6-15-2020

Toward High Performance Computing Education

Rajendra K. Raj
Rochester Institute of Technology

Carol J. Romanowski
Rochester Institute of Technology

Sherif G. Aly
American University in Cairo

Brett A. Becker
University College Dublin

Juan Chen
National University of Defense Technology China

See next page for additional authors

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

Part of the Computer Sciences Commons

Recommended Citation

Raj, Rajendra K.; Romanowski, Carol J.; Aly, Sherif G.; Becker, Brett A.; Chen, Juan; Ghafoor, Sheikh; Giacaman, Nasser; Gordon, Steven I.; Izu, Cruz; Rahimi, Shahram; Robson, Michael P.; and Thota, Neena, "Toward High Performance Computing Education" (2020). Computer Science: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/csc_facpubs/353

This Conference Proceeding has been accepted for inclusion in Computer Science: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu
Authors
Rajendra K. Raj, Carol J. Romanowski, Sherif G. Aly, Brett A. Becker, Juan Chen, Sheikh Ghafoor, Nasser Giacaman, Steven I. Gordon, Cruz Izu, Shahram Rahimi, Michael P. Robson, and Neena Thota

This conference proceeding is available at Smith ScholarWorks: https://scholarworks.smith.edu/csc_facpubs/353
Toward High Performance Computing Education

Rajendra K. Raj∗
Rochester Institute of Technology
Rochester, NY, USA
rkr@cs.rit.edu

Carol J. Romanowski†
Rochester Institute of Technology
Rochester, NY, USA
cjr@cs.rit.edu

Sherif G. Aly
The American University in Cairo
Cairo, Egypt
sgamal@aucegypt.edu

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Juan Chen
National University of Defense Technology
Changsha, Hunan, China
juanchen@nudt.edu.cn

Sheikh Ghafoor
Tennessee Tech
Cookeville, TN, USA
sghafoor@tntech.edu

Carol J. Romanowski
Rochester Institute of Technology
Rochester, NY, USA
cjr@cs.rit.edu

Rochester Institute of Technology
Rochester, NY, USA
cjr@cs.rit.edu

The American University in Cairo
Cairo, Egypt
sgamal@aucegypt.edu

Working Group Leader
Working Group Co-Leader

ABSTRACT
High Performance Computing (HPC) is the ability to process data and perform complex calculations at extremely high speeds. Current HPC platforms can achieve calculations on the order of quadrillions of calculations per second with quintillions on the horizon. The past three decades witnessed a vast increase in the use of HPC across different scientific, engineering and business communities, for example, sequencing the genome, predicting climate changes, designing modern aerodynamics, or establishing customer preferences. Although HPC has been well incorporated into science curricula such as bioinformatics, the same cannot be said for most computing programs. This working group will explore how HPC can make inroads into computer science education, from the undergraduate to postgraduate levels. The group will address research questions designed to investigate topics such as identifying and handling barriers that inhibit the adoption of HPC in educational environments, how to incorporate HPC into various curricula, and how HPC can be leveraged to enhance applied critical thinking and problem solving skills. Four deliverables include: (1) a catalog of core HPC educational concepts, (2) HPC curricula for contemporary computing needs, such as in artificial intelligence, cyberanalytics, data science and engineering, or internet of things, (3) possible infrastructures for implementing HPC coursework, and (4) HPC-related feedback to the CC2020 project.

CCS CONCEPTS
• Social and professional topics → Computer science education; Computing education;

KEYWORDS
ITiCSE working group; high performance computing; HPC; high-performance computing curricula; contemporary computing education; computer science education.

ACM Reference Format:
https://doi.org/10.1145/3341525.3394989

1 MOTIVATION
Current High Performance Computing (HPC) resources provide the ability to process data and perform complex calculations at quadrillions of calculations per second, orders of magnitude faster than ordinary high-speed computers [9]. HPC can be performed on dedicated supercomputers typically containing thousands of compute nodes working together to complete one or more tasks in parallel, or in recent years, large numbers of inexpensive commodity computers configured in parallel or distributed settings, with
There have been prior efforts in bringing HPC into computing education. This working group seeks to:

(1) Catalog HPC elements such as multi- and many-core programming; distributed memory, shared memory, and hybrid models; accelerators including graphical processing units, FPGAs, Xeon Phi and Quantum processing units; parallel and distributed file systems, and supercomputers.

(2) For each of the contemporary application areas (such as AI, DSE or IoT), catalog best practices and examples of how educators can incorporate HPC.

(3) Explore infrastructures for implementing HPC coursework with a focus on simple and low-cost solutions.

(4) Develop HPC recommendations for modern computing curricula and provide feedback to the CC2020 project.

ACKNOWLEDGMENTS
John Impagliazzo contributed substantially to this paper. Raj acknowledges support provided by the National Science Foundation under Awards 1433736 and 1922169.

REFERENCES