the concepts of high | Introduced advanced Computational Science undergraduates to the
performance and parallel scientific computing. J. Com- | principles of high performance computing (HPC) and parallel scientific
put. Sci. Coll. 28, 2 (December 2012), 153-159. computing. In the project students build their own miniature version
of the Basic Linear Algebra Subroutines (BLAS).
2013 | Omar Abuzaghleh, Kathleen Goldschmidt, Yasser | Topic: affordable high-performance cluster system
Elleithy, and Jeongkyu Lee. Implementing an | This work designed and implemented an affordable HP cluster system
affordable  high-performance  computing  for | based on the PlayStation 3 (PS3) connected through gigabit ethernet. To
teaching-oriented computer science curriculum. | evaluate this PS3 cluster, they conducted a benchmarking test, that is,
ACM Trans. Comput. Educ. vol 13 no 1, 14 pages. | matrix multiplication, with different numbers of synergistic processing
DOIL:https://doi.org/10.1145/2414446.2414449 elements (SPEs) and nodes. The implemented PS3Cluster syste mwas
used for computer science courses, such as Parallel and Distributed
Databases and Parallel Programming.
2014 | A.Shafi, A. Akhtar, A. Javed and B. Carpenter, Teach- | Topic: Java support for parallel programming
ing Parallel Programming Using Java. 2014 Work- | This paper illustrates how to use Java threads API to teach parallel
shop on Education for High Performance Com- | programming techniques for shared memory systems, and MPJ Express
puting, New Orleans, LA, 2014, pp. 56-63, DOI: | — a Java MPI library — to cover distributed memory systems including
10.1109/EduHPC.2014.7. clusters and network of computers. Course weekly schedule and sample
assignments are provided.
2014 | D. Valentine, HPC/PDC Immunization in the In- | Topic: early exposure to PDC/HPC topic
troductory Computer Science Sequence. 2014 Work- | This paper advocates for exposing students to PDC/HPC topics within
shop on Education for High Performance Com- | a “traditional” CS1/CS2 environment, so that students are aware of the
puting, New Orleans, LA, 2014, pp. 9-14, DOI: | existence of parallelism, to facilitate a natural transition from serial to
10.1109/EduHPC.2014.11. parallel.
2015 | Maha Aziz, Heng Chi, Anant Tibrewal, Max | Topic: Grading tools for parallel programming tasks
Grossman, and Vivek Sarkar. 2015. Auto- | This paper describes our work on extending Web-CAT to address the
grading for parallel programs. Workshop on | requirements of Rice University’s introductory parallel programming
Education for  High-Performance  Comput- | course, thereby creating infrastructure that can be used for similar
ing (EduHPC 2015). ACM, New York, pp. 1-8.| courses at other universities and in online courses.
DOL:https://doi.org/10.1145/2831425.2831427
2018 | Ben Glick and Jens Mache. Using jupyter notebooks | Topic: Jupyter notebooks support for HP
to learn high-performance computing. J. Comput. Sci. | This paper describe a set of 8 Jupyter chapter that cover: "What is
Coll. 34, 1 (October 2018), 180-188. HPC?", "Resource Managers and Schedulers," "Parallel Algorithms,"
"Workflow Management Systems and Tools," "Distributed Algorithms,"
"Parallel Algorithm Analysis," and "Benchmarking. Hands-on program-
ming is supported by the python-based Parallel Scripting Library (Parsl)
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